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Executive Summary
Due to the changing nature of the power grid, it is increasingly important to be able to solve a high-fidelity optimal
power-flow models on large power networks. This high-fidelity problem, called AC Optimal Power Flow (ACOPF),
is a nonlinear, nonconvex optimization problem. One of the few reliable ways of solving such a problem is interior
point methods. These methods result in sparse linear systems where the coefficient matrix is symmetric, indefinite
and often ill-conditioned. As such, they are particularly challenging for sparse linear solvers and represent a consid-
erable computational bottleneck in solving the ACOPF problem. In this paper, we introduce a repository of linear
systems captured from ACOPF problems when solved by the open-source optimizer IPOPT. These matrices are
meant to be used as a test suite for sparse linear solver development.
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ACOPF AC Optimal Power Flow

CPU Central Processing Unit
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1 Introduction
At present power grid planning and operations often rely on a linear programming formulation called DC Optimal
Power Flow (DCOPF). As the power grid evolves through incorporating renewable generation, storage, and other
new technologies, the reliance on the DC linear power flow approximation will likely no longer be possible as the
required assumptions will be violated. This means that solving the full AC Optimal Power Flow (ACOPF) problem
will be necessary.

ACOPF (as described in the next section) is a nonlinear, nonconvex programming problem. Currently, the most
commonly used solver for nonlinear, nonconvex programs is IPOPT (Wächter and Biegler 2006). IPOPT uses
an interior point method and a filtered-line search to find local extrema. The vast majority of time IPOPT spends
solving a problem is in the solution of a linear system of equations arising from Newton’s method applied to the
(modified) Karush-Kuhn-Tucker conditions. In the case of the ACOPF problem, the matrices in the resulting linear
systems are extremely sparse, symmetric, ill-conditioned and indefinite as will be discussed. These are examples
of saddle point problems which are known to be difficult to solve (Benzi, Golub, and Liesen 2005). As discussed
in Tasseff et al. 2019, the accepted method of solving these systems is to use sparse, direct solvers such as HSL’s
MA57 (Duff 2004). However, these sparse, direct solvers transfer poorly to GPUs due to the data movement required
by pivoting. Furthermore, current GPU capable solvers show little or no speed up when running on accelerators
compared to their CPU version for these matrices (Swirydowicz et al. 2021). As a result, solving these linear systems
is a significant computational bottle neck and prevents the solution of large scale ACOPF problems needed in the
power systems community.

In this report, we introduce a suite of linear systems captured from IPOPT optimization runs of ACOPF problems
applied to the synthetic power networks developed by Texas A&M University (TAMU) (Birchfield et al. 2017; Xu et
al. 2017; Li et al. 2018) and Grid Modernization Lab Consortium (Barrows et al. 2020) and discuss their properties.
These linear systems are available to the public at https://github.com/NREL/opf_matrices for use as a benchmark for
linear solvers.

The remainder of this report is organized as follows: In Section 2, we describe the general formulation of the ACOPF
problem from which the linear systems originated. In Section 3, we describe the synthetic networks for which our
ACOPF formulation was implemented. In Section 4, we discuss the sparsity and conditioning of the matrices in our
benchmark suite. Section 5 gives our concluding remarks.
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2 AC Optimal Power Flow
The ACOPF formulation that we used in generating the linear systems is given by

min
pg,qg,psp,yll ,yol ,zll ,zol

c(pg,qg, psp,yll ,yol ,zll ,zol) (2.1)

subject to

Pmin
g ≤ pg ≤ Pmax

g ∀g ∈ G (2.2)

Qmin
g ≤ qg ≤ Qmax

g ∀g ∈ G (2.3)

Pmin
w ≤ pw ≤ ξw ≤ Pmax

w ∀w ∈W (2.4)
pw

sp = ξw − pw ∀w ∈W (2.5)

(re)
2 +(se)

2 ≤ (Fmax
e )2 ∀e ∈ E (2.6)

