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Formally verified ZTA requirements for OT/ICS
environments with Isabelle/HOL
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Zolan[0000−0003−2601−7604], and Richard Macwan

National Renewable Energy Laboratory
firstname.lastname@nrel.gov

Abstract. The clean energy transformation led to the integration of distributed en-
ergy resources on a top of the grid, and so a substantial increase in the complexity
of power grids infrastructure and the underlying operational technology environ-
ment. Operational technology environments are becoming a system of systems,
integrating heterogeneous devices which are software/hardware intensive, have
ever increasing demands to exploit advances in commodity of software/hardware
infrastructures, and this for good reasons – improving energy systems require-
ments such as cybersecurity and resilience. In such a setting, system requirements
at different levels mix, thus undesirable outcomes will surely happen. The use
of formal methods will remove ambiguity, increase automation and provide high
levels of assurance and reliability. In this paper, we contribute a methodology and a
framework for the system level verification of zero trust architecture requirements
in operational technology environments. We define a formal specification for the
core functionalities of operational technology environments, the corresponding
invariants, and security proofs. Of particular note is our modular approach for
the formal verification of asynchronous interactions in operational technology
environments. The formal specification and the proofs have been mechanized
using the interactive theorem proving environment Isabelle/HOL.
Keywords: formal methods, Isabelle/HOL, OT security, microgrids.

1 Introduction
Operational technology (OT) environments are cyber-physical systems (CPSs) used to
integrate, monitor, and enforce control actions in industrial control systems (ICSs) [43].
OT environments include devices such as supervisory control and data acquisition
(SCADA) systems, programmable logic controllers (PLCs), intelligent electronic devices
(IEDs), and remote terminal units (RTUs) [56], each of which can be connected to
a distributed control network infrastructure featuring Lightweight Directory Access
Protocol (LDAP) servers, routers, and firewalls [20]. The ongoing transition to renewable
energy systems provides a new dimension of security risks to the OT landscape [48].
The next generation of OT environments will integrate distributed energy resources
(DERs), which are broadly defined to include (i) microturbines and other combustion
technologies [45], (ii) wind plants [35], (iii) solar energy plants [57], (iv) smart buildings
[49], (v) electrical vehicles (EVs) [23], (vi) fuel cells [46], and (vii) other kinds of
hybrid systems [41]. A microgrid configuration can comprise one or more of these
items (i)–(vi) [28]. These highly critical and software-intensive CPSs [42, 55] contain
OT/ICS devices that are interconnected with each other, with the internet, with the
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Fig. 1: Formal verification framework for OT security.

environment, with the energy infrastructure, and with other critical infrastructure and key
resources [31], which can lead to a large collection of entry points for cyberattacks [22].
CPSs can create domains of mixed criticalities [5], wherein system requirements of
different levels mix. In such a setting, undesirable outcomes are more likely to happen,
highlighting a need to increase the level of assurance and reliability for OT environments.
Our proposed solution combines the use of known security architectures, such as the zero
trust architecture (ZTA) [27], with the use of formal methods (FMs) [29], the latter of
which provides assurance evidence with an absolute guarantee that an OT environment
meets ZTA requirements.

The goal of this work is to demonstrate that developing dependably secure OT envi-
ronments to the level of trustworthiness required by ZTA is possible. Our solution consist
of defining and proving correctness (Section 5) for OT environments under requirements
imposed by ZTA. This requires a formal specification of the core functionalities of
OT environments, a formal specification of ZTA tenets, and a semantics framework
enforcing rigorous and modular reasoning, i.e., allowing the verification of ZTA tenets
for individual devices and then the composition of the verification results for the overall
OT environment. The seven tenets of ZTA that we adopt are described informally using
natural language in the National Institute of Standards and Technology (NIST) Special
Publication 800-207 [44], in which each tenet addresses a specific security requirement.
For example, the second tenet requires the implementation of access control policies
to preserve data integrity and confidentiality, regardless of the physical location of the
client accessing the network of the OT environment.

Vision. Our vision, illustrated in Figure 1, is a back end for system-level formal
verification of ZTA requirements in OT environments. The colored boxes are contribu-
tions of this paper, and the white dashed boxes are use cases for future work. We use the
interactive theorem proving (ITP) environment Isabelle/HOL [37] to define an array of
formal verification tools, background theories, and libraries, that we leverage to specify
and verify behaviors and security properties of OT environments at the system level. The
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Fig. 2: Approaching OT security with verification based on deductive proofs.

workflow starts by manually extracting ZTA requirements (in natural language) from
NIST 800-207. We then determine the core functionalities of OT environments to be
formalized and verified together with the extracted requirements.

Contributions. The main contribution of this paper is a methodology for system
level formal verification of ZTA requirements in OT environments (Section 2). The
application of our methodology to OT environments (see Section 3 for details on the
microgrid configuration we are using as a case study) led to a formal framework as an
additional contribution with the following results: (1) the extraction of a set of security
functional requirements (SFRs) (e.g., see SFR 1 in Section 3, §7) for microgrids based
on ZTA tenets listed in NIST 800-207; (2) the use of Isabelle/HOL to define small step
semantics (see Table 1), which formally describes control actions, i.e., critical control
actions for both device-level and system-level interactions in microgrid configurations;
(3) the use of Isabelle/HOL to define big step semantics (see Table 2) to formally describe
system-level and device-level behaviors, e.g., the behavior of the OT environment as a
whole; (4) the definition of data models to describe properties of the state space of OT
environments (see subsection 4.2); (5) the definition of correctness for OT environments
(see subsection 5.1); (6) the formalization of ZTA tenets as security properties on top of
Isabelle/HOL (see subsection 4.6); (7) machine-checked proofs, including the proofs of
the well-formedness conditions and the proofs of the state invariant for each individual
device; and (8) machine-checked proofs of the security properties that provide assurance
evidence that the OT environment meets the security objectives of ZTA.

