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To sustain the high-rate current required for fast charging electric vehicle batteries, electrodes must exhibit sufficiently high
effective ionic diffusion. Additionally, to reduce battery manufacturing costs, wetting time must decrease. Both of these issues can
be addressed by structuring the electrodes with mesoscale pore channels. However, their optimal spatial distribution, or patterns, is
unknown. Herein, a genetic algorithm has been developed to identify these optimal patterns using a CPU-cheap proxy distance-
based model to evaluate the impact of the added pore networks. Both coin-cell and pouch cell form factors have been considered
for the wetting analysis, with their respective electrolyte infiltration mode. Regular hexagonal and mud-crack-like patterns,
respectively, for fast charging and fast wetting were found to be optimal and have been compared with pre-determined, easier to
manufacture, patterns. The model predicts that using cylindrical channels arranged in a regular hexagonal pattern is ∼6.25 times
more efficient for fast charging as compared to grooved lines with both structuring strategies being restricted to a 5% electrode total
volume loss. The model also shows that only a very limited electrode volume loss (1%–2%) is required to dramatically improve the
wetting (5–20 times) compared to an unstructured electrode.
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List of Symbols

Acronym/symbol Full name Unit

Acronym Battery LIB Lithium-ion battery n/a
P2D Battery pseudo two-dimensional model
SOH State of Health
SOP State of Power
OCP Open circuit potential
CC-CV Constant current—constant voltage

Channel SPN Secondary pore network (tailored for fast
charging)

n/a

TPN Tertiary pore network (tailored for fast wetting)
FOV Field of view

Optimization terminology GA Genetic algorithm n/a
NSGA Nondominated Sorting Genetic Algorithm
TOPSIS Technique for Order Preference by Similarity

to Ideal Solution
Electrode chemistry NMC Nickel Manganese Cobalt oxide n/a

LiFePO4 Lithium iron phosphate
LiCoO2 Lithium cobalt oxide

Imaging SEM Scanning electron microscopy n/a
EDS Energy-dispersive X-ray spectroscopy

Numerical methods Objective function pEDM (periodic) Euclidean distance map [m]
( )I i j, 2D pixel-grid locating channels in FOV. i,j row

and column subscripts.
—

′( )I k 1D array indexed-based representation of I. k
linear index of row and column subscripts

—

(for SPN ′( )I k contains only index of disc
centers). Chromosome of genetic algorithm.

p Number of pixels assigned to channel —

N Number of pixels assigned to channel (cf,
Eq. 4a) or number of channels (cf, Eq. 4b)

—

Nc Number of channels —

r Channel radius [m]
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(Continued).

Acronym/symbol Full name Unit

f Fitness function [m]
f50, fmin Fitness function average and minimum [m]
fn,f50,n, fmin,n Normalized fitness function, normalized fitness

function average and normalized fitness
function minimum

[0,1]

Genetic algorithm POP Population size —

P Number of parents —

Sp Parent selection threshold [0,1]

C Number of couples —

Cr Number of crossovers per couple —

M Number of mutants —

Sm Mutation occurrence ratio [0,1]
Ms Number of mutations per mutant (mutation

size)
—

Permutation approach n Grid size (per direction) —

N Grid size —

k Number of pixels assigned to channels —

r Channel surface coverage [0,1]
Channel parameter and
geometry

SPN. Additional lower scripts a and c
(e.g., rV a, for rV ) refer, respectively,
to the anode and the cathode.
Additional upper script p refers to
the regular hexagon periodic pat-
tern. Both can be combined, for
instance Vc a

p
, for Vc

θc Channel slop [de-
g]

te Electrode thickness [m]
tc Actual channel thickness [m]
rt Channel thickness ratio [0,1]
tc

max Maximum channel thickness [m]

wc
t Channel top width [m]

wc
b Channel bottom width [m]

L Periodic length (groove lines only) [m]
Ls Channel spacing (edge to edge) [m]

−Lc c Distance between nearest disc center [m]
rA Channel coverage ratio [0,1]

Vc
b Bottom channel volume [m3]

Vc Actual channel volume [m3]
Vc

max Maximum channel volume associated with its
maximum thickness

[m3]

rV Channel volume ratio [0,1]
Ve,FOV Field of view volume [m3]
gr FOV number of pixel (row) —

gc FOV number of pixel (column) —

s Pixel size [m]
FOV Vc, tot Total channel volume in the FOV [m3]
Nc Number of channels in the FOV —

Cb Baseline capacity [C]
Cs Laser structured capacity [C]

/N Ps N/P ratio for the structured cell
TPN. Upper script ‘refers to coin cell,
‘refers to pouch cell. Some para-
meters from SPN are re—used, with
this upper script to differentiate
them.

A Trapezoidal cross section area [m2]

d Coin cell diameter (coin cell only) [m]
we Electrode width (pouch cell only) [m]
he Electrode height (pouch cell only) [m]
Veq c Equivalent unit channel volume [m3]
Neq c Number of equivalent channels —

R〈x〉 Radial pattern with 〈x〉 equivalent channels
(coin cell only)

—
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(Continued).

Acronym/symbol Full name Unit

K〈x〉 Clock pattern with 〈x〉 equivalent channels
(coin cell only)

—

C〈x〉 Circular pattern with 〈x〉 equivalent channels
(coin cell only)

—

B〈x〉 Branch pattern with 〈x〉 equivalent channels
(coin cell only)

—

V〈x〉 Vertical pattern with 〈x〉 equivalent channels
(pouch cell only)

—

GA-C-〈x〉 GA-based pattern with 〈x〉 equivalent channels
(coin cell only)

—

GA-Pa-〈x〉 GA-based pattern with 〈x〉 equivalent channels
(pouch cell only, infiltration from all edges
except top one)

—

GA-Pb-〈x〉 GA-based pattern with 〈x〉 equivalent channels
(pouch cell only, bottom infiltration case)

—

Mass deployment of electric vehicles is still hindered by
relatively slow lithium-ion battery (LIB) charging rates. The
United States Department of Energy (DOE) has identified extreme
fast charging as a critical milestone, with a 15 min recharge time
target for high energy density cells (>200 Wh kg−1). Among the
different strategies to reach this objective,1 structuring the electrode
with channels to provide shorter diffusion paths along the electrode
thickness has demonstrated improved rate capability and capacity
retention at fast charge.2–5 A method to determine the optimal shape
and spatial distribution of these channels, that together form the so-
called Secondary Pore Network (SPN), for a specific application,
while accounting for manufacturing technique limitations has not yet
been established. An example of a SPN is shown in Fig. 1. The SPN
are fully porous domains with dimensions an order higher than the
baseline pore sizes in the electrodes. They act as highways to
facilitate ionic transport along the electrode thickness.

Controlling the SPN in structured electrodes not only influences
the power- and energy-density of cells, but also the cost. The
electrolyte wetting process is an expensive step as complete
infiltration can takes days, thus requiring expensive storage space
and time.6 Structured electrodes have demonstrated shorter wetting
time7,8 as channels offer highways for both capillary-driven and
concentration gradient-driven transport mechanisms. However, the
optimal channel pattern for enhanced wetting is also unknown.

In this work, we identify both optimal patterns, for fast charging,
and for fast wetting, independently, through use of a genetic algorithm
(GA). We acknowledge that different manufacturers might give
different weights to performance and cost, which is why we treat
these distinctly rather than combined where the balance of perfor-
mance and cost would be subjective to priorities for a specific case.
The final proposed structured electrode is therefore the baseline porous
matrix, a Secondary Pore Network (SPN) tailored for fast charging,
and separately a Tertiary Pore Network (TPN) tailored for fast
wetting, with less than 10% of active material removed in total. The
SPN and TPN are not intrinsically different: they are both fully porous
domains with dimensions order higher than baseline pore sizes in the
electrode. Their distinction lies in their main function or objective (fast
charge in the case of the SPN and fast wetting in the case of the TPN).
In this work, we will later see that the optimal pattern for each
function differs significantly, thus further justifying a different
terminology for each network. The choice to investigate independently
SPN for electrochemical optimization and TPN for wetting optimiza-
tion is also further justified in the discussion section. The next section
provides a brief overview of structured electrodes and GAs.

Acronyms and symbols are listed in a nomenclature at the end of
article.

Review of Structured Electrode Channel Patterns

Structured electrodes can be achieved through various techniques
including co-extrusion, laser ablation, mechanical milling, and
freeze casting, for which a review is available in previous work.9

Some processes, such as laser ablation, are compatible with existing
roll-to-roll electrode manufacturing process, and thus compatible
with high-throughput and minimal additional manufacturing
cost.10,11 Scaled battery electrode laser structuring has been demon-
strated for large-format pouch cells (nominal capacity 2.9 Ah) in an
industry-oriented pilot line for LIB production to assess its industrial
feasibility.12 Chen et al., also demonstrated this new manufacturing
technique for industrially relevant cell format (>2 Ah pouch cells).13

Direct laser interference patterning14 and laser in hollow cylinders15

have been also demonstrated in a roll-to-roll system, respectively,
with web speed of 1.3 m min−1 with a web width of 150 mm and
2.6 m min−1 with a web width of 120 mm. Additionally, laser
ablation offers relative fine control of the channel geometry, which
is essential to maintain manufacturing uniformity.

The main goals of the present manuscript are to enhance through-
plane ionic diffusion and mitigate degradation (lithium plating) for
ultrathick electrodes and/or fast charging.5,16 In the case of laser
ablation, there is a trade-off between capacity and power.17 Within
reason, the more material you remove the better the cell’s rate
capability, but since active material is removed during ablation the
battery’s capacity will be proportionately lower. Therefore, it is
considered suboptimal to remove electrode material up to the current
collector interface. Instead, several groups intentionally left a
relatively thin layer of unstructured material to conserve active
material while still gaining rate12,17,18 benefit. The as-manufactured
electrode is then a dual layer with a power layer (separator side,
structured) and an energy layer (current collector side,
unstructured).20 The shape of the as-produced channels is strongly
dependent on the structuring technique, with typically a trapezoidal
cross-section shape realized in co-extrusion and laser ablated
processes.5 Two patterns have thus-far been reported in the
literature: groove lines2,3,5,17–21 and cylindrical
channels,4,10,18,22–26 each with sub-variants: 1D lines2,3,17,21 or cross
lines (i.e., micro pillars),20 and square18,23 or hexagonal4,10,22,24–27

pattern, respectively. The optimal distribution of such channels is not
known.

