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Demystifying Cyberattacks: Potential for Securing
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Abstract—Modernization of energy systems has led to in-
creased interactions among multiple critical infrastructures and
diverse stakeholders making the challenge of operational decision
making more complex and at times beyond cognitive capabilities
of human operators. The state-of-the-art machine learning and
deep learning approaches show promise of supporting users
with complex decision-making challenges, such as those occur-
ring in our rapidly transforming cyber-physical energy systems.
However, successful adoption of data-driven decision support
technology for critical infrastructure will be dependent on the
ability of these technologies to be trustworthy and contextually
interpretable. In this paper, we investigate the feasibility of
implementing XAI for interpretable detection of cyberattacks in
the energy system. Leveraging a proof-of-concept simulation use
case of detection of a data falsification attack on a photovoltaic
system using XGBoost algorithm, we demonstrate how Local
Interpretable Model-Agnostic Explanations (LIME), a flavor XAI
approach, can help provide contextual and actionable interpre-
tation of cyberattack detection.

Index Terms—Artificial Intelligence, Cybersecurity, Energy
System, Explainable Artificial Intelligence, Events and Anomaly
Detection, Energy System Security, etc.

I. INTRODUCTION

As energy systems evolve by integrating large-scale clean
energy generation, flexible energy demand, emerging en-
ergy storage technologies, advanced telecommunications, and
software–new cybersecurity risks emerge. There are ample
opportunities for adoption of AI technology to resolve cyber-
security challenges. However, the opacity of most AI solutions
can challenge users to understand and trust the model’s deci-
sions [1]. Lack of transparency and interpretability in AI-based
decision-making systems are critical hurdles in the adoption
of cybersecurity applications including risks of missing out
crucial operational contexts and safety implications. For in-
stance, if an automated cybersecurity intrusion/threat detection
system blocks an IP address, flags a particular communication
stream as compromised, or detects an instance of a data-
stream as anomalous/cyberattack without a clear rationale,
system administrators or operators will not be able to make
an informed decision whether the red flags/detected anomalies
are false positives, a minor threat, or a severe security breach.
This ambiguity or lack of interpretability can lead to improper
action execution, ranging from ignoring real threats to over-
reacting to benign activities. Therefore, trusting an opaque
and unexplainable decision-making system not only increases

the risk of operational difficulties, but also compromises the
overall security of the system.

For AI technologies to be widely adoptable and impactful
in managing these cyber risks will require trustworthy and
easily interpretable explanations for system operators. Adding
a layer of explainability will help to improve operators under-
standing of the cyberthreat detection mechanism, bolstering
trust and transparency of the model. The U.S. Department
of Energy initiated a number of programs and initiatives to
enhance cybersecurity and resilience of future autonomous
energy systems, as well as on the nation’s existing critical
energy infrastructure [2]. The Defense Advanced Research
Projects Agency (DARPA) initiated the XAI program in 2017
to enable a deployed machine learning or deep learning model
to explain its decisions to its user [3]. In parallel to the
Department of Energy and DARPA, a myriad of both federal
and private sector initiatives have emerged aiming to adopt
artificial intelligence and machine learning to address the
challenges in cybersecurity domain, such as NIST special
publications, technical notes, interpretations; and CISA [4],
[5].

II. PRELIMINARIES

XAI is a type of AI technique that helps an AI model to be
transparent and interpretable. In simpler words, the reasoning
behind the model’s decision can be easily understood by
general audiences without expert knowledge. According to
[6], “XAI encompasses Machine Learning (ML) or AI systems
for demystifying black models internals and/or for explaining
individual predictions.” XAI is a growing research domain
among AI researchers and engineers and is being deployed
in multidimensional research areas [7]–[10]. For instance, in
healthcare XAI is being adopted in many areas including med-
ical diagnosis, automate medical coding, monitoring patients
using wearable, risk assessment, personalized medicine and
decision making [11]. In aerospace, XAI is used for improving
decision making processes in critical situations [12].

A. XAI Taxonomy

It is important to learn about the XAI taxonomy to properly
deploy it in the domain-specific application. There are a few
ways to categorize the use of XAI, including based on the type
of explanation, application domain and the levels of trans-
parency [13]. XAI has previously been classified according
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to scope, methodology, usage, complexity, scoop, and models
[14], [15]. Based on the type of explanation, XAI can be
categorized into four categories, i.e. inherently interpretable
models, blended models, self-explaining models, and post hoc
explanations [13]. Based on the level of transparency, XAI can
be categorized into white-box, gray-box, and black-box model
[16]. Similarly, based on application domain XAI categories
includes medicine, recommendation systems, and natural lan-
guage processing. However, it is important to understand the
XAI taxonomy in domain like cybersecurity because of diverse
and evolving threat landscape, variety of machine learning
models being deployed in different cybersecurity solutions.
This knowledge on different categories of XAI will help
addressing model diversity and domain specific challenges in
cybersecurity research.