2 Approaching OT security with ZTA and deductive proofs
Approach. Figure 2 describes our approach. Step (1) is to manually extract SFRs (e.g.,
SFR 1) from ZTA tenets defined in NIST-800-207, the report in which ZTA standards are
specified in natural language. Because the content of NIST-800-207 is broadly defined
and intended for information technology (IT) environments, this step also includes the
identification of the core functionalities of the OT environment (system-level require-
ments for verifiable ZTA in microgrids). The extraction of SFRs was done manually
and involved collaborations with subject matter experts in power systems engineering,
systems security engineering, and formal methods engineering1. The same requirement
elicitation process led to the choice of a system architecture inspired by the Enclave

1 All these roles are fulfilled by the authors of this paper.
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Gateway Model found in the same NIST-800-207 standard (see Figure 3b) as an archi-
tecture model for verifiable ZTA in microgrid configurations. The main output from
this step is a collection of SFRs for the security of microgrids that follow ZTA. An
example of SFRs would be SFR 1 defined in Section 3. Once the SFRs are defined,
we then extract two artifacts. The first artifact consists of system-level requirements
(functional requirements), i.e., core functionalities of OT environments that allow us to
implement a secure microgrid following the architecture of the Enclave Gateway Model
(see Section 3, §2–6). The second artifact consists of a list of ZTA security objectives for
microgrids.

Step (2) is formalization (see Figure 2), i.e., translation of informal artifacts (e.g.,
the extracted SFRs which are written in natural language) to formal artifacts (e.g., SFRs
written as a statement in logic) to allow verification based on deductive proofs. This
formalization step is important because it removes ambiguity, inconsistency, incomplete-
ness, and errant reasoning from SFRs. In this paper, the formalization of SFRs is done
manually. A manual formalization process could lead to a non-correspondence between
the informal and formal artifacts, i.e., the traceability link between informal artifacts and
formal artifacts might not be accurate nor complete. To resolve this issue, we develop an
assurance case argument similar to those in [13, 18, 36] to justify the gap (see Figure 2,
step 2) created by a manual formalization step.

The output artifacts from the formalization step are: (a) the behavioral specification,
namely, a formal specification of the core functionalities of microgrids (e.g., the closed
loop controller WholeMG formalized in subsection 4.7), well-formedness conditions, and
state invariants (e.g., the state invariant ECurrentCBrkr_inv formalized in subsec-
tion 4.6), i.e., an embedding of the functional requirements in the logic of Isabelle/HOL;
and, (b) security properties for microgrid configurations (e.g., the SFR RTU_SFR for-
malized in subsection 4.6), i.e., an embedding of the security objectives in the logic of
Isabelle/HOL.

Finally, step (3) is to use Isabelle/HOL to generate machine checked deductive proofs
for the formal specification; these deductive proofs are our evidential artifacts supporting
the security claim stating that ”The OT environment is secure following ZTA”. This
includes proving that the behavioral specification of a given microgrid configuration
preserves the state invariant, the well-formedness conditions, and the security properties.

Main challenges. Of particular note are the challenges related to the formal veri-
fication of OT environments, such as system complexity (e.g., the system of systems
nature of OT environments) and maintenance (e.g., continuous deployment). Given
the ongoing transition to renewable energy, OT environments are under continuous
deployment (frequently updated and maintained), where heterogeneous devices that
have individual control actions and are implemented separately, are integrated to operate
together using asynchronous communication protocols. Continuous deployment means
composing small new configurations (subsystems) with the existing configuration of the
OT environment. The design of OT environments also creates a cyber-physical environ-
ment mixing continuous behaviors (the physical side, i.e., the controller infrastructure
and its corresponding control actions) and discrete behaviors (the cyber side, i.e., the
communication infrastructure and its corresponding control actions). From the point of
view of verification based on deductive proofs, this requires a heterogeneous state-space
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representation to capture the cyber-physical properties and behaviors of the different
subsystems. It also requires a modular semantics framework that allows us to describe
and to reason about the behavior of individual subsystems (e.g., ICS devices) and then to
compose the results for the whole system. Thus, one can expose the verification results
obtained at the subsystem level (or device level) to system-level interactions. These
challenges are severe barriers for the formal verification of OT environments, and we
provide novel solutions in what follows.

Solutions. Modular formal verification of CPSs such as OT environments that are
under continuous deployment is a significant challenge for state-of-the-art formal meth-
ods. Our solution is to use Isabelle/UTP [15] as a semantics framework to carry out the
overall verification. This choice is motivated by multiple factors. First, Isabelle/UTP
builds on the seminal work of Hoare & He, which uses unifying theories of programming
(UTP) [21]. The latter offers an extensible framework and uses alphabetized relational
calculus as a semantic foundation for the unification of features of CPSs. For example,
one can incrementally extend UTP with semantics for hybrid programs [12], probabilis-
tic programs [58], imperative programs with exceptions, heaps, and stacks, and also
methods of handling the subtleties of concurrent [6, 14], parallel [54], and real-time
executions [9]. UTP is thus suitable for the formal verification of OT environments (or
any system of systems) that are under continuous deployment. This is because UTP is
an extensible verification framework that allows us to semantically describe and incre-
mentally integrate verified features for CPSs. Additionally, Isabelle/UTP has a generic
state-space representation using lenses [16], allowing us to describe heterogeneous state
spaces, and thus mixed-discrete and continuous (hybrid) behaviors [18] of CPSs can be
modeled and verified. Finally, Isabelle/UTP is based on Isabelle/HOL, and thus we will
benefit from sophisticated proof engineering tools, such as parallel proof-checking [3];
proof tactic customization via Eisbach [34], a large collection of libraries for the imple-
mentation of domain-specific formal languages [36,47,51,52]; and sophisticated provers
and constraint solvers [10].