While channels have been introduced primarily to improve
through-plane ionic diffusion, improvements have been also reported
on electrolyte wetting.7,8 Habedank et al.8 demonstrated a significant
wetting time reduction from 40% porous unstructured to 30% porous
laser-structured electrodes, under realistic production conditions for
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a pouch graphite/nickel manganese cobalt oxide (NMC) cell.
Pfleging et al.7 measured tremendous discharge capacity difference
between unstructured and laser-structured NMC if cycled immedi-
ately after electrolyte filling and lithium-ion cell assembly, and
lower but still significant difference after 24 h storage, where in both
cases the structured cell had improved wetting. Modeling work on
standard dual layer electrodes indicated that electrolyte infiltration
can be facilitated by carefully tuning the microstructure properties of
each layer.28 Berhe et al.,29 investigated impact of laser-structured
groove channels on lithium iron phosphate (LFP) electrode with
capillary rise test, wetting balance test and rate performance test,
with different channel depths and aspect ratios. The authors show the
influence of gravity goes up as the capillary height increases, and
that increasing the channel aspect ratio improves wettability. Models
capturing the wetting process on the baseline, unstructured, elec-
trodes indicate the presence of residual gas after electrolyte infiltra-
tion, which results in degraded effective transport parameters.30,31 It
is believed that introducing channels in the microstructure can
reduce the amount of residual gas and thus improve performances.

While other groups have already investigated structured elec-
trodes, and to some extent performed some parameter space analysis
on the channel dimensions and/or patterns,27,32,33 there is not (to the
authors knowledge) a channel design identified as optimal from an
optimization analysis (that is not form a list of predetermined
patterns or a list of dimension parameters, but from the full design
space without parameter down selection). For instance, for the SPN,
grooves lines and cylindrical channels organized in a regular
hexagon pattern are the two cases typically investigated in the
literature, even though these two patterns only represent a tiny
fraction of the whole design space. Their frequent usage in the
literature is motivated by their simplicity and relative ease to
manufacture for the groove lines pattern, and from the implicit
assumption that regular holes are optimal. This is even more relevant
for the TPN for which there is not yet a pattern thought to be optimal
already identified in the literature to optimize wetting performance.
In this regard, the optimization approach developed in this work is
first tested to optimize fast-charge performance (the SPN), for which
cylindrical holes periodically organized is expected to be optimal.
After identifying an optimal pattern for fast-charging, the optimiza-
tion approach is used to determine the best designs for fast wetting,
which has not been yet proposed in the literature. In this work, we
propose to identify the optimal top-down view patterns for fast
charging and fast wetting, separately, separately, using a specified
low material loss constraint. Due to the large design space, as further
explained in the Results section, it is unrealistic to explore the full
design parameter space manually. Instead, an in-house genetic
algorithm (GA) is used to identify the optimal patterns. The next
section provides an overview of GAs used in the battery field.

Review of genetic algorithm used in battery modeling.—GAs
are a class of stochastic algorithms which are well suited for large-
scale, constrained and unconstrainted, single- and multi-objective,
optimization problems. Unlike standard algorithms that iterate on a
unique solution according to a deterministic approach, GAs iterate
on a population p of solutions (where each solution is called an
individual or a chromosome) emulating the concept of biological/
Darwinian evolution with stochastic operators to generate the next
population.34 GAs are relatively simple mathematically and robust in
regards to local minima (as long as the initial population starts with
high diversity), which explains their success in a wide range of
applications.34 However, GAs can be very CPU-expensive since the
objective function (also called fitness function in the GA termi-
nology) must be called for each individual of the population, at each
iteration. Continually calling the objective function can result in
potentially thousands of calculations, which can restrict the GAs
application if the fitness function is not carefully selected.
Furthermore, a preliminary encoding step is required to convert
the problem in an input intelligible by the method, which is problem-
specific and can be challenging. Lastly, one interesting facet of GA

is that while the concept relies on a simple recipe based on three
main stochastic operators (i.e., selection, crossover, mutation, which
are further defined in the Numerical methods section), there are
many variants for each of operator, which provides avenues to finely
tune a GA for a particular problem.34

GAs have been used to solve a variety of LIB optimization
problems in the literature and are summarized below:

• Model parameter identification. Parameter identification is a
well-suited problem for GAs, as the encoding step is straightforward
with parameters encoded as a list of numbers (i.e., value encoding
scheme34), and macroscale LIB models are typically relatively fast.
Zhang et al.35 identified 27 parameters (both microstructure and
material coefficients) of a pseudo 2-dimensional (P2D) model
including temperature dependence for two different cell chemistries
(graphite/LiFePO4 and mesocarbon-microbeads/LiCoO2). Their
multi-objective (4) optimization consisted of reducing prediction
errors on both cell voltage and surface temperature for cylindrical
batteries, considering two room temperatures (15 °C and 30 °C). As
no set of parameters can optimally satisfy all four objectives, a set of
nondominated solutions (Pareto front) is first identified instead, using
a modified Nondominated Sorting Genetic Algorithm (NSGA-II),36

and a final selection is then performed using the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS),37 which is a
multiple criteria decision-making method. Accurate fitting was
obtained with a population of 400 individuals after 200 generations
(i.e., a total of 80,000 P2D simulations), for a calculation time of 19 h
per cell with parallelized code running on a cluster. J.C. Forman
et al.38 identified 88 parameters of a P2D model (with open circuit
potential (OCP) and conductivity functions being described with
dozens of control points) based on a single-objective function (cell
voltage). Only part of the cycling data was used for fitting the
coefficients, while the remaining part was used to validate the fitting.
Parallelization was also used to distribute the calculations on 5 quad
core computers to finish the optimization in 3 weeks. GAs were also
used for parameter identification of equivalent circuit model.39–43

• State of Health (SOH) and State of Power (SOP) estimations.
Meng et al.44 estimated the battery SOH from partial charging, with
optimal voltage ranges selected using NSGA-II considering a bi-
objective optimization problem: maximizing estimation accuracy,
while minimizing the length of the voltage range. The authors
identified two optimal voltage ranges for SOH estimation, which
provides more flexibility as the battery management system can then
estimate the SOH at different charging states of the battery. Wang
et al.45 identified SOH through incremental capacity analysis. The
peak positions of the incremental capacity curves are extracted as
health factors and then correlated with the SOH through a Gaussian
Process Regression model, for which the hyper parameters have
been calculated either with a baseline conjugate gradient method or
with a GA. The authors used a multi-island genetic algorithm that
provide an additional operator, migration (between islands, i.e.,
isolated groups of individuals), to keep high diversity and thus
reduce the risk of finding a local optimum instead of the global one.
Lu et al.46 compared a baseline Taylor expansion method and a GA-
based method for SOP estimation. Unlike the Taylor expansion
method, which is plagued with a time-increasing remainder error, the
GA has been found suitable for long time-scale estimation with
associated improved predictions.

• Charge profile. Yan et al.47 identified an optimal charge profile
to minimize charging time and temperature increase. The authors
found the Pareto front of the GA-based charge profile dominated the
baseline CC–CV charge profile. Liu et al.48 proposed to optimize
both electrode porosity, thickness, and particle size with charge
profile parameters to identify the optimal doublet {electrode, pulse
charge profile} for a multi-objective problem: minimize temperature
rise, charging time, and side-reaction current.

• EV fleet charge scheduling, infrastructure, and cost analysis.
Milas et al.49 used GA to optimize the charging time and cost of a
fleet of electric vehicles and to deliver personalized solution for each
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vehicle based on user-defined criteria, while also maximizing
charging station utilization and battery health, considering a non-
uniform set of available chargers (normal and fast chargers). The
authors use a coupled two-layer chromosome genetic algorithm,
with the first layer identifying the charger, and the second layer
associated with charging current for a given time slot. Elmehdi
et al.50 used GA to identify the optimal vehicle-to-grid and grid-to-
vehicle operations considering various charging and discharging
price periods. Celli et al.51 used NSGA-II for planning integrated
power distribution and charging stations on a coupled traffic network
and distribution network derived from a real world study to
minimize the investment cost and the average waiting time for
charging.

To our knowledge, it is the first time GA is used to identify
optimal channel patterns for fast charging and fast wetting.

Aim and organization of the article.—This article is focused on
identifying the optimal patterns for the SPN and the TPN for fast
charging and fast wetting, respectively. Ideally, a 3D electroche-
mical model and a 3D fluid dynamics model would be used for such
tasks. However, these models are CPU-expensive and thus not
suitable for a GA-based optimization approach that requires evalu-
ating the model thousands of times. Instead, two CPU-cheap 2D
distance-based fitness functions (one for the SPN and one for the
TPN) are assumed to be monolithically correlated with the electro-
chemical performances or the wetting, as further explained in the
section Numerical methods, are used to identify the optimal patterns
of the SPN and the TPN. The model presented in this work is then
not physics-based but distance-based to make it fast enough for the
GA approach. Predicted improvements are thus not expressed in
typical battery metrics (e.g., capacity, wetting coverage) but in
distance-based metrics assumed to be monolithically correlated with
the former (even though the correlation itself is unknown). This
approach allows us to identify the optimal patterns (due to the
monolithic correlation between the two metrics), albeit without
quantifying the electrochemical or wetting improvement using
typical battery metrics (due to the unknown correlation between
the two metrics). In other words, the model is focused mainly on
identifying the optimal patterns, rather than on quantifying the
improvements provided by them (physics-based models are more
suited for this second task). While the method itself is adimensional,
physical length is introduced knowing cell and channel dimensions
to provide practical design recommendations. The present work
identifies the pattern’s overall shape to narrow down the associated
parameter space, enabling physics-based 3D models to later refine
the design recommendations using a smaller design space in future
work. Furthermore, the complex patterns identified with the GA-
optimization approach are compared with simpler, easier to manu-
facture, patterns to estimate if extra complexity adds significant or
only incremental benefits.