V min
b ≤ vb ≤V max

b ∀b ∈ B (2.7)
−π ≤ θb ≤ π ∀b ∈ B (2.8)

re = αev2
i −αevivk cos(θi −θk)−βevivk sin(θi −θk) ∀e = (i,k) ∈ E (2.9)

se =−βev2
i +βevivk cos(θi −θk)−αevivk sin(θi −θk) ∀e = (i,k) ∈ E (2.10)

rb = µbv2
b ∀b ∈ B (2.11)

sb =−νbv2
b ∀b ∈ B (2.12)

∑
g∈Gb

pg + ∑
e∈E in

b

re + yb
ll = Pd

b + ∑
e∈Eout

b

re + rb + yb
ol ∀b ∈ B (2.13)

∑
g∈Gb

qg + ∑
e∈E in

b

se + zb
ll = Qd

b + ∑
e∈Eout

b

se + sb + zb
ol ∀b ∈ B (2.14)

yb
ll ≥ 0 ∀b ∈ B (2.15)

yb
ol ≥ 0 ∀b ∈ B (2.16)

zb
ll ≥ 0 ∀b ∈ B (2.17)

zb
ol ≥ 0 ∀b ∈ B (2.18)

Here G is the set of thermal generators and W is the set of renewable generators. Note we consider any wind or solar
generator to be part of W . All remaining generators are in G (that is, they are considered to be “thermal"). The set
B is the set of buses, and E is the set of directed transmission lines. That is, e = (i,k) is the line connecting bus i
to bus k and (i,k) ̸= (k, i). Also, Gb ⊂ G is the set of all generators located at bus b, E in

b ⊂ E are all lines directed
toward bus b and Eout

b ⊂ E are all lines directed away from bus b. The variables pg and qg represent the real and
reactive set points for thermal generator g, respectively, while pw is the real power set point for renewable generator
w. The upper limit ξw is a random value constrained to lie between the renewable generator limits Pmin

w and Pmax
w . It

is a chosen randomly in order to represent the variability of renewable generators. The value pw
sp gives the amount of

renewable generation that is not used or “spilled" (hence sp). The variables re and se are the real and reactive power
flows on a transmission line e = (i,k) from bus i to bus k measured at bus i. The voltage magnitude and angle at bus
i are given by vi and θi. The variables yll ,yol ,zll ,zol are slack variables and are present to ensure feasibility of the
model. They roughly correspond to lost load (hence ll) or over load (hence ol) but are not strictly physical.

The objective function (2.1) represents the costs of operating the power grid. It includes terms such as generator
fuel cost. For the grids used in this report, the objective function is a sum of terms for each generator and bus. Each
thermal generator term is linear or quadratic in the real power set points pg and has no dependence on the reactive
power set points qg. The renewable generator terms are linear in the renewable generation spilled pw

sp. Every bus
term is linear in the slack variables yll ,yol ,zll , and zol . It follows that the objective function takes the form

c(pg, psp,yll ,yol ,zll ,zol) = ∑
g∈G

cg
1 pg + cg

2 p2
g + ∑

w∈W
csp pw

sp + ∑
b∈B

cll(yb
ll + zb

ll)+ col(yb
ol + zb

ol) (2.19)
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The constraints (mostly) represent the engineering limits of the grid elements or the power flow physics: Equations
(2.2) and (2.3) give the real and reactive generator set point limits, respectively while (2.6) gives the transmission
line flow limits, (2.7) gives the bus voltage magnitude limits and (2.8) gives the bus voltage angle limits. Equations
(2.9) and (2.10) give the physical relation between real and reactive line flow and voltage magnitudes and angles.
The quantities αe and βe are physical parameters of the transmission line or transformer. Note that for a transmission
line, αe = α f and βe = β f for e = (i,k) and f = (k, i). This is generally not true for a transformer. Equations (2.11)
and (2.12) describe real and reactive components of shunt connected elements where µb and νb are the physical
parameters of the element. Constraints (2.13) and (2.14) are the real and reactive power balance equations. The
parameter values Pd

b and Qd
b represent real and reactive power demand at bus b.