This paper develops multiple extensions to Isabelle/UTP. First, we present a small-
step semantics to describe device-level control actions (mostly cyber and a few physical)
in microgrid configurations. Next, we develop a big-step semantics to compose device-
level and system-level control actions, so one can describe the overall behavior of
microgrids. A distinguishing feature of our big-step semantics is the MODIFY operator
(see Table 2), which is used to express dynamic frames [24, 25]. This allows us to reason
about independent regions of the state space in a modular way, i.e., a modular way to
carry verified properties through independent regions of the state space (subsystems
of the OT environment under verification) and compose them with properties of other
independent regions to form a larger state space inheriting the verified properties for free.
Then, we develop an extended rule set for Hoare logic to reason about the small-step
and big-step semantics in a syntax-directed way. Our dynamic frame rule (introduced in
subsection 5.2) for the MODIFY operator is a novel contribution that allows for modular
reasoning with Hoare logic. Finally, we developed a modular and dynamic verification
condition generator (VCG), which uses our extended rule set for Hoare logic to automat-
ically generate verification conditions. The novelty for our VCG is the automated usage
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of the dynamic frame rule to discharge an already proven statement about properties of
smaller regions of the state space (subsystems) when composed with larger regions.

3 Case study: A microgrid configuration for the control of DERs
To demonstrate the applicability of our approach presented in Section 2, we use the OT
environment depicted in Figure 3a, a microgrid configuration for the control of a set of
DERs. The microgrid consists of a generator, a critical load, a noncritical load, utility,
and breakers (denoted by orange squares) as physical components. The configuration
also integrates devices such as IEDs, RTUs, router, firewall, and an LDAP server as the
cyber components. The orange solid line (physical) represents the power line, i.e., where
the electric current is transported. The blue dashed line (cyber) is the distributed control
network infrastructure (the communication network). This paper focuses on the formal
verification of the devices (in blue) and the system-level interactions between them (blue
dashed line). The verification of the physical components is out of scope of this work.

Figure 3a is a security architecture inspired by Figure 3b, where components of
Figure 3b are instantiated by ICS devices in Figure 3a. For example, IEDs and RTU are
the main critical resources we would like to protect (our Resource Enclave). The firewall
and router are our Gateway securing access to the critical resources. The LDAP server is
the Policy Administrator and Engine implementing the access control policy. The Agent
is not considered; instead, we consider System (i.e., web portal) through which subjects
(i.e., remote users) can have a remote access to the Resource Enclave.

In this microgrid configuration, the role of IEDs is to read data from sensors and
process these data following the implemented control logic at the device level. In
Figure 3a, the main functionality of IEDs is to issue control commands to actuate (i.e.,
open or close) its assigned circuit breaker. IEDs are critical components because their
control commands can badly affect the underlying DERs. For example, if the IED
randomly open and close the breakers, then the generator can receive damage [53]. The
damage can range from an electrical outage for a short period of time to a more safety
critical event, such as a long-term outage (e.g., Florida 2008 outage shutdown2). Given

2 https://www.icscybersecurityconference.com/demo-hacking-protective-relay-taking-control-
grid-risk/
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their critical role in microgrid configurations, and because IEDs can directly connect to
the network and have system-level interactions with other devices (e.g., an RTU), it is
essential to formally verify that these devices are secure following ZTA requirements,
and thus avoiding scenarios with bad outcomes.

Similarly, the RTU is another critical resource we would like to prove to be secure
because of its critical role in microgrid configurations. The role of the RTU is to act as
a SCADA that receives the data from IEDs. Based on the collected data, the RTU can
send requests to IEDs to either open or close the circuit breakers. The data collected
by the RTU are usually sent to other devices for analysis and to determine the current
condition of the microgid. Because RTUs are devices that can be accessed remotely, and
because they can control other critical devices (i.e., IEDs) and store critical data about
the microgrid, we formally verify that access to these devices is secure, and that their
system-level interactions do not lead to an inconsistent state of the microgrid.

The LDAP server has the role of policy administrator and engine in the microgrid
configuration depicted in Figure 3a. The LDAP server is an application protocol for
accessing and maintaining distributed directory information services over an Internet
Protocol (IP) network. Directory services play an important role in developing intranet
and Internet applications by allowing the sharing of information about users, systems,
networks, services, and applications throughout the network. For examples, directory
services can provide any organized set of records, often with a hierarchical structure, such
as a corporate email directory. All the usernames, passwords, and their corresponding
authorization attributes are stored in the LDAP server. LDAP servers are responsible for
the authentication and authorization of access of user clients to each device.

Finally, firewall and router in Figure 3a represent the security gateway. The router
forwards the network packets to the desired devices based on their IP addresses. The
firewall monitors the incoming and outgoing network packets and determines whether
the packet need to be transmitted or dropped based on the previously configured set of
rules. The network packets can be filtered according to the source and destination IP
addresses, protocol, source and destination ports, and encryption state. The filtering in
our system is based on IP addresses, ports, and protocol.

