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Abstract
Molten chloride salts are stable at higher temperatures than many other salts, including nitrate salts, and are thus promising 
for heat transfer and/or thermal energy storage in concentrating solar power, nuclear power, and other thermal energy stor-
age applications. However, corrosion in molten chloride salts remains a significant problem. While many studies have been 
devoted to evaluation of corrosion, we find that a comprehensive method for predicting corrosion in molten chloride salts is 
lacking. Here, we present an evaluation of corrosion in molten chloride salts using Ellingham diagrams and chloride-oxide 
stability diagrams, which enable prediction of alloy performance in molten chloride salts and allow corrosion results to be 
interpreted at a fundamental level.

Introduction

A comprehensive body of literature exists on the study of 
corrosion of alloys in molten chlorides [1–19], The focus 
of corrosion studies has been primarily concerned with Fe-
based and Ni-based alloys, i.e., stainless steels versus nickel 
super alloys. These studies often experimentally evaluate 
depletion of individual elements in super alloys. However, 
Ellingham diagrams, often overlooked in the literature, are 
a useful tool for predicting behavior of alloying elements. 
In combination with chloride-oxide stability diagrams, 
Ellingham diagrams can explain much of the experimentally 
observed behavior of alloys is chloride salts. Typically, super 
alloys exhibit high corrosion resistance due to the presence 
of a passivating oxide layer such as chromium oxide. How-
ever, in molten chloride salts Cl− ions challenge this oxide 
layer, and expose the alloying constituents to further oxida-
tion, creating what has been termed the ”chlorine-oxidation 
cycle” [1–10], For all alloys corrosion follows the same 

stages of (1) oxidation of elements in alloy, followed by (2) 
dissolution or vaporization of oxidized elements. The rate 
of corrosion has therefore been strongly correlated to the 
presence of oxidizing impurities in the chloride salt [3, 5–11, 
13–16, 18–23]. Understanding these studies using Elling-
ham diagrams and chloride-oxide stability diagrams enables 
predictive insight into alloy performance. Furthermore, it 
underscores the importance of limiting corrosive impuri-
ties via control of salt exposure to water, oxygen, and other 
oxidizing agents.

Results and discussion

Construction of Ellingham diagrams

The utility of Ellingham diagrams in evaluating molten chlo-
ride salts systems can be illustrated in the example case of 
MgCl2. The formation of corrosive impurities primarily stem 
from the hygroscopic nature of MgCl2 resulting in the for-
mation of oxide/hydroxide species in the presence of oxygen 
and moisture via the following reactions:

Furthermore, MgOHCl has been found to decompose 
above 550°C according

(1)MgCl2(l) + H2O(g) ↔ MgOHCl(l) + HCl(g)

(2)O2(g) + 4Cl−
(l)
↔ 2O2−

(l)
+ 2Cl2(g)
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Several studies have found a direct correlation between 

corrosion rates and concentration of MgOHCl present in 
the chloride salt [20, 23], Furthermore, the formation of 
HCl(g) and Cl2(g) via leads to corrosion of alloys in the 
headspace [7, 23, 24]. The corrosive impurities lead to 
degradation reactions with alloying constituents M (e.g., 
Cr, Fe, Ni) according to:

This degradation is an electrochemical process that can 
be explained via half-cell reactions as follows [9, 25]:

Anodic oxidation of alloying element M:

where n is the number of electrons exchanged.
Cathodic reduction of corrosive species:

where Ox is the oxidizing impurity in this case (e.g. 
MgOHCl), and Red is the reduced form of the oxidizing 
impurity.

The complete redox couple reaction:

For the electrochemical process to occur spontaneously 
the change in Gibbs-free energy needs to be negative, 
which can be calculated via:

where ∆Grxn is the change in Gibbs-free energy of reaction 
(J mol−1), F is Faraday’s constant (96,485 C mol−1), and 
∆Erxn is the redox potential of reaction (V ).

Equation 10 allows for the construction of an Elling-
ham diagram, shown in Figure 1 (constructed for various 
alloying constituents using the thermodynamic software 
HSC v8).

According to Figure 1, the most stable chlorides are K, 
Na, and Mg. Therefore, common alloying constituents (e.g. 
Fe, Cr, Ni) should theoretically remain stable within the 
chloride salt. However, the influence of oxidizing impurities 
such as MgOHCl is not readily captured by simply looking 
at Equation 10. To assess the effect of oxidizing impurities, 
∆Erxn can be further expressed into the anodic and cathodic 
potentials via the Nernst Equation:

(3)MgOHCl(l) ↔ MgO(l) + HCl(g)

(4)xHCl(g) +M ↔ MClx + 1∕2xH2(g)

(5)xMgOHCl(l) +M ↔ xMgO(l) +MClx + 1∕2xH2(g)

(6)1∕2xO2(g) + yM ↔ MyOx

(7)M → Mn+ + ne−

(8)ox + ne− → red

(9)M + ox ←→ Mn+ + red

(10)ΔGrxn = −nFΔErxn

where E0 is the potential under standard conditions (V ), R is 
the ideal gas law constant (8.314 J mol−1 K−1), T is tempera-
ture (K), and a is the activity, which for a pure solid is unity, 
i.e., aM = 1. From equation 13, the effect of increasing the 
concentration of oxidizing impurities (increasing aOx) leads 
to increasing Ec — thereby increasing ∆Erxn, and results in 
a more negative ∆Grxn. So far, the mathematical treatment 
around the Ellingham diagram is useful in predicting some 
experimental trends, such as the rate of depletion of certain 
alloying constituents. The diagram correctly predicts the 
rate of depletion for Mn > Cr > Fe > Ni [5, 11]. However, 
the diagram incorrectly predicts the rate of depletion of Nb, 
Mo, and W. Several studies have suggested the presence of 
these alloying constituents to slow down the rate of corro-
sion [10, 26].