The article is organized as follows. Section Laser system,
electrode, and channel dimensions provides shape and dimensions
of channels obtained with our experimental laser system, which are
required to dimensionalize the problem and restrict the optimization
problem within the realm of manufacturing capabilities. Section
Simpler patterns and comparison methodology introduces simpler
patterns selected for the comparison with the optimal patterns
identified using the GA. Section Numerical methods defines the
optimization problem and details the genetic algorithm as well as the
choice of the distance-based fitness functions and how to interpret
the results. Section Results provides the optimal channel distribution
for both SPN and TPN with some additional analysis specific to each
pore network. For fast charging (SPN), a permutation analysis (i.e.,
brute force approach, that is testing all possible solutions of the
parameter space) is performed on a small grid to validate the GA
prediction. The optimal distribution is also compared with a random
channel location and with a baseline groove lines pattern. For fast

wetting (TPN), two cell form factors are considered: coin cell and
pouch cell. Optimal distributions are compared with simpler, easier
to manufacture, patterns specific to each form factor. The Discussion
and Conclusions sections provide insight and recommendations for
adopting electrode microstructure patterns.

Laser System, Electrode, and Channel Dimensions

The pre-calendared electrodes were patterned with a bench-top
diode-pumped solid-state femtosecond laser (Advanced Optowave
FEMTO-IR-1030) with a 1030 nm emission wavelength (λ) and ≈
600 fs laser pulses with tunable repetition rates between
100 kHz–1 MHz and average power of ⩽11 W at 100 kHz. A
high-speed scanning system with galvanometer-controlled mirrors
(Aerotech, Inc., AVG10HPO) and an f-theta-Ronar telecentric lens
(LINOS, λ= 1030−1080 nm) with a focal length of 70 mm was used
to direct and focus the laser beam to a ≈25 μm spot size. The laser
spot size was estimated using a silicon substrate as direct observation
through a camera is not possible (the laser would have burn the
detector).52 Electrode laser ablation was achieved with pulse
energies of approximately 15 μJ pulse−1 or 3 J cm−2

fluence.
Electrode ablation was carried out in ambient air under a directed
flow of nitrogen gas that pushed ablated debris into a vacuum
exhaust tube positioned close to the electrode surface to remove
ablated materials, preventing their re-deposition. The ≈25 μm spot
size ablates channels with a minimum of around 40–50 μm diameter
cylindrical channel or groove width5 (cf, Fig. 1). The width of the
channel is influenced by how deep the ablation goes due to the
ablation area having a slope from top to bottom of the channel. Cross
section imaging5 indicates a channel slope θc of roughly 75°. Cross-
section imaging indicates some shape and size variations from
channel to channel, especially in the hole configuration (cf, Fig. 1c)
and will be the subject of a future article.

Analysis is performed on commercial electrodes provided by
Clarios, with specifications listed in Table I. Extension to other
electrode materials is later discussed in the Model range of validity
and results interpretation section.

Specifics for SPN (fast charging).—Grooved channels will serve
as baseline comparison, while the optimal location for the disc-like
laser ablation pattern is determined using the GA. The disc-channel
volume is calculated according to Eq. 1a, with tc

max the maximum
thickness of the channel for a given channel slope θ and channel top
width w ,c

t Vc
max the maximum channel volume with the associated

maximum channel thickness, tc the actual thickness of the channel, te
the electrode thickness, wc

b the channel bottom width, Vc
b the volume

of the bottom channel, andVc the actual channel volume (subtraction
of full cone and bottom cone volume). In the case that the channel
extremities meet at its bottom tip (that is channel bottom width wc

b =
0, cf, Fig. 1d), then the volume of the bottom channelVc

b would be 0.
These variables are also labelled in Fig. 1d. Electrode volume within
the field of view (FOV) Ve,FOV is calculated according to Eq. 1b,
with gr and gc the FOV number of pixels (row and column,
respectively) and s the pixel size. In our model, the FOV is the
2D region of space modeled discretized in gr times gc pixels with
each pixel being an element of surface (either porous baseline
electrode or channel) of size s2. As discussed later in Problem
definition and optimization function, periodic boundary conditions
are used so that the full electrode volume does not need to be
represented. The total channel volume in the FOV V ,c, tot and the
number of channels in the FOV Nc is then deduced according to
Eq. 1c. For Nc the closest integer from the numerical value is
selected (cf, Eq. 1c, “round”). The laser system enforces θ = °75c

and μ=w 50 m.c
t The channel width wc

t for SPN is selected as the
minimum diameter the laser system can provide for disc-shaped
channels, as large channels are not required to provide ionic
transport enhancement (at the condition they are still larger than
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the porous matrix pores). Furthermore, too large of channels can lead
to unnecessary material loss resulting in suboptimal performance.23

Analysis is performed on the cathode side, with electrode thickness
of μ=t 67 me and channel thickness ratio rt of 0.5. The grid FOV is

= =g g 120,r c and pixel resolution μ=s 5.56 m (such that the disc
diameter has a 9-pixel length). The channel volume ratio rV is set to
5%, which is equivalent to 33 channels in the FOV. For electrode
without macroscale heterogeneity (no gradation along thickness),
this would correspond to a 5% active material mass loss.
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Specifics for TPN (fast wetting).—Channels consist of arbitrary
lines with a trapezoidal cross section of area ′A . For the coin-cell
form factor, we determine an equivalent unit channel volume ′Veq c

corresponding to the volume of a channel radially oriented (i.e.,
along the diameter d of the coin cell). This allows us to later
translate an arbitrary pattern in an equivalent number ′Neq c of
radially oriented channels, which is useful for comparison with other
patterns (cf, Eqs. 2a, 2b and 2c). For ′Neq c the closest integer from
the numerical value is selected (cf, Eq. 2c, “round”). The notation is
identical to the fast-charging case (SPN), except for the apostrophe′
to identify the coin cell case when required. The laser system
enforces θ ′ = °75c and μ=′w 40 m.c

t The channel width ′wc
t is not a

recommendation as further explained for the pouch cell case. Here,
we choose to select the minimal size provided by the laser system for
a line-based pattern. The electrode thickness μ′ =t 75 me and
diameter =d 15 mm, channel thickness is half of the electrode
thickness ′ =r 0.5.t The whole coin cell geometry is represented as
later explained in the “Problem definition and optimization function”
section. Different ′r ,V and thus ′N ,eq c are investigated, from 0.5 to
2% and from 4 to 16, respectively for ′rV and ′N .eq c The total
material volume loss for a combined SPN and TPN ranges from 5.5
to 7% for the coin-cell case. To match the pixel length with the real
channel width, 375 pixels along the diameter are needed. Such
resolution is too CPU-expensive (not only the calculation for each

individual is higher, but the population size needs to be increased to
achieve convergence as the number of permutations, that is the
parameter space, is increasing). To remedy this issue, the algorithm
is run several times using a number of pixels along the cell diameter
from 81 to 201 (that is a grid or mesh resolution sensitivity analysis)
to check the pattern shape and associated fitness convergence.
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For the pouch-cell form factor, we determine an equivalent unit
channel volume ″Veq c corresponding to the volume of a vertically
oriented channel (cf, Eq. 3a and Fig. 2 right). This choice is
motivated by the electrolyte wetting process for which electrolyte
is dropped from the top and then infiltrates the porous matrix from
the bottom through capillarity forces.53 The electrode volume is
provided with Eq. 3b, with we and h ,e respectively, the width and the
height of the electrode. Number of equivalent channels ″Neq c is
deduced using Eq. 3c. Notation is identical with previous cases,
except for the double apostrophe ″ to identify the pouch cell case,
when required. The electrode (arbitrary) dimensions are μ″ =t 75 m,e

=w 50 mm,e and =h 75 mm.e Channel dimensions are θ″ = °75 ,c

μ=″w 80 m,c
t ″ =r 0.5.t A larger channel width is selected to keep

grid size low enough to allow a reasonable calculation time. It is
expected however that the optimal channel width for TPN would be
maximum at the electrolyte entry-edges, and then the channel width
would decrease as the channel permeates to the center of the
electrode sheet due to fluid dynamics consideration.54–56 To deter-
mine a channel width that considers fluid-dynamics, a physics-based
model is required, which is outside the scope of this work.
Considering fluid-dynamic effects, it is then possible that channel
maximum width for TPN would exceed the minimum width
provided by laser system, especially for large format cells. This
remark applies also for the TPN coin cell. Thus, the channel width
selected in this work for both coin cell and pouch cell TPNs are then
not recommendations, but a choice resulting from computational
time constraint and laser system capabilities (unlike for SPN for
which channel width used is the recommendation). The whole
pouch-cell geometry is represented. Different ″r ,V and thus ″N ,eq c

are investigated, from 0.5 to 1.5% and ≈7 to ≈21, respectively for

Table I. Electrode, cell specifications, and associated model parameters before laser ablation. Negative to positive capacity ratio (calculated from
the other parameters listed in the table), is required to determine the active material volume to ablate in each electrode to reach a given ratio after
laser ablation.