To formally verify that the microgrid configuration depicted in Figure 3a is secure,
and that its behavior is functionally correct as required by NIST 800-207, we follow the
3 steps captured in Figure 2 and explained in Section 2. The first step is to translate ZTA
tenets to SFRs (i.e., implementations of ZTA tenets with components of microgrids). For
example, the following SFR is manually extracted from ZTA tenet number 2:

SFR 1 If the microgrid configuration depicted in Figure 3a is in a consistent state, then
a user can have remote access to any of the devices in the microgrid through web portal
login by the following steps. i) Server authentication: If a user wants to log into any of
the devices, first, the user should verify the server certificate to authenticate the server.
In this microgrid configuration, this is internally achieved by the use of Transport Layer
Security (TLS) protocol [40]. ii) User Authentication: Once the encrypted channel is
established, the user must be authenticated to perform any actions related to the device,
such as changing settings/configurations and issuing commands. The user authentication
is performed after the user enters a username and password. This information is sent to
the LDAP server, and the LDAP server checks the database and issues an authentication

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

7



for the user if the credentials are valid. iii) User Authorization: User authorization
is based on user credentials. The LDAP server checks its database and issues the
authorization attributes, such as privilege level, to the user, and this information is
propagated to devices. The steps (i)–(iii) should not lead to inconsistent states of the
microgrid configuration.

The formal verification presented in Section 5 is centered around this SFR. This SFR
directly responds to the ZTA Tenet 2 in NIST 800-207 because it prevents cyber threats,
such as man-in-the-middle attacks and server spoofing. Other SFRs were defined to
address this and other ZTA tenets (the relation between ZTA tenets and SFRs can be
one-to-many), but it will not be presented here due to the space limits.

4 Formal modeling of microgrids
This section presents a formal specification for the microgrid configuration described in
Figure 3a. Our goal is to verify SFR 1 introduced in Section 3. The formal specification
is composed of: (1) models to describe the state space of the microgrid (see subsec-
tion 4.2); (2) state invariants and enabling conditions to describe the consistency of
the microgrid configuration (see subsection 4.6); (3) a small-step semantics to describe
single stage operations (see subsection 4.5); (4) a big-step semantics to compose these
operations and model the behavior of devices and the behavior of the system as whole
(see subsection 4.7); and (5) automated and modular proofs of the desired properties (see
subsection 5.1 and subsection 5.2). In subsection 4.1 we will introduce preliminaries on
Isabelle/HOL which is the formal specification language we are using.

4.1 Notations

The notation used in this paper assumes familiarity with higher order logic (HOL) and
its implementation in the ITP Isabelle/HOL [37]. Isabelle/HOL is a proof assistant that
has features of functional programming languages and includes a support for HOL
specifications and structured interactive proofs. The ∧, ∨, ∀ , and ∃ are the usual logical
connectors for Boolean expressions. Notations for set theory—such as ∩, ∪, and {}—are
also supported. The term language of Isabelle/HOL has a lambda calculus abstract syntax.
For example, a non-recursive function has the following notation:
definition add1 x = x + 1

. . . where add1 is the name of the function, x is the input argument, and x + 1 is the
”return” value (the image of x). The same function can have an equivalent notation
using a lambda-like abstract syntax, as follows: λx . x + 1. Functional programming
features such as let expressions, well-founded recursive functions via fun, syntax trees
via datatype (which can also be used as an enumeration type), primitive-type defini-
tions via typedef, and records-type definitions via record (tuples with an advanced
infrastructure improving proof automation) are also supported by the term language of
Isabelle/HOL. Boolean terms that require interactive proofs are specified using:
lemma inter_is_idempotent:

"A ∩ A = A"
by auto

. . . where inter_is_idempotent is an optional label name for the theorem to be
proven, "A ∩ A = A" is the theorem specifying the algebraic property, and by auto
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is the proof of the theorem; in this case, the proof was automatically generated using
the proof tactic auto. Structured and human readable proofs are also supported using
the proof language Isabelle/Isar [50]. We believe that this brief introduction to Isabelle’s
term language reviews the frequently used terms and symbols, so the rest of this paper
will make free use of Isabelle notations.

4.2 Data models

The data models used for the specification of the state space of the microgrid configura-
tion described in Figure 3a is bifurcated into: the state space for each individual device
(e.g., state space model of IED devices described in subsection 4.3) and the state space
for the whole system (introduced in subsection 4.4). The data model describing the state
space for individual devices is an abstraction of CONFIG files used by real world ICS
devices. In our model each individual device is seen as a CONFIG file which has a
logic module and communications module. For example, the data model used to specify
components of CONFIG files used by IEDs is defined in Isabelle/HOL as follows:
type_synonym ECURRENT = int
type_synonym TIME = nat -- {*Time unit*}
type_synonym ID=nat--{*Identification #*}
type_synonym CBRKRID = ID
type_synonym IEDID = ID
datatype CBRKRSTATUS = cOpen | cClosed
datatype ALARM = silent | alarming
datatype IEDSTATUS =

iedOperational | gotCmdRTU |iedShutdown|
...

. . . where types fully written with upper cases are either type synonyms of Isabelle’s
primitive types (specified using type_synonym) or enumeration types (specified using
datatype). For example, the type_synonym ECURRENT denotes electrical current,
and it is specified using Isabelle’s primitive type for signed integers int. We use signed
integers to model the direction of the electrical current flow. For example, in +5, the
sign + means that the electrical current flow away from the device, and the value 5 is the
magnitude of current (in Amperes).

4.3 State space of ICS devices in Isabelle/UTP

The state space of ICS devices that are components of the microgrid under verification
is specified using alphabet, which is used by Isabelle/UTP to mimic Isabelle/HOL
record types. The main difference between Isabelle/HOL record types specified using
record and Isabelle/UTP types that are specified using alphabet is that the fields of
alphabet are lenses [16] (i.e., an algebraic structure used to describe variables in an
axiomatic way). We have contributed a new version for the alphabet package allowing
for type overloading. For example, the Isabelle/UTP representation of the state space of
IEDs is specified using a record of lenses as follows:
alphabet IEDCyberInter = alphabet IED =

status :: IEDSTATUS ied_id :: IEDID
rtuCmdTimeout:: TIME iedCyberInter:: IEDCyberInter

eCurrentCBrkr:: CBrkrECurrent
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alphabet CBrkrECurrent =
cBrkrID :: CBRKRID
cBrkrStatus :: CBRKRSTATUS
currentECurrent:: ECURRENT
...