For more details on ACOPF problems, other formulations as well as relaxations, see the comprehensive survey
(Molzahn, Hiskens, et al. 2019). For a more fundamental exploration of power flow, see (Vaahedi 2014).
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3 Implementation Details
In order to get a variety of sizes of linear systems, we implemented the ACOPF problem (2.1)-(2.18) for several
different synthetic grids. Their names, geographic overlays, and sizes are summarized in Table 1. For more details
on these synthetic grids and how they were created see (Barrows et al. 2020; Birchfield et al. 2017; Xu et al. 2017;
Li et al. 2018). The grid data sets themselves can be downloaded at https://github.com/GridMod/RTS-GMLC or at
https://electricgrids.engr.tamu.edu/.

The grid data sets include most of the required parameters to create the given ACOPF problem. All cases include
generator cost information, non-renewable generator limits, line power flow limits, line parameters and real power
demand. While each case has maximum capacities for the renewable generators, the upper limits in (2.4) are, gener-
ally speaking, time dependent and based on weather conditions at the generation site. This is captured by the value
ξw. The RTS data set provides these time series data while the TAMU test systems do not. To fill in these values for
the TAMU cases, we used random values distributed uniformly from zero to the maximum capacity of the renewable
generator, that is we take ξw ∼ U(0,Pmax

w ). The TAMU cases included reactive power demands and these were used
as given. However, the RTS case does not. To replace this missing data, we set Qd

b = 0.1Pd
b , that is, we took the

reactive power demand at a bus to be one-tenth the value of the real power demand.

We wanted ACOPF problems that not only converged to feasible solutions but also did so in a reasonable amount of
time. With this goal in mind, we also altered the data in the larger cases. In particular, for the ACTIVSg2000 any line
limit below 400 MW was raised to 400 MW. For ACTIVSg10k, ACTIVSg25k and ACTIVSg70k line limits below
1200 MW were raised to 1200 MW. Additionally, the voltage magnitude limits are normally set at V min

b = 0.9 per
unit (p.u.) and V max

b = 1.1 p.u. We relaxed these to 0.8 p.u. and 1.2 p.u., respectively. (For an explanation of the per
unit system see Vaahedi 2014.) All lower generator limits were reset to zero so that Pmin

g = Pmin
w = 0. While these

alterations have numerical impacts on the linear systems, they do not materially affect the qualitative nature of the
matrices.

Slack variable costs are not included in either data set. In all cases, we used $10,000 per MWh for loss of load (both
real and reactive) and $100 per MWh for over load (again, both real and reactive). We also added a slight cost for
unused available renewable generation. This was equal to $1.20 per MWh. We take the cost function (2.19) to be
the cost of operating the grid for 5 minutes (that is, the units are $/5 minutes) so that csp = $0.1 per 5 minutes,
cll = $833.33 per 5 minutes, and col = $8.33 per 5 minutes. The generator cost functions are provided in the data sets
and the units are converted accordingly.

The ACOPF problems were constructed using JuMP.jl (see Dunning, Huchette, and Lubin 2017). JuMP is a mathe-
matical optimization language written in Julia that interfaces easily with IPOPT (Wächter and Biegler 2006), which
we used to solve each ACOPF problem. IPOPT includes many parameters to control the algorithm. See the IPOPT
manual available at https://coin-or.github.io/Ipopt/ for a description of these parameters as well as their default val-
ues. We set the control parameters as follows: The tolerance was set to 10−6 and the acceptable tolerance to 10−5.
We used HSL’s MA57 (Duff 2004) as the internal linear solver provided as part of the COIN HSL library (HSL. A
collection of Fortran codes for large scale scientific computation). All other control parameters were left at their
default values.

In order to print the matrices, we intercepted them immediately before they were given to the linear solver. This was
accomplised by inserting code in IPOPT’s MA57 interface to print out the matrix in ASCII before the factorization

Table 1. Summary of Synthetic Grids

Grid Name Geographic Area # Buses # Generators # Branches
RTS-GLMC Southwest US 73 102 120

ACTIVSg200 Central Illinois 200 49 245
ACTIVSg2000 Texas 2000 544 3206
ACTIVSg10k Western US 10000 2485 12706
ACTIVSg25k Northeastern US 25000 4834 32230
ACTIVSg70k Eastern US 70000 10390 88207
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call was made. Right hand side vectors were like-wise captured by printing in ASCII right before solve calls. Each
floating point entry was printed in scientific notation with 16 decimal places.