Anode Cathode

Active material Graphite LiNi1/3Mn1/3Co1/3O2

Model parameter: Thickness (μm) 75 67
Weight loading, active material/conductive carbon/binder (%) 96/1/3 95/3/2
Density, active material/conductive carbon/binder (g.cm−3) 2.2/1.9/1.8 4.69/1.9/1.8
Volume fractions (pore/active material/additives) 0.37/0.6/0.03 0.32/0.6/0.08
Areal capacity (mAh.cm−2) 3.22 3.081
Coin cell disk diameter (mm) 15 14
Maximum Li concentration in active material, Cs, max (mol.m−3) 28000 49000
State of charge range of x in LixC6 and LixNi1/3Mn1/3Co1/3O2 [0–1] [0.3–0.91]
Capacity for 1 × 1 μm2 of electrode, Cb (C) 1.2155e5 1.1600e5

Model parameter: Baseline negative to positive capacity ratio, /N Pb 1.0478
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Figure 1. Scanning electron microscopy (SEM) images of a structured graphite electrode prepared with NREL laser system, illustrated for (a) top-down
perspective with holes (b) cross-section perspective with grooved lines, and (c) cross-section perspective with holes. (d) Idealized channel dimension used to set
up the grid problem.
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″rV and ″N .eq c The total material volume loss for a combined SPN
and TPN ranges from 5.5 to 6.5% for the pouch-cell case.
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Simpler Patterns and Comparison Methodology

The comparison for SPN is straightforward as pixels represent
channel area in a 1:1 ratio. The number of pixels (i.e., sum of
channel area) is then used to compare different patterns. Patterns that
provide lower fitness function, as defined later in the Numerical
methods section, for the same total channel area are considered
better. The optimal pattern is compared with grooved lines, i.e.,
straight lines vertically, or horizontally (but not both) aligned with
same width, and with disc channels randomly distributed (cf, Fig. 2).
Grooved lines require a less complex laser system setup because the
beam can simply be split into parallel beams on the electrode roll
travelling in the web direction. Cylindrical channels require more
complex optics controls such as a polygon system to spatially
distribute the pulses. Last, the randomly distributed disc channels
case is used as an extreme case to evaluate the negative impact of
poor manufacturing control on the channel locations.

The comparison for TPN is more complicated than the SPN, as
the pixel area overestimates the actual channel area. The mismatch
between pixel size and channel width implies the apparent channel
surface coverage is higher than the one that is actually modeled,

especially for the low grid resolution. Because the complex shape of
the as-generated channel patterns and the size mismatch mentioned
above, the pixel representation is inadequate to represent the real
length of the channels, as one pixel can contain different channels.
Furthermore, the pixel representation does not discriminate between
vertical or horizontal path. This lack of direction fidelity results in
different channel lengths. For example, the true length is 1 pixel
length for the vertical path, while the diagonal path has a true length
of 2 pixel length. To remedy this issue, an in-house tree-branching
algorithm identification is used to identify the effective length of the
channels (cf, Fig. 3). This algorithm is simply based on if-else
statements that recognize the different possible channels junctions
and then assign accordingly a length per pixel. This is particularly
important to compare with some baseline predetermined channel
patterns (e.g., radially, or vertically oriented channels), for which the
true length is known. Furthermore, the laser system requires the
exact line geometry to structure the electrodes and is provided by
this algorithm identification.

Optimal TPN patterns are compared with several simpler patterns
(cf, Fig. 2) using both apparent surface coverage and effective
length. Note that comparison is performed with both optimized and
predetermined patterns at the same grid resolution (and not with the
ideal, infinite resolution, of Fig. 2). Radial and vertical patterns are
the most obvious choices because the electrolyte typically infiltrates
from perimeter to center during vacuum filling procedures.
However, the radial pattern appears suboptimal as channel density
is likely unnecessarily high near the electrode center. The clock
pattern is a tentative design to remedy the increased channel density
issue at the center. Additionally, several authors report an effective
way to optimize a cooling network within a domain is achieved with
a tree-shaped (or branching) network.55–57 The circle and branch
patterns attempt to capture these tree-like patterns. These predeter-
mined patterns have been manually selected to provide comparison
points based on educated guesses as mentioned above (channel

Figure 2. SPN and TPN patterns to be compared with patterns identified with the GA-optimization approach. Labels (e.g., R11) indicate pattern type (R: radial,
K: clock, C: circle, B: branch, V: vertical) and equivalent channel number (number of diameter and vertical lines, respectively for coin and pouch cell) and will
be used in subsequent graphs to identify patterns. Labels are used in Figs. 11–14 (with GA-* referring to patterns obtained with the GA optimization approach).
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should transport electrolyte from edges to center and literature
indicates branching is relevant). Pattern periodicity is assumed even
though periodic length, if any, is unknown.

Numerical Methods

Problem definition and optimization function.—As stated in the
introduction, using a physics-based model is not compatible with the
GA-based approach proposed in this work. Instead, we define a
CPU-cheap fitness function, which is to be negatively correlated
with the cell overall performance enhancement induced by the SPN
channels, and a second fitness function that is assumed to be
negatively correlated with the wetting time reduction induced by
the TPN channels. In both cases, a constraint is set on the electrode
material total loss induced by creating channels, with an additional
connectivity constraint for the TPN case.

Fast charging.—The electrode material near the SPN channels is
expected to become more electrochemically active as compared to
an unstructured electrode case, because the SPN introduces facile
pathways for Li-ion migration and diffusion. If electrode active
material is located below the channels (i.e., close to the current
collector) in a dual-layer setup, the remaining ionic diffusion
distance in the tortuous porous matrix is the electrode thickness
minus the channel thickness. If electrode material is located between
channels, the relevant diffusion distance is the minimum between the
distance from the separator and the distance from the nearest
channel, neglecting diffusion anisotropy. In the latter case, for
electrode volumes near the current collector and far from channels,
the positive impact of the channel introduction is reduced. If
electrode material is far enough away from the SPN channels, the
electrode material will behave independently (in-plane wise) from
the rest of the electrode and may consequently suffer from ionic
transport limitations. Therefore, an obvious solution is to distribute
the channels to minimize the in-plane distance between the porous
matrix and channels.

The fitness function for a given channel distribution is then the
average of the Euclidean distance map (EDM), defined as the
minimal distance from the porous matrix to any channel, cf,
Eqs. 4a and 5. This definition is adequate for rectangular groove
lines, but less effective for cylindrical channels. Indeed, if cylind-
rical channels are optimal, the current definition will assign 1 pixel
per channel, resulting in an extremely poor grid resolution and
neglecting the impact of the rounded shape of the channel. To
prevent this, a second definition with a shape constraint, discs of
radius r, is introduced (cf, Eq. 4b). Last, to limit edge effects and

reduce the required field of view (FOV), periodic boundary condi-
tions are used, as illustrated in Fig. 4a with discs. The EDM is
calculated with the MATLAB built-in function bwdist, with addi-
tional coding to implement the periodic boundary condition. The
number of points N in Eqs. 4a, 4b is the number of channels N .c The
number of pixel p assigned to the channel domain is equal to N in
Eq. 4a but is larger than N in Eq. 4b with p equal N times number of
pixel per disc.
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Analytical fitness for groove lines is calculated according to Eq. 6
(average distance between two points is half the distance between
them). Apparent channel coverage rA is set equal to that obtained
with the disc channel. Periodic length L is noted in Fig. 2.

⎧

⎨

⎪

⎩
⎪

= ( − )

/ = =
− /

[ ]

f
L

r

w r L f
L w

L
r

2
1

with
2 and

2

2
groove lines periodic pattern length
apparent channel coverage

6

th, groove A

c
t

A th, groove
c
t

A

Fast wetting.—In the fast-wetting optimization (TPN), two
electrode sheet form factors are considered: a coin-cell, for which
electrolyte infiltration occurs at the cell perimeter edge (cf, Fig. 4b,
and a pouch-cell, for which electrolyte infiltration occurs from the

Figure 3. TPN (fast wetting from perimeter) for a coin-cell. Blue and red pixels represent, respectively, the porous matrix and the channels. Solid black lines
represent the true channel length and shape. Channel lengths are expressed in pixel length in the illustration but normalized with cell diameter (or cell height for
pouch cell) in subsequent TPN results.
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bottom side (cf, Fig. 4c) or from all sides except the top one (cf,
Fig. 4d). Pouch cell filling typically involves depositing electrolyte
from the top of a vertically standing cell, with liquid progressively
infiltrating though capillarity from the bottom, and the edges as the
filling progress.53 Compared with the fast-charging case, a con-
nectivity, or percolation, constraint is added: only channels that
percolate to the electrolyte entry-edges are considered for the
evaluation of the Euclidean distance map. A connectivity check is
only evaluated within the fitness function to modify the 2D array I
used to calculate the distance map (cf, Eq. 7). That is, no additional
parameter is introduced that would otherwise require weighting
connectivity and distance separately or use a Pareto Front in an
explicit multi-objective scheme.

While we pursue two objectives (maximize connectivity, mini-
mize distance), the connectivity-induced modification of the 2D
array I strongly penalizes the distance-based fitness function and
thus a second fitness function is not required (cf, Figs. 4b–4d:
unconnected channels do not contribute to the distance reduction). In
the Results section, we will see these objectives and connectivity
constraints proved to be an effective strategy as GA eventually
eliminates all non-connected channels without the need to explicitly
enforce it. Connectivity is performed with the MATLAB built-in
function bwlabel with face-to-face and node-to-node connectivity.
Note that node-to-node connectivity is relevant as we identify the
effective, pixel-free, length from the non-ideal pixel representation
(cf, Fig. 3). Because of the connectivity constraint, the only relevant
pattern is connected lines with one-pixel width, therefore no shape
constraint is added unlike for the fast-charge (SPN) case. Therefore,
Eq. 4a (and 7) is used to calculate the EDM, with number of points N
equals to the number of pixel p assigned to the channel domain.