. . . where each field of record types specified using alphabet models an independent
region of the state space. For example, the root type IED is a record with three fields. The
first field of IED is the lens ied_id, which has the view type IEDID, and models the
identification number of the device. As a result, the lens ied_id will use a value from
the type IEDID to store the identification number of a given IED. The second field of the
record type IED is iedCyberInter, a lens that characterizes a region of the state space
independent from the one characterized by the lens ied_id. The lens iedCyberInter
stores information related to cyber interactions between an IED and other devices, such
as RTU. The lens iedCyberInter has the view type IEDCyberInter, specifying a
record of lenses, and it includes the field status which uses the type IEDSTATUS to
store the status of the IED when interacting with its assigned RTU (see Figure 3a). The
field rtuCmdTimeout of the record type IEDCyberInter stores the time-out threshold
for responding to requests sent by the RTU. The third field of the record type IED is
the lens eCurrentCBrkr, which characterizes another independent region of the state
space, and it is used to store information about the physical components interacting with
IED. In this case, the lens eCurrentCBrkr will store information related to the circuit
breaker that is controlled by the IED. The lens eCurrentCBrkr has the view type
CBrkrECurrent, specifying a record of lenses, in which each lens stores information
related to the circuit breaker controlled by the IED. For example, the lens cBrkrStatus
of the record type CBrkrECurrent is used to model the status of the circuit breaker.
The lens cBrkrStatus has the view type CBRKRSTATUS, which allows the status of
the breaker to take one of two values: cOpen, when it is open; or cClosed, when it is
closed. Similarly, we model the state spaces of the other devices, such as the RTU, the
LDAP server, the firewall, and the router.

4.4 State space of the whole microgrid
The data model describing the state space of the whole microgrid (described in Figure 3a)
is used to additionally capture the effects of system-level interactions (i.e., signals sent
between devices). The Isabelle/UTP model for the state space of the system as a whole
is defined as follows:
alphabet ControlledVars = alphabet Devices =
cBrkrCon :: CBRKRSTATUS ied :: IEDID => IED option
... rtu :: RTU

alphabet MonitoredVars = ...
eCurrentMon :: ECURRENT alphabet MGConfig =
maxECurrentMon:: ECURRENT devices:: Devices

alphabet Environment = env :: Environment
controlled:: ControlledVars
monitored :: MonitoredVars

. . . where the root record has the type MGConfig, and it specifies the whole microgrid
configuration. The field devices of the lens record MGConfig has the type Devices,
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Table 1: Syntax and description of the small-step semantics (selected list).
Constructs Description
UserLogOnToRTU This is a multistage operation. This operation can be instantiated for any device

allowing remote access through the web portal (in this case, the RTU).
It represents a state-transition system where each transition is a single-stage
operation that represents a step that is required to log on to the device.
The transitions are mainly related to authentication and authorization
operations which model the steps of the TLS protocol.

IEDOpenBreaker This is a single-stage operation. This operation can be executed by IEDs.
The main effect of this operation is to open the breaker.

IEDCloseBreaker The effect is to close the breaker. Otherwise, same as IEDOpenBreaker.
RTUSendLDAPAuthCheckRequest The RTU sends a signal to the LDAP server to check if the user has the access rights to

log on to this RTU.
RTURecvLDAPAuthCheckRequestOK RTU receives a signal from the LDAP that the user access request is accepted.
RTURecvLDAPAuthCheckRequestFail RTU receives a signal from the LDAP that the user access request is denied.

which is itself a record of lenses. It is used to model the state space of devices that are
components of the microgrid configuration. The field env of the lens record MGConfig

has the type Environment, and it is used to model the state space of the physical
environment.

The modeling pattern used to describe the state space of the physical environment
is similar to the one used in [2, 18, 36]. The pattern splits the physical environment
into: monitored variables (sensors) and controlled variables (actuators). Monitored
variables store the sensed data from the outside environment (e.g., sensing the value of
the electrical current, which is modeled by the lens eCurrentMon), and the controlled
variables store the status of the physical components that can be changed by devices,
e.g., the IED can actuate (i.e., open and close) the circuit breaker, which is modeled by
the lens cBrkrCon.

4.5 Small-step semantics

The system-level view of the microgrid configuration depicted in Figure 3a consists
of a composition of single-stage operations performed by devices to update their own
state space and also single-stage operations to interact with other devices and update the
state space of the whole microgrid. We call these single-stage operations the small-step
semantics. A general representation for these single-stage operations in Isabelle/HOL is:
op = λ s s’. E(s) −→ A(s,s’)

. . . where op can be substituted by any operation from Table 1, and E(s) is a Boolean
expression, i.e., it is a unary relation (a predicate) on the initial state s. E(s) specifies
the enabling condition for the single-stage operation op. A(s,s’) is a binary relation
between the initial state s and the final state s’. A(s,s’) specifies the effect of the
operation on the state space, i.e., substitutions of the values of variables (lenses) at state
s with new values that yield a new state s’.

