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Vehicle Energy Consumption

Source: www.fueleconomy.gov



NREL    |    3

Traveler Energy Consumption

Energy savings when e-bike replaced the modes on the left. 
Data collected with OpenPATH in Durham, NC



NREL    |    4

• Smartphones can collect travel diaries
– Carry phone during travel

• Participants get tired of labeling trips
– Only 38% (94,000) of OpenPATH trips 

labeled
• Lots of unused information (146,000 trips)
• What if we try to use that information for 

decisions?
– Infer travel mode with sensors or past 

labels

Smartphone Travel Diaries

Screenshot from 
CanBikeCO app



NREL    |    5

• Travel diaries from smartphones can tell you about travel 
behavior in a region

• Mode inference (machine learning) models can fill in some info 
that travel monitoring participants leave out
– Makes data collection easier

• BUT: need to know how well those models perform
• We looked at uncertainty for one metric – energy consumption

Key Points
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Accounting for Uncertainty

• Energy = Energy Intensity * Travel Length = I*L
• For a travel diary or set of trips D:

• Need uncertainty in both inputs
• Used ground truth smartphone travel data set (MobilityNet 

(Shankari et al, 2020))
• Energy Intensity/Mode uncertainty – confusion matrix

– Can find for any mode classification algorithm
– Accuracy not enough

• Length uncertainty – relative length error
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Accounting for Uncertainty

• Mode: confusion matrix
– Given predicted mode
– Mean and variance of energy 

intensity (I)
• Length: relative length error

– Given measured length
– Mean and variance of actual 

length (L)
• Combine with variance 

propagation

Predicted Mode

Actual 
Mode

Car Ebike Bike Walk

Car 7 2 1 0

Ebike 2 5 3 1

Bike 1 2 4 1

Walk 0 1 2 8

Example confusion matrix. 
Entries are number of occurrences.
More modes were present in actual 

𝜎𝜎𝐸𝐸2 ≈  𝜎𝜎𝐼𝐼2𝜇𝜇𝐿𝐿2 + 𝜎𝜎𝐿𝐿2𝜇𝜇𝐼𝐼2
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• Convert confusion matrix columns to 
probability distributions
– P(actual mode | predicted mode)

• One approach: Divide each entry by 
the sum of its column

• After that, assign each an energy 
intensity
– Based on the Transportation 

Energy Data Book from Oak Ridge 
National Laboratory

Predicted Mode

Actual 
Mode

Car Ebike Bike Walk

Car 0.7 0.2 0.1 0

Ebike 0.2 0.5 0.3 0.1

Bike 0.1 0.2 0.4 0.1

Walk 0 0.1 0.2 0.8

Now a table of mode probabilities in columns

Table of energy intensity (kWH/PMT) probabilities
PMT = passenger miles traveled
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Align Segments

G. Kosmacher and K. Shankari, 2022
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• Confusion matrix for phones running Android or iOS for a sensor-based mode inference model. Entries are in 
meters (found with methods based on G. Kosmacher and K. Shankari). 

• HAHFDC and HAMFDC: phone configurations for recording data.
• HAHFDC: High Accuracy, High Frequency, Duty Cycling 
• HAMFDC: High Accuracy, Medium Frequency, Duty Cycling
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𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ∗
1

1 + 𝑅𝑅

• Sampled from relative length error (R) 
distributions to find mean and variance of 
actual length given a 1 unit measured length

Acronyms:
• KDE: Kernel Density Estimate

• Finds a distribution to represent the variation in data
• MCS: signifies that an estimate came from Monte Carlo Simulation
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• At first, we summed the variances across trips:
– E = variance of energy consumption for all trips
– 𝑣𝑣𝑣𝑣𝑣𝑣 𝐸𝐸 = ∑𝑎𝑎∈𝐷𝐷 𝜎𝜎𝑎𝑎2

• However, most program (set of participants) estimates were 
above 7 standard deviations (sd) from the truth
– With this, we would be placing more certainty on our 

estimates than we should

Variance Propagation

Estimate +/- 1 sd True value
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A better approach:
• Group trips together by predicted mode
• Number the modes (m) as {1, 2, …, k}
• 𝐼𝐼𝑚𝑚, 𝐿𝐿𝑚𝑚: Intensity for mode m, total travel length where mode m was 

predicted
• 𝑣𝑣𝑣𝑣𝑣𝑣 𝐸𝐸 = 𝑣𝑣𝑣𝑣𝑣𝑣(∑𝑚𝑚=1

𝑘𝑘 𝐼𝐼𝑚𝑚𝐿𝐿𝑚𝑚) = ∑𝑚𝑚=1
𝑘𝑘 𝑣𝑣𝑣𝑣𝑣𝑣(𝐼𝐼𝑚𝑚𝐿𝐿𝑚𝑚) 

– 𝑣𝑣𝑣𝑣𝑣𝑣 𝐼𝐼𝑚𝑚𝐿𝐿𝑚𝑚 ≈  𝜎𝜎𝐼𝐼𝑚𝑚
2 𝜇𝜇𝐿𝐿𝑚𝑚

2 + 𝜎𝜎𝐿𝐿𝑚𝑚
2 𝜇𝜇𝐼𝐼𝑚𝑚

2

• Considers that predictions are not isolated events
– Some mistakes might be repeated often

Variance Propagation

Estimate +/- 1 sd True value
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Assumptions

• Mode error and length error independent
• Ignore energy model specification error

• We are applying an average intensity to the entire trip
• No error in user’s mode labels
• Error in MobilityNet applies to other geographies
• Assume an underlying mode prevalence (chances of each 

mode)
• Equal chances of drove alone and shared ride (sensing 

model does not distinguish these)
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• Benchmark on CanBikeCO
– Low-income participants given 

electric bicycles
– 1.5 years of data
– Overall energy consumption error: 

8% (bottom bars)
• 13% if basing estimates on sections

– Each program within 1 estimated 
standard deviation

– At the user level: 82% within 2 
estimated standard deviations

Results
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• Cumulative energy consumption over 
time for Pueblo County (PC) 

• PC was the program with the largest 
error

• Blue: energy based on user labels 
• Orange dots: energy based on sensed 

labels
• Orange dashes: 1 standard deviation 

from the estimated energy
consumption

• Data points are in 30-day increments

Results
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Histogram of user level number of standard deviations from the truth 
for cumulative energy consumption

Results
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Relevance and Future Work
• Inferred labels  Less labeling burden

• Makes long term studies more viable
• Bias less toward people with free time to label their trips
• Local travel understanding
• Behavior models - better representation in travel 

demand forecasting

• Estimate mode share, energy/carbon impact, trip 
purpose share

• Apply methods to other mode inference models 
• e.g., learn from users’ past labels

• Make better models (e.g., include route map matching to 
better distinguish bus and car) 
•  narrow the error bars

Trip miles by mode 
collected with 
OpenPATH in Durham, 
NC
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Data Availability

Transportation Secure Data Center: www.nrel.gov/tsdc 

http://www.nrel.gov/tsdc
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