No symmetric or periodic boundary conditions are used in the
TPN study for two reasons. First, the periodic length is unknown
(the repeating pattern could be contained in a quarter of disc, or one
eighth, etc.), and setting a periodic length incorrectly could bias the
results. That is, adding a symmetry or periodic constraint would
exclude some solutions, among which may include the optimal
design. Second, since there is no preferential direction for the coin
cell form factor, and no horizontal preferential direction for the
pouch cell form factor, the optimal solution should reflect this

isotropy. As GAs are stochastic-driven, a low population and/or low
diversity could lead toward irrelevant macro-scale differences
between regions. Achieving patterns without irrelevant preferential
channel directions would then be an indirect indication that the
population size is large enough.
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Model range of validity and results interpretation.—The model
presented in this work is not physics-based but distance-based, due
to the necessity of using a CPU-cheap fitness function to be able to
use in a GA approach. Therefore, the model does not provide
improvements expressed in standard electrochemical metrics (e.g.,
capacity, wetting coverage) but in distance-based metrics, which are
assumed to be monolithically negatively correlated with fast char-
ging and fast wetting performances as explained in previous
paragraph. That is, while the function correlating the electrochemical
metrics and the distance-based metrics is unknown, the pattern
maximizing the first and minimizing the second is the same. Such
correlation is likely to be nonlinear as characteristic diffusion time t
is a quadratic function of the characteristic diffusion distance L (t =
L2/D, with D the diffusion coefficient in the considered diffusion
direction) and that ionic transport is only one of several mechanism
involved in batteries. Nonetheless, this approach enables us to
identify the optimal pattern (which is the focus of this work), albeit
without quantifying the associated electrochemical improvements,
with the latter requiring a physics-based model to be determined. For
examples of experimentally-determined and/or model-predicted
electrochemical performances improvements, readers are invited to
look at the literature (see review of structured electrode channel
patterns section) and our previous work.5

The model does not consider material anisotropy even though it
is a key parameter to model transport limitation in batteries.
However, most battery electrode materials exhibit transversal
anisotropy with in-plane directions having similar diffusion proper-
ties while the through-plane direction along the thickness has a

Figure 4. (a) Periodic Euclidean Distance Map pEDM illustrated for a distribution of discs for fast charging (SPN). Colormap indicates distance from porous
matrix to channel (a: red = 55 μm, b: red = cell radius 15 mm, c and d: red = cell height 75 mm). Centered region represents the FOV, while grey-out out-
centered regions are used to enforce the periodicity. (b, c, d) Connected channels (white), unconnected channels (black), electrode material (grey), and associated
EDM for fast wetting (TPN). (b) Coin cell, (c) pouch cell with electrolyte infiltration from bottom, and (d) from all edges except the top one. Examples
correspond to non-optimal solutions.
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poorer diffusion due to particle morphology and calendering.58 This
is especially true for misaligned elongated natural graphite, while
other materials such as NMC are roughly isotropic due to the particle
near spherical geometry.59 In this work the isotropy assumption is
applied on the two in-plane directions and is thus applicable to a
large variety of battery electrode materials. That is, with or without
transversal anisotropy the optimal pattern, that is the focus of this
work, is still the same. In other words, the model range of validity is
isotropy or transversal anisotropy for ionic transport in the electro-
lyte. However, the unknown correlation between the electrochemical
performance metrics and the distance-based fitness function, that is
not the focus of this work, will be different depending on the material
anisotropy. For instance, it is expected that misaligned graphite
would benefit more, relatively, from the introduction of SPN
channels as compared to more isotropic materials at equivalent
channel volume, as long as 1) their baseline through-plane
Bruggeman exponent p is higher than their in-plane Bruggeman
exponent and 2) the baseline in-plane Bruggeman exponent is better
for misaligned graphite. Indeed, the introduction of a p = 1 pore
volume (which is the case in the channels) is more impactful for a
baseline high p material, and higher in-plane diffusivity implies
channels can be placed further from each other, thus reducing the
material loss for equivalent performance improvements.

The model is porosity and material-agnostic (at the condition the
range of validity discussed in the previous paragraph is met). That is,
optimal patterns are the same for electrodes with different porosities
and/or different materials for the same channel volume and thick-
ness, but the previously mentioned correlation between the electro-
chemical performance metrics and the distance-based fitness func-
tion will be different. Last, the model does not consider interaction
between electrodes (i.e., the anode/cathode pairing).

Permutation approach.—Considering an n x n grid representing
the electrode material from a top-down perspective, we can calculate
the number of possible channel patterns for a given number of pixels
k assigned to the channels using the permutation formula (cf, Eq. 8).
Two cases are considered and plotted in Fig. 5: a surface coverage of
10% (r = 0.1) and 20% (r = 0.2), the latter being more
representative of the real problem as it corresponds to a total
material loss of 10% with channel thickness being half the electrode
thickness. Even for the tiny grids considered in this example, the
number of permutations made it impossible to numerically investi-
gate all of them, even if symmetries was considered. The GA
described below remedies this issue. The permutation approach will
however be used on small grids to validate the GA and analyze the
solution distribution. Furthermore, the permutation approach will

discriminate between grooved lines and cylindrical channels, thus
allowing us to choose between fitness function defined with Eqs. 4a
or 4b to avoid unnecessary calculations with the less relevant one
(grooved lines or cylindrical channels).
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Genetic algorithm approach.—The GA used in this work has the
same approach for both the SPN and TPN. The difference lies in the
fitness function itself as detailed in the “Problem definition and
optimization function” section. The algorithm has been coded in
MATLAB from scratch, without a dedicated toolbox. Algorithm
follows the standard GA approach34 with the following steps, also
illustrated in Table II:

1. Encoding and initial population. Equations 1–3 are used to
determine the number of channels, and then the number of pixel
p to be assigned to the channel domain for each individual. Each
individual is encoded in two states: (i) an image-based
representation, i.e., a 2D array I the size of the modeled
electrode with ( ) =I x y, 1 if pixel belongs to a channel, and 0
otherwise (i.e., binary encoding21), and (ii) an indexed-based
representation, i.e., a 1D array I’ of length p the number of
pixels assigned to the channel domain with ( )I k’ the linear index
of pixel k in I, that is ( ′( )) = ∀ ∈ [ ]I I k k p1 1, (i.e., permuta-
tion encoding34). The first representation is used for fitness
calculation and solution visualization, while the second repre-
sents the individual’s chromosome used for crossover and
mutation operations as further explained. Note that for SPN
(disc channel), I’ contains only the index of disc centers. For the
initial population, individuals are generated with random
channel location. Population size POPs is user-defined, and,
in practice, is chosen high enough to achieve convergence and
reach global minimum. Indeed, a large population size ensures
high diversity among the individuals, thus reducing the risk of
being trapped in a local minimum.

2. Compute initial fitness. The fitness function is calculated for
each individual according to Eqs. 4–6. For the TPN, the fitness
is normalized with the fitness function for an electrode without
channels.

3. Loop under fitness convergence.

a. Parent selection. The number of parents P used to generate
the next population is equal to the population size times a
user-defined ratio, or selection threshold S .p Individuals are
sorted based on their fitness, and the P better are selected
to be parents (i.e., truncation selection60).

b. Crossover. The number of couples C is half the number of
parents. The parents A list is a random selection (without
duplicates) from 1 to P of size C. The parents B list is the
remaining parents. The algorithm then loops on each
couple c{Parent Ac, Parent Bc}, and for each couple loops
on the number of crossovers Cr per couple, with = /C S1 .r p
Each crossover produces two new individuals for the next
generation, so that CC2 r is the initial population size (i.e.,
the population size is constant over generations). For each
crossover, a random crossover point is selected to cut the
chromosome I’ of each parent (i.e., ′IAc and ′IBc ) and
genetic information of the two parents is swapped to
generate two new individuals as illustrated in Table II (i.e.,
single point crossover34). Indices shared between parents
are transferred to the two new individuals and removed
from the parents’ chromosome prior chromosome swap-
ping to prevent duplication. Last, if both parents are
identical, a rare statistical event, one child is randomly
generated while the second child inherits parent’s chromo-
some as its own.

Figure 5. Number of permutations (possible channel spatial distribution in a
top-down perspective) for a small grid considering a channel surface
coverage of 10 and 20%. Y-axis uses a logarithmic scale. Legend uses “∼”

as most data points have a non-integer ×r N that is rounded to use the
permutation formula.
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Table II. Genetic algorithm steps.
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c. Mutation. The number of mutantsM is equal to the population
size times a user-defined mutation occurrence ratio S .m
Mutants are randomly selected from the children generated
in the previous step. The number of mutations per mutant (or
mutation size)Ms is user-defined and represents the magnitude
of the mutation. The algorithm then loops on each mutant m,
and for each mutant loops on the number of mutations Ms per
mutant. For each mutation, an index from I’ is randomly
selected and replaced with an index corresponding to a non-
channel location (i.e., double bit flip mutation). The mutation
operation increases genetic diversity and thus reduces the risk
of being trapped in a local minimum.

d. Compute fitness. The population is updated and fitness is
re-calculated.

Results

Fast charging.—Permutation analysis.—Grid sizes from 4 × 4
to 8 × 8 were investigated, with the number of channels from 4 to 8
(surface coverage from 25 to 12.5%), that is a number of permuta-
tions from 1.8E3 to 4.4E9. The number of channels has been chosen
specifically to compare with the grooved-line case (i.e., number of
channel equals grid length so that a full line can be tested).
Calculation times range from 6 s to 115 h. The genetic algorithm
took only 18 s to converge for the largest grid with a population size
of 1E4 individuals. Both methods achieve the same fitness, which
validates the GA approach (albeit on a small grid). The only
difference is that the permutation approach identified several equi-
fitness optima due to problem symmetry, while the GA identified
only one. Of main interest is the solution distribution of the
permutation approach, plotted in Fig. 6. The worst case is the
groove line, with the optimal pattern being ≈3 times more efficient.
Most solutions are about two-times better than the grooved-line
design, indicating that a random distribution has high probability to
be much more efficient than grooved lines. The optimal pattern is a
distribution of points far away from each other, thus subsequent

analyses for SPN are conducted using Eq. 4b instead of 4a to identify
optimal disc channel pattern.