In fact, enabling conditions, E(s), are guards for single-stage operations. That is
if E(s) is evaluated to be true, then the behavior of op is characterized by the set of
reachable states denoted by the relation A(s,s’). If E(s) is false, however, then the be-
havior of op is completely nondeterminisitc, i.e, op will have a divergent set of reachable
states and will behave exactly as DIVERGE from Table 2. At the implementation level,
enabling conditions are used to describe constraints on a particular region of the state
space, such as time constraints that a given variable should satisfy or constraints about
the range of possible values for a given variable. For example, the single-stage opera-
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tion IEDOpenBreaker from Table 1, which is performed by IED, has the following
semantics in Isabelle/HOL:
definition IEDOpenBrkr eCurrentValue =
λ s s’.
abs (lens_lookup maxECurrent (s)) ≤ abs (eCurrentValue) −→
s’ = lens_upd cBrkrStatus s (cOpen)

. . . where E(s) is substituted by the Boolean expression:
abs (lens_lookup maxECurrent (s)) ≤ abs (eCurrentValue)

. . . and A(s,s’) is substituted by s’ = lens_upd cBrkrStatus s (cOpen). The
input argument eCurrentValue represents the electrical current that the IED senses
from the power line. maxECurrent is a lens characterizing a region of the state space
where the maximum value of the electrical current is stored. abs is a function that returns
the absolute value of a signed integer. lens_lookup is a function that retrieves the
value of a given lens at a specified state; in this case, it was used to retrieve the value of
the maximum current stored in maxECurrent. For simplicity, we will use the notation
X!!s instead of lens_lookup X (s). cBrkrStatus is a lens storing the status of the
circuit breaker (described in subsection 4.2). lens_upd is a function that updates a lens
with a given value at a given state; in this case, it was used to update cBrkrStatus

with the value cOpen. The full definition of IEDOpenBreaker has additional input
arguments and performes more substitutions on the state s. Details are omitted here for
simplicity and brevity.

4.6 Invariants and security properties
We use state invariants to specify the consistency of the microgrid. A state invariant is a
predicate on the state, s, that specifies a consistent state for a given device and for the
microgrid as a whole. To prove that the state invariant is preserved by the microgrid
configuration, we assume that the invariant holds on the initial state, and we prove that it
still holds after performing any microgrid’s operation. For the case of circuit breakers
controlled by IEDs, the state invariant has the following notation in Isabelle/HOL:
definition ECurrentCBrkr_inv s =
(abs (maxECurrent!!s) >
abs (currentECurrent!!s) ←→ ((cBrkrStatus!!s) = cClosed ∧ ...)

∧
((eCurrentAlarm !!s) = alarming ←→
((cBrkrStatus !!s) = cClosed ∧ (currentTime!!s) ≥ (

alarmTimeout!!s)∧ ...))

. . . Here, the invariant is a conjunction of cases specifying a consistent state of the
circuit breaker. This specifies the consistent state of the variables cBrkrStatus and
eCurrentAlarm. The invariant ECurrentCBrkr_inv has the following specification
pattern:
case1 ∧ case2 ∧ ...

. . . where each case has the following pattern:

Z(s) ←→ P(s) ∧ Q(s) ∧ ...

For example, the case:

(eCurrentAlarm!!s)=alarming ←→ (cBrkrStatus !!s)=cClosed ∧...
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is the case where the invariant ECurrentCBrkr_inv specifies when the alarm should
be alarming. Other state invariants that specify the consistency of the other devices are
formalized but omitted here for brevity.

Similarly, we formalize SFR 1 from Section 3 as a security property for the RTU in
the form of a predicate on the state. The reason we do not instantiate SFR 1 for IEDs is
because we assume that user access to IEDs is possible only through a web portal log-in
to RTU. Specifically, we assume that no direct access to IEDs is possible for remote
users without admin privileges. To prove that the security property RTU_SFR defined
below is satisfied, we assume it to be true on the initial state of the microgrid and then
prove it to be true after the execution of the microgrid’s operations.
definition RTU_SFR cportID usrID t s =
((rtuSrvrStatus!!s) = rtuOperational ∧
RTU_inv_1_10 cportID usrID t s ∧
ValidLDAPServer (rtuCurrentLDAP!!s) ∧
ValidDigiCertificate t (rtuDigiCert!!s) ∧
(∃ c. c = (rtuDigiCert!!s) ∧
ValidKeyStore t c (rtuKeyStore!!s)) ∧

(∀ s’. s ∈ {s.
(rtuSrvrStatus cportID usrID t s) = rtu_UserLogOn ∧
UserLogOnToRTU cportID usrID t s s’} −→

UCWithRTUCADC cportID usrID t s ∧
UCAuthCheckSuccess cportID usrID t s ∧
UCLDAPCredSuccess cportID usrID t s))

RTU_SFR, described above, is a formalization of SFR 1 from Section 3 instantiated
for the RTU device. rtuOperational means that the RTU is not administrated by
an admin, and it is in a state of waiting for log-in requests from remote user, usrID,
through the web portal, cportID. The input arguments t and s specifies the current
time and the current state of the microgrid, respectively. RTU_inv_1_10 is an Isabelle
definition that specifies the state invariant of the RTU, i.e., the consistent state of
the RTU. As explained in Section 3, because SFR 1 is enforcing authentication and
authorization via TLS protocol and the LDAP server, we use ValidLDAPServer to
specify the consistency of the LDAP server. For example, ValidLDAPServer allows
us to check the consistency of the LDAP server after its enrollment by an administrator.
For the same reason, we use ValidDigiCertificate to specify the validity of the
digital certificate. Both ValidLDAPServer and ValidDigiCertificate are Isabelle
definitions, and the details of their specifications are omitted for brevity. The rest of
the specification of RTU_SFR, starting from ∀s’. s ∈ {s. ...} −→ ... until the
end, describes the set of states that lead to rtu_UserLogOn by executing the multistage
operation UserLogOnToRTU while satisfying the following:

– UCWithRTUCADC, which specifies that the server authentication was successful, i.e.,
the user client authenticated the digital certificate of the RTU.

