

An Initiative of the Clean Energy Ministerial

Resource Adequacy in Decarbonizing Power Systems

Gord Stephen National Renewable Energy Laboratory (NREL)

May 24, 2023

Today's content based on...

https://www.esig.energy/resource-adequacy-for-modern-power-systems/

"Resource adequacy (RA) studies assess whether a power system has an appropriate set of resources to maintain continuous service to demand, with a desired level of certainty"

Resource Adequacy for a Decarbonized Future: A Summary of Existing and Proposed Resource Adequacy Metrics, EPRI, April 2022

• RA is just one aspect of grid reliability and overall grid performance

CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Source: Energy Systems Integration Group.

Why modernize resource adequacy analysis?

- Historical adequacy assessment focused on independent mechanical outages of thermal generating units
- Resource interactions and risk drivers in modern power systems can look dramatically different

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Source: Energy Systems Integration Group.

Principle 1

Quantifying size, frequency, duration, and timing of capacity shortfalls is critical to finding the right resource solutions.

Principle 2

Chronological operations must be modeled across many weather years.

Principle 3

There is no such thing as perfect capacity

Principle 4

Load participation fundamentally changes the resource adequacy construct.

Principle 5

Neighboring grids and transmission should be modeled as capacity resources.

Principle 6

Reliability criteria should be transparent and economic.

Principle 6: How much adequacy do we need?

- Both technical and economic factors need to be considered when defining an "acceptable" adequacy level
- Electricity shortfalls are undesirable, but so are high system costs
- Need to find the balance that is appropriate for the specific system context

Source: Regulatory Assistance Project / Hogan and Littell (2020).

Principle 2: Study chronology and multiple weather years

Historical Summer Peak Load

On a grid with conventional thermal generation, periods of highest risk coincide with peak load hours.

Today's Summer Net-Peak Load

On a grid with rising levels of solar energy, periods of highest risk tend to be evenings.

Tomorrow's Winter Challenge

On a grid with high levels of variable renewable energy, periods of highest risk coincide with longer lulls in renewable generation, which tend to be in the winter and which may also be exacerbated by electrification of heating demand.

Principle 1: Identify specific risk characteristics

Source: Midcontinent Independent System Operator (2021).

Principle 3: No perfect capacity

- All generating resources, including thermal generation, face unavailability risks
- Need to better capture this risk (including timing, outage correlation, and commonmode failures) when considering system adequacy and comparing potential adequacy investments

Includes forced outages plus derates for all technology types

Source: Energy Systems Integration Group.

Full reports, executive summaries and fact sheets

https://www.esig.energy/resource-adequacy-for-modern-power-systems/

Further resources

Adequacy Risk Metrics

https://www.epri.com/research/products/000000003002023230

C5 - Beyond Expected Values: Evolving Metrics for Resource Adequacy Assessment

CSE N°27 January 2023

Best Of Papers CIGRE Paris Session

a Scopus registered magazine 155N: 2426-1335

🎯 cigre

https://cse.cigre.org/cse-n027/c5-beyond-expected-valuesevolving-metrics-for-resource-adequacy-assessment

Capacity Accreditation

Ensuring Efficient Reliability NEW DESIGN PRINCIPLES FOR CAPACITY ACCREDITATION

A Report of the Energy Systems Integration Group's Redefining Resource Adequacy Task Force February 2023

https://www.esig.energy/new-design-principles-for-capacity-accreditation/

Further resources

Metric	Abbreviation	Units	Definition
Loss-of-load expectation	LOLE	Time periods/year*	Average number of event-periods per year* across all of the random samples simulated. The LOLE metric can be applied to any time period length, and must be clearly defined by the user.
	LOLH	Hours/year*	Average event-hours per year* across all of the random samples simulated.
Loss-of-load days	LOLD	Days/year*	Average event-days per year* across all of the random samples simulated.
Loss-of-load years	LOLY	Years/study horizon	Average event-years per study horizon across all of the random samples simulated.
Loss-of-Load probability	LOIP	%	Calculated as the total number of event-periods divided by the total number of time periods sampled. The LOIP metric can be applied to any time period length and study horizon, and must be clearly defined by the user.
	LOLEv	Events/year*	Average count of events per year* across all of the random samples simulated.
Expected unserved energy	EUE	MWh/year*	Average load not served per year* due to shortfall events across all of the random samples simulated.
Normalized expected unserved energy	nEUE	*	Average load not served per year* due to shortfall events across all of the random samples simulated, calculated as a percentage of system load.