GA-based optimal distribution.—Figure 7 shows the optimal SPN
disc-channel spatial distribution, along with the associated periodic
EDM. The solution converged in around 100 iterations and reached a
stopping criterion after 290 iterations. The wall-clock calculation
time is 10 h on a single computer with a population size of 1E5
individuals. The spatial distribution that emerges seems to be a
regular hexagonal pattern. Due to the inherent stochasticity asso-
ciated with the GA-optimization approach, it is unlikely to reach the
global minimum with a design space this large. This explains why
the pattern is not an ideal regular hexagonal pattern, but an
approximation. The fitness convergence (cf, Fig. 7c, and online
supplementary video 1) also indicates that minor variations, which
could be induced by a non-ideal manufacturing control, have
minimal impact on the fitness. Fitness and channel spacing Ls

(distance between nearest disc center −Lc c minus disc diameter wc
t)

as function of population size are also plotted in Fig. 8 to check the
convergence. The analysis indicates fitness is slightly below
27.54 μm (to be compared with other patterns in the next paragraph),
with a channel spacing slightly above 72.5 μm. The convergence
toward a low standard deviation for the channel spacing indicates
that the mono-objective optimization problem induces an indirect
co-optimization: minimize distance heterogeneity, i.e., channel
equidistance. This confirms that the converging pattern is a regular
hexagon.

Comparison with random distribution and 1D-groove lines.—
The fitness value calculated on the GA-optimized pattern does not
provide information by itself, as there is no reference fitness value for
an electrode without channels for SPN (unlike for TPN). Indeed, the
distance map for SPN is the distance from an electrode material to the
nearest channel. Without channels, it cannot be evaluated. For TPN,
the distance can be evaluated even without channels as the domain’s
edges (electrolyte infiltration entry points) act as channels for the

Figure 6. Fitness distribution function (all possible cases) calculated on a small gird without shape constraint. EDM has been used instead of pEDM for this
particular analysis to reduce computational time.
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fitness calculation. Therefore, a comparison is performed on two other
patterns: grooved lines (considered as our baseline due to its
simplicity and prevalence in the literature, cf, Fig. 9a and random
distribution of disc channels (to test extreme case of poor manufac-
turing control, cf, Fig. 9b). Results are shown in Fig. 9. Fitness for the
grooved-line pattern is calculated according to Eq. 6. Fitness for the
regular hexagon pattern is numerically calculated on a very fine grid.
The regular hexagon pattern has a lower fitness than the GA-

optimized pattern (cf, Figs. 9c–9d), in agreement with the population
size convergence analysis (cf, Fig. 8). The grooved-line pattern
appears to be strongly suboptimal, with regular hexagon pattern being
≈6.25 times more efficient. The random channel distribution provides
a significant improvement, ≈3.5 times better than groove lines, and is
only ≈1.8 times worse than the regular hexagon pattern; this
demonstrates robustness in manufacturing laser ablated channels
where, for example, if a high-throughput laser-ablation does not

Figure 7. (a) Optimal SPN distribution, and (b) associated periodic Euclidean Distance Map (best individual is show). Solid lines represent an approximation of
a regular hexagon pattern. (c) Genetic algorithm convergence with generation. Local fitness increase is due to the absence of an elitism operator. Convergence
animation available online (supplementary video 1).

Figure 8. GA convergence with population size for (a) fitness and (b) channel spacing average and standard deviation.
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have good consistency in channel dimensions and placement, the
cell’s performance would be minimally impacted. Note these values
are only relevant for the selected dimensions and channel volume.

Analytical relationship between channel volume, depth, and
spacing.—Previous results clearly indicate that the regular hexagon
pattern is the optimal one (cf, Fig. 7). With the geometric pattern
known, we can derive analytical relationships linking channel
volume ratio, channel dimensions, and channel spacing for both
electrodes. We assume the distance between disc center −Lc c to be
identical for both electrodes, so that the periodic domain has same
dimensions. This implies the channel spacing Ls to be identical
between electrodes (as both electrodes share the same disc diameter
wc

t). The cathode and anode baseline capacity (i.e., w/o channels) are
known and noted Cb,c and C ,b,a respectively. The dimensions will be
deduced starting first with the anode, then with the cathode (the
reader can modify the subscripts in the subsequent equations to go
the other way). Three input parameters are required: the anode
channel volume ratio r ,V,a the anode channel thickness t ,c,a and the
N/P ratio for the structured cell /N P.s The latter allows translating
dimensions from one electrode to the other. The anode channel
volume and the anode volume within the regular hexagon periodic
pattern, respectively Vc,a

p and V ,a
p are calculated according to Eqs. 9a

and 9b. The notations from Eq. 1a are re-used, with an additional
subscript to identify the electrode. The distance between disc center

−Lc c is deduced knowing the anode channel volume ratio rV,a using
Eq. 9c. Channel spacing Ls is deduced with Eq. 9d.
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On the cathode side, the channel volume ratio is deduced from
Eqs. 10a–10c, with Cs,a and C ,s,c respectively, the anode and cathode
capacity after structuring. Equation 10d (from re-writing of Eq. 9c)
is used to deduce the cathode channel volume within the regular
hexagon periodic pattern V .c,c

p Cathode channel volume Vc,c is
deduced by inversing Eq. 9a, cf, Eq. 10e. Channel bottom volume

Vc,c
b is deduced knowing the full cone volume Vc,c

max (cf, Eq. 1a)
according to Eq. 10f. Equation 1a is re-ordered to provide the
difference between the cone maximum thickness tc,c

max and the
channel actual thickness t ,c,c cf, Eq. 10g. The cathode channel
thickness is deduced with Eq. 10h. Note that an irrelevant /N Ps can
lead to no solution (negative length).
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Considering the channel dimensions and capacities of the
electrode investigated (cf, Table I), the parameter space is plotted in
Fig. 10 for two /N P.s This defines the parameter space that an
electrochemical model could investigate to find an optimum SPN
pattern for fast charging.

Fast wetting.—Case-specific nomenclature for the different TPN
patterns used in this section (e.g., “GA-C-8”) is available in Fig. 2.

Coin-cell form factor.—The GAs convergence was investigated,
with pixels per diameter of the coin cell disk from 80 to 200, and
population size from 5E3 to 5E4, respectively, to accommodate for
the larger design space. Analysis indicates near convergence for
cumulative channel length, from 7.91 to 7.97 cell-unit diameter

Figure 9. SPN fitness compared with, from worst to best: (a) groove lines, (b) random disc channel, (c) GA-optimized disc channel, and (d) regular hexagon disc
channel. Normalized fitness with reference case (groove lines) is denoted f .n
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(area-based), and from 10.98 to 10.92 cell-unit diameter (effective-
length based, cf, Fig. 3) and slight overestimation for normalized
fitness, from 0.129 to 0.116, for GA-C-8 (nomenclature illustrated in
Fig. II). Subsequent results correspond to the most refined case.
Calculation time for the most refined case was two weeks on a 10-
core computer.

The TPN patterns identified with the GA-optimization approach
are plotted in Fig. 11, top row. All pixels assigned to the channel
domain are connected to the cell edges. For a low number of
equivalent channel diameter (GA-C-4), the pattern is roughly radial
with minor branching. However, as more channels are introduced the
radial component is less obvious, in favor of a mud-crack-like
pattern with branching being the dominant feature (GA-C-16). No
symmetry is visible due the inherent stochasticity of the method,
however the mud-cracking pattern is seemingly repeated uniformly
within the whole cell domain, especially for the case with a higher
number of channels. A similar pattern at equivalent radial distance
was expected due to the isotropy of the problem. This suggests that
the population size is high enough to capture the expected trend.

The pattern is however not uniform if analyzed branch-wise or
channel-wise (“channel” here being defined as branch and sub-
branches all connected to each other), with two characteristics
visible. First, the branching increases from the electrolyte infiltration
entry-edges to the center of the cell (cf, Fig. 11, GA-C-8, numbers).
Subbranches are typically generated perpendicular to their parent
branch to cover the most area possible without using a full branch
from the electrolyte infiltration edge. Such behavior is also visible in
diffusion-problem topology optimization (cf, Fig. 6 of Refs. 54 and

55). Second, the connected channel length is alternating (roughly, as
stochasticity induces some variations), with the general pattern being
one small channel between two larger channels (i.e., small-large-
small-large-small etc., modulo stochasticity, cf, Fig. 11, GA-C-8,
letters). This behavior is a consequence of the curvature of the coin-
cell domain geometry: as perimeter is smaller near particle center,
less branches are required to cover the same amount of cell surface.
This was the main idea behind the clock pattern, and it is remarkable
that the GA reproduced this general pattern without explicit
constraint. The optimal pattern is thus a combination of channel
length alternation with increasing perpendicular branching from cell
edge to center. The channel length alternation provides the periodic
pattern. However, as more channels are generated with the number
of equivalent channel diameter, this implies the periodic pattern
length is not constant. Using periodic boundary condition to reduce
the problem size is thus not a good idea as it requires a priori
knowledge of the solution to generate.

Figure 12 shows normalized fitness for the pre-determined
patterns used for comparison. With no grid resolution limitation,
and known equivalent diameter (i.e., near zero numerical error), the
order from best to worst is clock, then radial and branch with similar
fitness, and then circle (cf, Fig. 12a). It could be surprising that the
branch pattern is suboptimal, since patterns identified with the GA
are strongly branching. However, making a branch pattern manually
is very likely to be suboptimal as sub-branching implies a very large
parameter space, which results in this pattern underperforming. The
clock pattern is optimal among the pre-determined patterns in
agreement with the feature (channel length alternation) identified

Figure 10. Pore Network parameter space for optimal pattern regular hexagonal for electrode specifications of Table I. (a) Regular hexagonal pattern, (b) anode
channel spacing, (c) cathode channel volume ratio, and (d) cathode channel depth ratio (all solid lines, / = /N P N Ps b case, overlap). Input geometric parameters
are anode channel volume ratio rV a, and anode channel depth ratio rt a, (defined, respectively in Eqs. 1c and 1a), and N/P ratio for the structured cell. (c,d) Solid
line is / = /N P N P ,s b dashed line is / < /N P N P .s b
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with the GA-optimization approach. Very significant gains (5–10
times better than the no-channel case) are achieved with a minor
electrode volume loss (1%-2%), thus allowing to couple a TPN
(≈1.5%) with a SPN (≈5%) for a total volume loss of ≈6.5%.
Furthermore, the fitness reduction (i.e., the slope) is decreasing with
the number of equivalent diameters, indicating the better trade off
fitness-volume loss is achieved for the low volume loss range.