– UCLDAPCredSuccess, which specifies that the user authentication was successful,
i.e., the RTU authenticated the credentials of the user client. This check is done by
the LDAP server.

– UCAuthCheckSuccess, which specifies that the user client is authorized to log into
the RTU with its assigned privileges.
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Table 2: Syntax and description of the big-step semantics.
Constructs Description
SKIP Used to semantically capture stutter states;

(e.g., to model a non-terminating loop, one can use SKIP as a single statement
for the body of the while-loop and keep the loop-condition true).

MAGIC The program that has an empty set of reachable states. Known as the perfect program.
It is perfect because it refines any specification. Namely, the Hoare triple {|P|}MAGIC{|Q|}
is proven to be true for any assumption P and any guarantee Q! We are using this program
to make properties of the other constructs semantically visible.

DIVERGE The program that has a divergent set of reachable states. The worst program!
X :== e Basic assignment of the value of an expression e to a region of the state space

characterized by the lens X.
P ;; Q Sequentially execute the program P then Q; this is used to sequentially compose statements.
µ R• P Least fixed point (LFP). Used to model recursion of program P with R occurring in P

and representing the point where the recursion is unfolded.
Conditional Notation: IF b THEN P ELSE Q FI; It means execute P if b, else execute Q.
Nondeterminism Notation: P ⊓ Q. It means the union between the set of states that are reachable by

the program P and the set of states that are reachable by the program Q.
Iterations Notation: FROM P UNTIL b DO Q OD. It means execute P one time, then repeatedly

execute Q until b becomes true. Can be modelled with a combination of sequential composition
construct, conditional statement, and the recursion construct as follows:
P ;; (µ R• IF¬ b THEN Q ;; R ELSE SKIP FI).

Framing Notation: MODIFY X DO P OD. It means execute the program P and discard all changes
made by P outside the region of the state space (the frame) characterized by the lens X.

4.7 Big-step semantics

The behavior of the system as a whole is modeled using the closed-loop controller
defined by WholeMG below. Input arguments (parameters) of WholeMG are omitted here
for simplicity. WholeMG uses big-step semantics constructs from Table 2 to compose
single-stage operations from Table 1 and define the behavior of the microgrid as a whole.
definition WholeMG =
FROM init s s’ until False

DO SensingEnv s s’;; ChangingEnv s s’;;
DiscreteControl s s’;; ContinuousDynamics s s’ OD

WholeMG performs a sequence of controls, each of which changes a region of the
state space of the whole microgrid (the state space of the microgrid as a whole is
specified using the record of lenses MGConfig in subsection 4.4). In WholeMG, the
system-level behavior SensingEnv will update the state space of each device by the
value of the corresponding monitored variable (i.e., the behavior SensingEnv reads
values from regions of the record of lenses MonitoredVars specified in subsection 4.4).
For example, an IED will periodically sense the magnitude and the direction of the
current from the power line. The sensed value is stored in the monitored variable (lens)
eCurrentMon.

The system-level behavior ChangingEnv specifies periodic updates on controlled
variables from the physical environment (the state space of the physical environment is
specified using the record of lenses Environment, which is in subsection 4.4). For ex-
ample, an IED can actuate the physical circuit breaker to change its status. The physical
status of the circuit breaker is modeled by the controlled variable (lens) cBrkrCon. The
system-level behavior DiscreteControl specifies all possible cyber controls that can
be performed by devices belonging to the microgrid configuration. For example, a possi-
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ble behavior for DiscreteControl is the multistage operation UserLogOnToRTU
from Table 1. Finally, ContinuousDynamics specifies the periodic updates that are
done by the environment on the monitored variables. For example, we allow the environ-
ment to assign random values for the monitored variable eCurrentMon.

5 Modular formal verification of microgrids
Modular verification is a significant challenge formal methods. Because a microgrid
configuration is a system of systems that is under continuous deployment, it requires
a modular verification approach. To enable modular verification for the behavior of
microgrids, we use the framing operator MODIFY from Table 2. The framing operator
allows us to lift the verification results obtained at the level of single-stage operations
to the device level and then to the system level. Specifically, the framing operator will
allow us to carry through the verified properties on a given region of the state space
(the frame) using the lens characterizing that region. For example, we prove that the
single-stage operation IEDOpenBrkr, which we formally defined in subsection 4.5,
maintains the invariant ECurrentCBrkr_inv (which is defined in subsection 4.6), then
we use the framing operator to lift the operation IEDOpenBrkr to the device level using
IEDOpenBrkr_dvc defined below.
definition IEDOpenBrkr_dvc =
MODIFY eCurrentCBrkr DO IEDOpenBrkr OD

IEDOpenBrkr_dvc is a lifting that enables the use of the frame rule (see subsection 5.2),
which carries the verified properties about the operation IEDOpenBreaker through to
the device level using the lens eCurrentCBrkr. Similarly, we lift the device level
behavior IEDOpenBrkr_dvc to the system level, which allows us to use the frame rule
again to carry the verified properties about IEDOpenBrkr_dvc through to the system
level using the lens devices:
definition IEDOps_sys =
MODIFY devices DO IEDOpenBrkr_dvc ⊓ IEDCloseBrkr_dvc OD

where IEDOps_sys describes the system-level behavior for IEDs, which is one possible
behavior for DiscreteControl. The latter is the discrete (cyber) part of the cyber
physical behavior of the closed-loop controller WholeMG described in subsection 4.7.