Construction of chloride‑oxide stability diagrams

The construction of a chloride-oxide stability diagram eluci-
dates more information regarding the thermodynamic behav-
ior of alloying constituents in molten chloride salts [10]. 
Such a diagram was constructed by calculating the ∆Grxn of 
the oxides versus chlorides of various alloying constituents 
via HSC v8 (Fig. 2.).

Figure 2 has three primary regions:

	 i.	 Lower half representing oxide species are more stable 
than chloride species.

(11)ΔErxn = Ec − Ea

(12)Ea = E0
a
+

RT

nF
ln

(

aMn+

aM

)

(13)Ec = E0
c
+

RT

nF
ln

(

aOx

ared

)

Fig. 1   Gibbs-free energy of reaction of metal to metal-chloride as a 
function of temperature
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	 ii.	 Upper half representing chloride species are more sta-
ble than oxide species.

	 iii.	 Along the parity line, representing both oxide and 
chloride species in equilibrium with each other.

Several experimental observations can be explained via 
the chloride-oxide stability diagram. For example, K and Na 
chlorides are highly resistant to oxidation and can be consid-
ered stable in the presence of oxygen and moisture, whereas 
Mg is not [25]. Additionally, upon oxidation of Mn, Cr, Fe, 
Co, and Ni, the oxide will equilibrate with chloride ions and 
form chlorides as suggested by the chlorine-oxidation cycle. 
Lastly, alloys containing W, Mo, Al and Nb have enhanced 
corrosion resistance due to the formation of a relatively sta-
ble oxide that can serve as a passivation layer [10]. The util-
ity of the chloride-oxide stability diagram elucidates several 
experimental observations that the typical Ellingham dia-
gram overlooks. The diagram highlights that even Ni itself 
falls victim to the chlorine-oxidation cycle, as was observed 
by Liu et al. [5]. Even commercially pure Ni (e.g. Ni-201), 
which is expected to provide superior corrosion resistance, 
has been observed to corrode in chloride salt to a point of 
failure within days [26].

Combined use of Ellingham diagrams 
and chloride‑oxide stability diagrams as predictive 
tools

Chloride-oxide stability diagrams and Ellingham diagrams 
are useful tools in evaluating corrosion and interpreting 
results, even in less well studied systems such as convec-
tive molten chloride systems. Though studies under these 
conditions are limited, notable examples include forced 

convection studies dating back to 1960s at the Brookhaven 
National Laboratory [12] and natural convection studies 
that were conducted in early 2010 between Idaho National 
Laboratory and the University of Wisconsin Madison [26]. 
We find that these examples are well explained by Chloride-
oxide stability diagrams and Ellingham diagrams.

Natural convection corrosion studies elucidated time-
dependent corrosion mechanisms [26, 27]. In the initial 
stages, corrosion is primarily driven by oxidative impuri-
ties, which can be understood using chloride-oxide stability 
analysis. Once the concentration of these impurities dimin-
ished, the corrosion was dominated by active dissolution of 
selective alloying constituents (e.g., Cr) from the hot side, 
and deposited on the cold site. The studies highlighted the 
effect of temperature-dependent metal solubilities of spe-
cies such as chromium chloride. Similar observations were 
observed in the static corrosion study conducted by Gong 
et al. [20]. Under static conditions, the first 250 hours was 
primarily impurity-driven corrosion, after which the domi-
nant mechanism became thermal effects resulting in metal 
solubility differences.

Surprisingly, forced convection corrosion studies con-
ducted at Brookhaven National Laboratory observed no 
appreciable change in corrosion rates compared to static 
conditions [12]. The work highlighted the importance of 
salt purification and designing a leak tight system with an 
inert atmosphere. Therefore, an effective purification strat-
egy can minimize corrosion by limiting the impurity-driven 
corrosion mechanism.

Conclusion

Corrosion remains a significant problem in molten chloride 
salts systems, but we propose that corrosion behavior of spe-
cific alloys can be predicted, and that experimental corrosion 
evaluation results can be understood, using a combination 
of Ellingham diagrams and chloride-oxide stability analysis. 
This method correlates corrosion behavior to fundamental 
thermodynamics and can be used to identify and explain per-
formance of specific promising alloying elements. Thus, it 
can be used to identify high-performance alloys and to guide 
materials development toward appropriate alloys for use in 
molten chloride salts, which could in turn enable advances 
in chloride salt based CSP, nuclear, thermal energy storage, 
and other applications.
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