Comparison analysis between pre-determined patterns and pat-
terns identified with the GA-optimization approach are performed at
same grid resolution (i.e., 200 pixels per diameter) and results are
show in Figs. 12b and 12c. Furthermore, the cumulative length
metrics are calculated identically between the different patterns for a
fair comparison, with the method explained in the Simpler patterns
and comparison methodology section. Note that both comparison
metrics (area-based and effective length-based) have their benefits
and drawbacks. The area-based comparison represents real channel
surface coverage if pixel size and channel size match, but then in this
case, the connectivity requirement should be face-to-face, thus
strongly limiting the channel shape and eventually biasing the
analysis. Furthermore, the area-based metric does not distinguish
horizontal or vertical channels from diagonal channels even though
their true length is different from a factor 2 . Effective-length
comparison relaxes the constraint of the connectivity requirement
with diagonal being correctly measured and is a relevant solution for
the pixel size channel size mismatch (cf, Fig. 3). However, the
effective-length metric penalizes (increases) the real channel length
of the patterns identified with the GA. Indeed, due to the

stochasticity of the GA-optimization approach, what would be
otherwise a straight line is sometimes represented with a zig-zag
of 1–2 pixel with (cf, Fig. 12, red rectangles). In both comparative
approaches, the GA patterns have lower or equal fitness compared
with the best choice (clock) among the predetermined patterns. It is
then believed that the GA curve of Fig. 12c is over-translated toward
the high length due to the zig-zag penalty discussed above, thus
penalizing it against the pre-determined patterns.

Analysis of the EDMs reveal the reason behind the better
performance of the patterns identified with the GA-optimization
approach. For patterns with similar channel area (labelled in
Fig. 12b), the EDM distribution function is narrower for GA
patterns, indicating a more equidistant distribution of the channels
(cf, Fig. 13). This is also noticeable from visual inspection of the
EDM: radial and branch patterns have larger distance near cell
edges, clock patterns have larger distance near cell center, while GA
patterns have a very uniform distribution. Note that these trends are
intrinsic to the patterns investigated and stand for different channel
density. The GA demonstrates here its superiority by uniformizing
the porous matrix-to-channel distance, as the indirect product, or co-
optimization, of minimizing the average porous matrix-to-channel
distance.

Pouch cell form factor.—The grid used for the genetic algorithm
is 150 by 225 with a population size of 5E4. The TPN patterns
identified with the GA-optimization approach are plotted in Fig. 11,
middle (electrolyte infiltration from all edges except top one, case a)

Figure 11. TPN Optimal patterns identified with the GA-optimization approach for (top) coin cell and (bottom) pouch cell. Channel width is not scaled with cell
dimension. Blue lines indicate the electrolyte infiltration entry-edges, green lines, if any, indicate cell edges without infiltration. Numbers indicates the branching
number (starting at 0 for the initial parent or main branch), letters S, L indicate a short and a long connected channel. Red rectangle indicates irrelevant zig-zag
patterns induced by the stochasticity inherent with the GA-optimization approach. Convergence animation available online (supplementary video 2).
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and bottom (electrolyte infiltration from bottom edge, case b) row.
For the relatively low channel volume, patterns are different between
the two electrolyte infiltration modes with dominantly vertically
aligned channel for the case b (e.g., Fig. 11 GA-Pb-6.2) and both
horizontally and vertically aligned channel for the case a (e.g.,
Fig. 11, GA-Pa-7). For the higher channel density cases, the
differences between the two cases are vanishing. This is the
consequence of the subbranches being typically perpendicular to
their parent branch. Indeed, with a limited number of channels, the
initial orientation of the branches from the edges, controlled by the
electrolyte infiltration mode, is the dominant orientation. However,
with higher channel density, the sub-branching mechanism is
becoming predominant, and the cumulated perpendicular branching
leads to an apparent channel orientation isotropy with only a loose
correlation with the electrolyte infiltration mode. While vertical
channels appear in general longer than their horizontal counterparts,
this is believed to be induced by the cell aspect ratio with a longer
vertical dimension. Overall, the optimal pattern predicted shares the
same characteristics with the coin cell case: channel length alterna-
tion and increasing perpendicular branching from electrolyte infil-
tration edge to bulk of the cell. These two features are particularly
visible for the low-density channel cases (cf, Fig. 11 GA-Pa-7 and
GA-Pb-6.2). The channel length alternation in case b is however not
induced by curvature which indicates this feature is intrinsic with the
optimal TPN pattern (while being still controlled partly by the form
factor as explained for the coin cell case). Such a feature is derived
from the perpendicular branching: a sub-branch from a channel will
reduce the distance in the area that would have been covered
otherwise by the adjacent channel thus limiting the required length
and branching of the latter.

Figure 14 shows the normalized fitness for the pre-determined
patterns used for comparison. With no grid resolution limitation and
a known number of channels, a lower normalized fitness has been
calculated for the case b (infiltration from bottom edge, cf, Fig. 14a).

While this could appear counter-intuitive (as the case with more
electrolyte infiltration entry edges has higher normalized fitness),
this is due to the difference on the baseline fitness. Indeed, baseline
fitness is significantly higher for the case b (3.37 times higher than
case a), while the impact of the electrolyte infiltration mode on
structured fitness only impacts the two vertical edges of the cell. This
means that the absolute fitness calculated for structured pouch cell
with the two electrolyte infiltration modes is roughly similar (minor
an edge effect) with better value for the case a, but the initial fitness
is much worse when electrolyte is allowed to infiltrate only from the
bottom edge. Both cases should be considered as extremums, with
electrolyte infiltration only from the bottom edge being the con-
servative (only true in the initial part of the infiltration process, and
possibly also near the end, when the majority of the electrolyte has
already penetrated into the electrodes and the liquid level in the cell
drops) and electrolyte infiltration from all edges except the top is a
more optimistic case (initially incorrect with relevance increasing as
the infiltration progresses). Both cases are a simplification as
Habedank et al.8 demonstrated electrolyte penetration from three
sides, but with a faster penetration from the bottom than from the
sides. Similarly with the coin cell form factor, very significant gains
(∼20 times better than the no-channel case) are achieved with a
minor electrode volume loss (1%). Additionally, the fitness reduc-
tion is mainly achieved for the low volume loss (<1%) indicating
there is no need to sacrifice more active material.

Comparison between the vertical pattern and patterns identified
with the GA-optimization approach are performed at same grid
resolution (i.e., 150 pixels along cell width) and results are show in
Figs. 14b and 14c. The larger cell dimension of the pouch cell as
compared to the coin cell significantly degrades the GA precision.
Indeed, to achieve a 1:1 scale between pixel length and channel
width in the coin cell case 11.0E4 pixels are required, while GA grid
used 3.1E4 pixels (≈3.5 times less). In the pouch cell case 58.6E4
pixels are required, while GA grid used only 3.4E4 pixels (≈17.4

Figure 12. TPN patterns comparison for coin cell. (a) Pre-determined pattern with near-infinite grid resolution (2000 pixel per diameter). Equivalent number of
diameter ′Neq c and channel total volume ′rv are known. (b, c) Comparison on a finite grid (200 pixel per diameter), with (b) area-based comparison, i.e., one
pixel = one pixel length, and (c) effective-length comparison (cf, Fig. 3). Radial, clock, circle and branch patterns from Fig. 2 are reminded in the bottom for
convenience.
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times less). Because of this, the GA pattern predicted with the
limited grid are suboptimal as the amount of sub-branching is limited
by the grid resolution. In comparison, the deterministic patterns are
only moderately impacted by the grid resolution as all details are
described whatever the resolution. Therefore, Figs. 12b, 12c but
especially Figs. 4b, 4c are not “fair” comparisons between the
predetermined and GA-optimized patterns (in addition to the zig-zag
penalization discussed for the coin cell form factor). For the pouch
cell case, the aim of the figure is then primarily to show that most
gains are achieved with a low channel volume as for the vertical
patterns.

Discussion

On the method.—The GA-optimization confirmed that the
hexagonal pattern is optimal for fast charging, providing further
confidence to the patterns found in litterature4,10,22,24 albeit with a
lack of clear justification and sub-optimal pitch between channels.
Beyond the pattern identification, the added value is to validate the
GA-optimization approach ability to perform such topology optimi-
zation for a diffusion/distance problem, even for a periodic/regular
pattern, such as regular hexagon, that a stochastic-based approach

may have been ill-suited for. This builds confidence in the
subsequent TPN analysis, for which the optimal is not known.
Furthermore, the ability to identify regular patterns suggests that the
GA discarded the straight lines patterns (radial, clock) not because it
cannot investigate them due to its stochastic approach (population
size is not infinite) but because it identified them as suboptimal,
although not far from it. To support this statement, the GA did
generate some roughly straight/diagonal lines when needed to reach
an optimum (cf, Fig. 11).

One interesting aspect of GA lies in its apparent simplicity.
Unlike other optimization approaches that are mathematics-heavy,
GA is much more intuitive. Furthermore, tuning the method proved
to be simple: a few quick tests were enough to identify a parent
selection threshold of 1/4 as efficient. Then, the only parameter to
change to achieve convergence for different grid size was the
population size. Similarly, while a faster convergence may have
been achieved with more time dedicated to test different methods for
the GA operators (parent selection, crossover, mutation),34 the
simple truncation, one point crossover, and bit flip operators were
enough for the task. This makes this method a good candidate for
easy-to-implement, prototyping optimization, which is the outcome
of this work: identifying (adimensional) optimal patterns and

Figure 13. Coin cell TPN EDM and associated normalized fitness distribution. (Left) GA-C-8 compared with B7.9 and B13.9, and (right) GA-C-12 compared
with R13, K11 and K14.5.