For the RTS-GMLC, ACTIVSg200, and ACITVSg2000 test systems, every coefficient matrix and every right hand
side vector were printed from every iteration of IPOPT. Due to size of the matrices and the number of iterations
necessary to solve the ACOPF problem, only every 10 coefficient matrix starting with the first was saved for the
ACTIVSg10k, ACTIVSg25k, and ACTIVSg70k test systems as well as the last matrix. All corresponding right hand
side vectors for these matrices were saved.

5
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4 Properties of the Linear Systems
In this section, we explore the properties of the coefficient matrices in this repository. We start by looking at the
fraction of nonzeros along with the sparsity patterns. Then we examine the conditioning of the coefficients matrices.
The section closes with an examination of the eigenvalues and singular values. This is restricted to the smaller
systems for computational reasons.

4.1 Sparsity

Figure 1. Sparsity of matrices in stack for the given network. Sparsity includes explicit zeros and is con-
stant across the optimization run. Note that as the system size increases, the matrices become more sparse.

As mentioned in the introduction and seen in Table 2 and Figure 1, the coefficient matrices are sparse and grow more
sparse as the underlying power network increases in size. This is hardly surprising as the number of nonzero terms
in the Hessian of the objective function and the number of constraints in the ACOPF problem grows linearly in the
number of buses, lines or generators on the system, whereas the number of entries in the coefficient matrix grows
quadratically in these numbers. The sparsity level for a fixed test system is fixed across an optimization run.

Table 2. Characteristics of the Matrices. Nonzeros includes explicit zeros. Sparsity is measured
as fraction of nonzero entries. The number of nonzeros and sparsity are constant across a case.

Grid Name Dimension Nonzeros Sparsity
RTS-GLMC 2253 6852 2.256e-03

ACTIVSg200 4644 14078 1.090e-03
ACTIVSg2000 55667 173710 9.415e-05
ACTIVSg10k 238072 723720 2.134e-05
ACTIVSg25k 697161 2020647 6.880e-06
ACTIVSg70k 1640411 4991820 3.100e-06
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The sparsity pattern of the coefficient matrices is given in Figure 2. Just like the sparsity level, this pattern is con-
sistent across the optimization run. The nonzero diagonal in the lower-right corner is the result of a regularization
applied by IPOPT to the coefficient matrix (Wächter and Biegler 2006).

The classic saddle-point matrix structure (see Benzi, Golub, and Liesen 2005) is clearly visible. This general form is(
H JT

J 0

)
(4.1)

where H is the Hessian of the Lagragian and J is the Jacobian of both the equality and inequality constraints (see
Benzi, Golub, and Liesen 2005 or Wächter and Biegler 2006 for more details). While there appears to be more
structure to the matrices, this is the result of adding variables and constraints of the same type in the same order
for each grid. Furthermore, there is a part of the constraint Jacobian whose sparsity patterns directly reflects the
structure of the underlying power grid. In our matrices, this is the first set of rows in the Jacobian. (For the RTS-
GMLC case in Figure 2, these occur around row 1500. A similar block is visible in the other cases as well.) This
block of the Jacobian arises from the power balance constraints given by (2.13) and (2.14). These equations involve
all connected branches as well as generator and load at the bus. Therefore, this block directly reflects the underlying
graph structure of the power network. As such, there is no general structure within the matrix that can be exploited
beyond that given by (4.1).

(a) RTS-GMLC (b) ACTIVSg200 (c) ACTIVSg2000

(d) ACTIVSg10k (e) ACTIVSg25k (f) ACTIVSg70k
Figure 2. Sparsity patterns of coefficient matrices. The sparsity pattern is constant across an optimization run (when
explicit zeros are included). The nonzero diagonal in the lower-right is the result of a regularization added by IPOPT.