Method	Туре	Computational Burden	Data Requirements
Effective Load Carrying Capability	Probabilistic		***
Equivalent Firm Capacity	Probabilistic	***	+++
Equivalent Conventional Power	Probabilistic	+++	+++
Installed Capacity	Approximation	+	÷
Unforced Capacity	Approximation		+
Generation Over Peak Load	Approximation	+	**
Generation Over Net Peak Road	Approximation	+	**
Generation Over Peak LOLP Hours	Approximation	++	++

+ = low, ++ = medium, +++ = high

CLEAN ENERGY

SOLUTIONS CENTER ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Country or Region	RA Metrics/Crite	RA Metrics/Criteria		Entity Calculating RA Metric		-
North America [20,21]						
MISO	LOLE ≤ 0.1 days/year		MISO	MISO		a Decarbonized
MRO-Manitoba Hydro	LOLE ≤ 0.1 days/year		Manitoba Public Utilities B	Manitoba Public Utilities Board		A Summary of Existing and
NPCC-Maritimes	LOLE ≤ 0.1 days/year		Maritimes Sub-areas and NPCC ISO-NE and NPCC			
NPCC-New England	LOLE ≤ 0.1 days/year					And and the other days
NPCC-New York	LOLE ≤ 0.1 days/year		NYSRC and NPCC			
NPCC-Ontario	Country or Region		RA Metrics/Criteria	Entit	ty Calculating RA Metric	
NPCC-Québec	Europe [18,25]				· · · · · · · · · · · · · · · · · · ·	T
PJM Interconnection	Bolgium [26]	LOLH	l ≤ 3 hours/year	Elia Group	p	
SERC-C		LOU	195 ^s ≤ 20 hours/year			
SERC-E	France [27]	LOU	l ≤ 3 hours/year	RTE	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DUTANU
SERC-FP	Great Britain [28]	LOU	LOLH ≤ 3 hours/year LOLH ≤ 8 hours/year (Ireland) LOLH ≤ 4.9 hours (war (Northern Ireland)		Grid ESO	EPPI
SERC-SE	Ireland and Northern Ireland [29]	LOU			sd SONI	
SPP	Netherlands [30]	LOU	<pre>< 4 hours/year</pre>	TenneT		https://www.epri.com/research/pr
TRE-ERCOT ³	Poland [31]	LOU	l≤3 hours/year	PSE		<u>/000000003002023230</u>
WECC-AB	Portugal [27]	LOU	l≤5 hours/year	REN	1	
WECC-BC	Spain [27,32]	PRM	≥ 10% (Mainland)	REE		
WECC-WPP-US & RMRG [22]		LOU	Country or Region		RA Metrics/Criteria	Entity Calculating RA Metric
WECC-SRSG	Oceania	-	Asia			
WECC-CAMX [23]	Australia-NEM [33]	NEL	India [39]	LOI	LP ⁹ ≤ 0.2%	CEA
	Australia-NT [34]	NEL		NE	UE ≤ 0.05%	
Hawaii [24]	Australia-WEM [35]	PRM	Indonesia [40]	PRA	M (2019–2028) ≥ 30% (National)	Ministry of Energy and Mineral Resource
	New Zealand [36,37]	WEI WEI WEI	Japan [41] PRM (2020-2029) ≥ 8% per region Loos [42] PRM (2020-2030) ≥ 15%		M (2020–2029) ≥ 8% per region	OCCTO
					Ministry of Energy and Mines	
			Malaysia [43]	LOI	LE ≤ 1 days/year	TNB
	Africa		Philippines [44]	PRA	M (2017–2040) ≥ 25%	DOE
	South Africa [38]	EUE	Singapore [45,46]	LOI	LH ≤ 3 hours/year	EMA
		OCI	Thailand [47,48]	PRA	M (2015–2036) ≥ 15%	EGAT
		Basi	Vietnam [49]	LOI	UH ≤ 12 hours/year per region	MOIT
		Middle East				
			Saudi Arabia [50]	PRA	M (2016) ≥ 8–10%	SEC
			Oman [51]	LOI	LH ≤ 24 hours/year	OPWP
			Qatar [52]	PRA	M (2019) > 6%	KAHRAMAA

/www.epri.com/research/products 00003002023230

	cleanenerg	ysolutions.org	12
--	------------	----------------	----

An Initiative of the Clean Energy Ministerial

Thank you!

Gord Stephen National Renewable Energy Laboratory gord.stephen@nrel.gov

NREL/PR-6A40-86365