5.1 Correctness for microgrids

The goal of this work is to expose single-stage operations to system-level interactions
and ensure that the security properties and invariants (e.g., see subsection 4.6) still
hold. To prove correctness for the microgrid configuration depicted in Figure 3a, we
first prove that the closed-loop controller WholeMG that we introduced in subsection 4.7
preserves the state invariants (e.g., system-level interactions don’t break the state invariant
ECurrentCBrkr_inv from subsection 4.6). Then, we prove that WholeMG preserves
SFR 1 that we described in natural languages in Section 3 and then formalized in
Isabelle/HOL in subsection 4.6 using the definition RTU_SFR. To do such proofs, we
employ Hoare logic and VCG-based reasoning, such as in [4, 30, 59]. Our Hoare triple is
defined in Isabelle/HOL as follows:
definition {|P|}B{|Q|} =
{(s,s’). P (s)} ∩ {(s,s’). B (s, s’)} ⊆ {(s,s’). Q (s’)}
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. . . where P is a predicate that characterize the set of initial states (what we assume),
B is a behavior expressed using Table 2 or using any operation from Table 1 (e.g., B
can be substituted by the closed-loop controller WholeMG from subsection 4.7), and Q

is a predicate that characterizes the set of final states (what we guarantee), e.g., Q can
be substituted by the state invariant ECurrentCBrkr_inv and the security property
RTU_SFR we introduced in subsection 4.6. Based on this notation for the Hoare triple,
we define the Hoare logic for the big-step and small-step semantics.

5.2 Frame rule

A distinguishing feature of our Hoare logic is the generic scheme for the frame rule,
which allows us to enforce modular reasoning. Our frame rule is expressed in Is-
abelle/HOL as follows:
lemma frame_rule:
assume{|P|}B{|Q|}
shows{|P∧R|}MODIFY X DO B OD{|(∃X···Q)∧(∃Y···R)|}
proof ...

This Isabelle/HOL theorem specifies our frame_rule. Intuitively, the theorem means:
If a behavior, B, guarantees the property, Q, starting from the assumptions, P, then the
frame operator, MODIFY, will use the lens, X, to carry the guarantee, Q. The guarantees of
regions of the state space which are independent from X, are characterized by R, and are
carried through using the lens, Y. For example, Y can characterize the already-deployed
regions of the state space (i.e., the existing system of systems), and X characterizes the
state space of the newly deployed and integrated subsystem. This yields the ability to
verify a system of systems, such as microgirds, in a modular way. Other assumptions
required to prove the theorem frame_rule are omitted here for brevity.

Our implemented VCG uses this frame rule (its weakest precondition version) to
automatically discharge proofs about security properties and state invariants such as
those presented in subsection 4.6. These properties are proved to be true on single-stage
operations, and the proofs are lifted to the system level using the frame rule. In contrast
to the state of the art, where the frame rules are rather specific to spatial reasoning (e.g.,
reasoning on heaps, such as in separation logic) or temporal reasoning (see, e.g., in [59]),
our frame rule is generic and can be instantiated for both spatial and temporal reasoning.

6 Related work
While the use of integrated formal methods with assurance cases for the full specification
and verification of an OT system’s safety and security properties is described as a
relatively new opportunity in [19], here are a few cases in the literature in which formal
methods are integrated with system behavioral models and verified using theorem
proving. Khan et al. develop a three-part approach to prove system reliability and
security for an OT system, in which they use Coq [39] to prove that the system is secure
by design, dReal to perform vulnerability analysis, and their own product, ARMET [26],
to assess vulnerability to false data injection attacks in real-time, using an example of a
gravity-draining water tank. In [7, 33], the authors present VeriDrone, a framework to
specify and verify OT systems within the Coq proof assistant; however, the authors focus
their application on safety properties of the system while we focus more on security at
the cyber and cyber-physical layers.
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The closest work to that which we propose is the work by Foster et al. [13], in which
the authors formally verify the CPS Tokeneer using Isabelle/SACM [36]. In a similar
approach, Cofer et al. [8] develop a formal specification of two separate unmanned aerial
vehicles, using the JKind model checker [17] to formally verify model correctness, then
using the Isabelle/HOL theorem prover [37] to prove the system’s security properties
and that the software implementation matches the specification. The work of Cofer et
al. includes the automatic generation of software using the formal specification, but
unlike the work in Foster et al. , it does not include a model-based assurance case to
connect less formalized factors (e.g., regulatory text) with artifacts that can be modeled
using formal methods. Finally, in an industrial case study that focuses on protocols,
Dreier et al. [11] formally define a metric related to secure message passing, which they
term flow integrity, and then apply this framework to two known protocols used in ICS,
OPC-UA [32] and Modbus [38].

Acknowledgment
This work was authored by the National Renewable Energy Laboratory (NREL), operated
by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE)
under Contract No. DE-AC36-08GO28308. This work was supported by the Laboratory
Directed Research and Development (LDRD) Program at NREL. The views expressed
in the article do not necessarily represent the views of the DOE or the U.S. Government.
The U.S. Government retains and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this work, or allow
others to do so, for U.S. Government purposes.

References

1. Prashant Anantharaman, Vijay H. Kothari, J. Peter Brady, Ira Ray Jenkins, Sameed Ali,
Michael C. Millian, Ross Koppel, Jim Blythe, Sergey Bratus, and Sean W. Smith. Mis-
morphism: The heart of the weird machine. In Jonathan Anderson, Frank Stajano, Bruce
Christianson, and Vashek Matyás, editors, Security Protocols XXVII - 27th International
Workshop, Cambridge, UK, April 10-12, 2019, Revised Selected Papers, volume 12287 of
Lecture Notes in Computer Science, pages 113–124. Springer, 2019.

2. Janet Barnes, Randy Johnson, and James C. Widmaier. Engineering the tokeneer enclave
protection software. In 1st IEEE International Symposium on Secure Software Engineering,
ISSSE 2006, Proceedings, 2006.
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