4.2 Condition Numbers
We see several trends in the condition numbers of the coefficient matrices in Figure 3. First, note that these matrices
are all ill-conditioned. The smallest condition number is a little less than 107. This occurs for the smallest system,
the RTS-GMLC where the matrix is of dimension 2253. Second, the condition numbers grow as the network size
grows. Again, this is not surprising since condition numbers tend to grow with the size of the matrix. Practically,
this means that larger power networks make for more difficult ACOPF problems. Finally, the conditioning of the
matrices worsens as the optimization proceeds with the largest condition numbers occurring near termination for
all but one case. In general, we expect to lose a digit of accuracy in the solution for every order of magnitude in the
condition number (Trefethen and Bau 2022). This means that we can expect linear solvers to struggle to provide
precise solutions just as IPOPT requires greater precision in order to locate the local optimum.

7

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



(a) RTS-GMLC (b) ACTIVSg200 (c) ACTIVSg2000

(d) ACTIVSg10k (e) ACTIVSg25k (f) ACTIVSg70k
Figure 3. Condition numbers of matrices from stack of IPOPT matrices. Matrix ID identifies the particu-

lar matrix in the stack. The optimization approaches a local minimum the further to the right in the plots.

Figure 4. Eigenvalues of first (left) and last (right) matrices in the RTS-GMLC stack.

4.3 Eigenvalues and Singular Values
The eigenvalues of the first and last matrices of the RTS-GMLC and ACTIVSg200 cases are shown in Figures 4
and 5. We restrict ourselves to the two smallest test systems for computational considerations. We first note that the
matrices are indefinite with both positive and negative eigenvalues. The growth in magnitude of the eigenvalues is
also notable although perhaps expected given the growth in the condition number. The RTS-GMLC case jumps from
102 to 1010 while the ACTIVSg200 case jumps from 103 to 109. We also note that there are noticeable gaps in the
spectrum. That is, there are places where the eigenvalues have a sudden decrease in magnitude.

To elaborate on the conditioning and explore the spectrum gaps further, we also plotted the singular values of the first
and last matrices of the RTS-GMLC and ACTIVSg200 cases in Figures 6 and 7. In these plots, we see that there is
also a significant decrease in the magnitude of the smallest singular value. The RTS-GMLC case drops from 10−4

to (roughly) 10−10 and the ACTIVSg200 case drops from 10−4 to (roughly) 10−8. From this we see that the growth
in the condition number results from both jumps in the largest singular values and drops in the smallest singular
values. Furthermore, we see that the spectral gaps remain only at the tails of the spectrum. That is, either around the
largest or smallest singular values (e.g., the right plot in Figure 6. Those gaps appearing in the middle have largely
disappeared (e.g., compare the left plots of Figures 5 and 7).
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Figure 5. Eigenvalues of first (left) and last (right) matrices in the ACTIVSg200 stack.

Figure 6. Singular values of first (left) and last (right) matrices in the RTS-GMLC stack.

Figure 7. Singular values of first (left) and last (right) matrices in the RTS-GMLC stack.
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5 Conclusions
Applying interior point optimization algorithms to ACOPF problems gives rise to sparse, symmetric, indefinite and
particularly ill-conditioned linear systems. Solving these systems accurately and efficiently is challenging for present
linear solvers and represents a significant computational bottleneck in the solution of ACOPF problems. Improving
the linear solver reduces this bottleneck in two ways. First, the vast majority of time in an interior point method is
spent solving saddle-point linear systems. Even slightly more efficient solutions (either by parallel computing or
more efficient algorithms) can save significant time over the course of the whole optimization. Second, the accuracy
of the solve impacts the number of iterations required for the solver to converge. Inaccurate solves require more
iterations. This may be a particular problem around the optimal point where the condition number of the coefficient
matrix is very large. Providing more accurate solutions will reduce the number of optimizer iterations and reduce run
time.

In this paper, we have introduced a new set of test matrices to serve as a benchmark for linear solver development
as well as discussing some of the properties of the matrices. We hope this benchmark suite will enable sparse linear
solver development that eliminates or reduces the present computational bottleneck while giving accurate solutions.
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