Figure 14. TPN patterns comparison for pouch cell. (a) Pre-determined pattern with near-infinite grid resolution (2000 pixel along cell width). Equivalent
number of vertical channels ″Neq c and channel total volume ″rv are known. (b, c) Comparison on a finite grid (150 pixels along cell width), with (b) area-based
comparison, i.e., one pixel = one pixel length, and (c) effective-length comparison (cf, Fig. 3).
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narrowing down the associated physical dimension optimal range by
using a CPU-cheap fitness function compatible with thousands of
calculations, while being correlated with the electrochemical gain
expected by the channels’ introduction.

On the uncoupled SPN and TPN approach.—While it would have
been possible to run the GA with both SPN and TPN objective
functions, this would have required to weight each of them or use a
Pareto front. Specifically, the unconnected channels that only benefit
SPN would have contributed less to the fitness function compared to the
connected channels that benefit both SPN and TPN. Determining such
weights is arbitrary and depends on the application, and thus has not
been done in this work. For instance, a cell designed for stationary
storage and/or low charge rate and/or low thickness does not need a
SPN as it is unlikely to be transport-limited, while still benefiting from
the manufacturing cost reduction provided by the lower drying time
offered by TPN. Furthermore, the TPN provides mainly a one-time
cost-reduction, while the SPN provides mainly an in-operation perfor-
mance improvement for otherwise transport-limited cells, making a
relevant weighting difficult for such different metrics. In this work, we
choose to investigate each network distinctly to identify their respective
features without convoluting them. This choice is a posteriori made
even more relevant in regards with the significant difference between
SPN and TPN channel volume required to provide significant
improvements for their respective fitness functions. SPN required
much more volume (5% induced a 6 times improvement) compared
to TPN (1%-2% induced a 5–20 times improvement), roughly 5 to 10
times higher impact at equivalent volume. This indicates that, for SPN
and TPN channels with similar diameters and widths, a combined SPN
and TPN pattern would consist in relatively few TPN channels far apart
from each other, with relatively more SPN channels located in between
TPN channels. That is essentially a superposition of the two patterns,
which matches well with an independent analysis as done in this work.
Such mixed patterns, experimentally achieved in our laboratory in a
roll-to-roll high throughput process, will be the subject of a future
article.

On the results.—Optimal channel width wc
t is specified for SPN

(the smallest diameter allowed by the laser system, to a certain
extent). However, picking the channel width for TPN is less evident
due to fluid dynamics considerations: channel width is expected to
decrease from electrolyte infiltration entry-edges to the cell bulk.55,56

The channel widths selected for TPN are then a combination of
numerical consideration and laser system limitations, but not the
optimal value. Because of this, physical dimensions in the TPN
pattern are not optimal values since one dimension (channel width)
is user-defined. However, the overall pattern shape is still recom-
mended, i.e., without physical length attached, but from an adimen-
sional perspective.

Dimensions within the SPN pattern are, however, expected to be
a good approximation of the real optimum, and an electrochemical
model can further refine this by analyzing a parameter space near the
GA optimum. While it is very likely that the fitness is negatively
correlated with the electrochemical gains induced by the channels
(as SPN have been originally introduced based on diffusion distance
consideration), it is unlikely such correlation is linear. This implies
the trade-offs, at fast charge, between volume loss to fitness
reduction and volume loss to capacity improvement evolve differ-
ently as volume loss increases, resulting in a different practical
optimum. Additionally, the physics-less approach used in this work
makes it not worth the extra-CPU time required to push the grid
resolution to a 1:1 scale between channel width and pixel length,
especially for the TPN. The main result is the overall pattern shape
(increasing resolution would only add even more sub-branching) and
information that only 1%-2% volume loss is required for TPN.

A general comment on the patterns identified with the GA-
optimization approach is that while the overall shape is believed to
be indeed the optimum shape, local shape is however suboptimal due
to the inherent stochasticity of the method. An example of such local

approximation is the numerous one-voxel width zig-zag patterns (cf,
Fig. 11), that have also the side effect to make comparison with pre-
determined patterns less accurate. However, the branching generated
by the GA is believed to not to be an artifact from the method
stochasticity but a true feature of the optimal pattern. Such a
statement is supported by the subbranch length, which is much
longer than a few pixel lengths which suggests stochasticity is not
involved, and by the literature that also points toward branching
patterns.54,55 Furthermore, if stochasticity was to bias the pattern,
then significant variations would have arisen locally. Instead, the
pattern predicted by the algorithm is very uniform from one region
to the next, especially at high channel density (cf, Fig. 11, GA-C16,
Ga-Pa-22 and Ga-Pb-20.1) with repeating features such as channel
length alternation and perpendicular sub branching.

The results presented in this work only consider half-depth channels
for simplicity (i.e., =r 0.5t ). If the channel thickness ratio is changed, the
optimal patterns would still be the same overall, but the channel surface
coverage will be denser or coarser at equivalent channel volume. Also,
the unknown correlation between the electrochemical performance
metrics and the distance-based fitness function will be different.
Ideally, the remaining thickness below the channel should be adjusted
(using equations in Analytical relationship between channel volume,
depth, and spacing section for SPN) until the characteristic diffusion time
for the remaining through-plane diffusion below the channel (character-
istic diffusion distance: −t te c) would be similar with the characteristic
in-plane diffusion time between channels (characteristic diffusion
distance: /L 2s ) so that electrode material would be equally transport-
limited in both directions (diffusion anisotropy is to be considered for the
calculation of the through-plane and in-plane characteristic diffusion
time). This means that for thicker electrodes, increasing the channel
thickness ratio is likely to be required, thus de-densifying SPN channels
(i.e., lower surface coverage) at equivalent channel volume.

Feasibility for practical implementation.—SPNs and TPNs can be
implemented by loading the pattern into the software of the laser system
as a catalog (.cat) file, for example. Femtosecond laser systems have
been shown to introduce patterns without any significant unfavorable
material damage or loss in cycle-life performance.5 The complexity of
the pattern introduced in a roll-to-roll laser ablation arrangement only
marginally increases the technical challenge of implementation. For
example, straight lines may only require the use of diffractive optical
element beam splitters and constant power applied on the moving sheet,
while more complex patterns would require more advanced optics such
as polygon systems and additional programming to optimize the
sequence and location of laser pulses on the sample. Some 2D patterns,
such as the regular hexagonal pattern (optimal SPN), can also be
achieved, or approximated, using the equipment required for straight
lines, simply by turning on and off the laser or opening/closing a shutter
to produce dashed lines. Both simple and complex patterns are expected
to be feasible on roll-to-roll assembly lines. Demonstrating roll-to-roll
laser ablation will be the focus of a future manuscript by our team at the
National Renewable Energy Laboratory (NREL).

Applications for future use.—As laser ablation becomes adopted
in commercial scale manufacturing, a method to quickly identify the
optimal pattern for a given single or set of fitness functions will be
needed. This is particularly important since the implementation of
complex patters to achieve a variety of distinct or combinations of
goals such as fast charging, fast wetting, and relief of mechanical
strain in electrodes with high volumetric expansion, will be needed.
Optimization of the complex patterns for their set of fitness functions
will require such a computationally efficient approach as the GA
demonstrated here. Femtosecond laser ablation hardware is capable
of complex patterns for high throughput roll-to-roll processing
thanks to the availability of high power (>300 W) femtosecond
lasers and extremely fast-moving optics systems such as polygon
scanners, but computational approaches to help guide microstructure
patterns remain elusive. A perspective on hardware limits for scaling
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laser ablation to >100 m min−1 roll-to-roll processing will be
provided in future work, while this work focuses on how researchers
and engineers can use an accessible and efficient approach to achieve
pattern optimization and is expected to accelerate first-time-right
approach to manufacturing.

Conclusions

Secondary and tertiary pore network channel optimal spatial
distribution patterns have been identified, respectively, for fast
charging and fast wetting using a distance-based optimization
approach relying on an in-house genetic algorithm. The GA has
been first validated on a small grid and has been found thousands of
times faster than the permutation-based, brute force, approach. The
model predicts disc-shape channels arranged in a regular hexagonal
pattern is optimal for fast charging, and associated SPN dimensions
were provided considering technical constraints of the laser system.
Improvements induced by the regular hexagonal pattern were
compared with the simpler grooved-lines pattern, with the latter
being found to be strongly sub-optimal (∼6.25 times less efficient
for an equivalent arbitrary chosen 5% electrode volume loss). Minor
variations from the optimal pattern had minimum impact on the
calculated fitness, indicating that non-ideal manufacturing control
would not significantly degrade the expected performance improve-
ments. For fast wetting, the model predicts that a mud-crack-like
pattern is optimal to reduce electrolyte infiltration distance, with
channel length alternation and increasing perpendicular branching,
from the infiltration edges to the cell center, being the two main
features. The optimal pattern is influenced by the cell form factor
(coin cell, pouch cell) and the electrolyte infiltration entry-edges
only for low TPN channel volume (<1% electrode volume), but then
transition indifferently to the above-mentioned generic mud-crack-
like pattern for higher channel volumes. Improvements induced by
the mud-crack-like pattern were compared with simpler, easier to
manufacture, pre-determined patterns. The “clock” pattern (radially
oriented channels with alternating length) was predicted to be the
most efficient among the investigated designs (except for the GA-
optimized pattern). For all the TPN patterns (both pre-determined
and GA-optimized) and all the cell form factors investigated, very
significant gains (5–20 times better as compared to the no-channel
case) were achieved with a minor electrode volume loss (1%–2%),
with only marginal gains obtained afterwards. The model then
predicts significant improvements can be expected, respectively, for
fast charging compared with grooved lines, and for fast wetting
compared to no-channels, by sacrificing only a limited electrode
volume (7% in total).
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