B. Advantages of XAI in Energy Systems Cybersecurity

XAI can have significant implications for the cyberse-
curity of the energy system, as it can bring transparency
and a human-level understanding about the inner workings
of complex machine/deep learning models deployed in the
decision-making and safety monitoring of energy systems.
XAI can facilitate fast and accurate threat/attack/anomaly de-
tection and incident response processes because it can provide
contextual explanations in a multidomain environment such
as cyber physical energy systems. Another advantage is that
XAI generates a human-understandable explanation, allowing
users, stakeholders, and asset owners of AI-based solution
providers to adopt these solution products with greater trust
and reliability. In addition, AI models can be protected against
attacks, errors, biases, and many other unforeseen threats
arising from the black-box nature of models by adopting XAI
techniques.

III. EXAMPLE DEPLOYMENT OF XAI FOR ENERGY
SYSTEM ATTACK DETECTION

In this section, we will present an example use case of
leveraging XAI for cybersecurity of an energy system with
photovoltaic systems.

A. Experimental Setup

Our study leverages data from a previous experiment con-
ducted under project “Distributed Energy Resource Manage-
ment System (DERMS) Based on Optimal Power Flow in
Real Time.” [17]. The foundation of this experiment was
a hardware-in-the-loop (HIL) co-simulation environment, de-
signed to develop and demonstrate a DERMS that can effec-
tively manage and optimize the integration of DERs into the
power grid. The experiment aims to insert a grid-edge DER
chip hosting a DERMS algorithm into the next generation
smart meters. The chip manages and communicates with
the hardware inverters to meet system level goals, including
voltage regulation and creating a virtual power plant. The
HIL setup emulates a node controlled by the DER chip and
a co-simulation representing the wider distribution network,
including communication and control elements [18]. This

experiment yielded a comprehensive dataset encompassing
system, sensor and operational parameters.

B. Dataset

The data set consists of 35 features with 7, 260 data points
for each of the features. This data set contains emulated
data for electrical measurements (real and reactive control
setpoints, forecast and measured power), co-simulation pa-
rameters (time delay, latency, and stepsize), and timestamps.
For ease of experimentation, we selected 6 relevant features,
including forecast power for Fronius inverter, forecast power
for SMA inverter, measured power from SMA inverter, control
setpoint for SMA inverter, measured power from Fronius
inverter, and control setpoint for Fronius inverter.

C. Threat Scenario

We assume a hypothetical threat scenario in which an
attacker targeting the photovoltaic plant. We inject anomaly
attacks into the selected data streams. Two types of anomalies
are injected (i.e., point anomalies and missing values) as
shown in Algorithm 1. Point anomaly, also referred as global
anomaly occurs when an instance of the dataset is considered
anomalous with respect to or significantly different from the
rest of the dataset [19]. On the other hand, a missing value
attack pertains to the deliberate act of inserting or substituting
particular data points with null or undefined values, mimicking
the lack of data in situations where values are usually present.
This type of attack has the potential to distort analyses, leave
records unfinished, and potentially undermine the credibility of
decisions based on data. In the context of adversarial attacks on
datasets, a missing value attack can be compared to a variant
of data vandalism, intentionally producing lack of information
to impede its effectiveness and trustworthiness.

We replace the selected data point with manipulated values
or erases the value by replacing it with NaN. Now, the modified
datastream if sent to the control center, will result in an
inaccurate decision by the system operator and can result in
adverse impacts on system stability, equipment damage, or risk
to personnel safety.

D. Proposed Solution Approach

Figure 1 represents the proposed workflow for adopting XAI
to detect cyberattacks. The solution approach takes historical
measurements and manipulated data streams to train and test
the anomaly detection algorithm. In this experiment, we train
an XGBoost classifier to detect different types of anomalies
and classify them. In the end, we use Local Interpretable
Model-agnostic Explanations (LIME) to explain different de-
cisions of the model from the testing data, and will be
discussed further in the experimental result section. LIME is a
method of explanation with the aim to identify an interpretable
model over interpretable representation that is locally faithful
to predictions of any classifier models [20]. This technique
is leveraged to explain the predictive model (XGBoost, in
this study) since LIME can analyze specific instance and
explains how a specific instance can contribute to the model’s
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Fig. 1: A comprehensive workflow that delineates the progression from data generation and collection to attacks, their subsequent
detection, and the explanatory procedures that elucidate the entire process.

Algorithm 1 Injecting point anomalies and missing value
attacks
Require: Original Data
Ensure: Anomaly Data

0: Assign Total Anomaly Count
0: Point Anomaly Indices ← empty list
0: Missing Value Indices ← empty list
{Inject Point Anomaly attack.}

0: for i← 1 to Total Anomaly Count do
0: Select random row, col
0: Modify value at row, col (e.g., value × 5)
0: Append (row, col) to Point Anomaly Indices
0: end for
{Inject Missing Value attack.}

0: for i← 1 to Total Anomaly Count do
0: Select random row, col
0: Set value at row, col to NaN
0: Append (row, col) to Missing Value Indices
0: end for
0: Add label column to Anomaly Data indicating anomaly

type
0: Plot Anomaly Data
0: return Anomaly Data =0

prediction, rather than giving a generic explanation as to why
this model is behaving in a particular way [21].

E. Experimental Results

In this subsection, we discuss the experimental results for
anomaly detection, classification, and explanation of attack on
the photovoltaic system data set.

Table I represents the performance of the XGBoost method
to classify the attacks to the photovoltaic system data. We can

TABLE I: Classification report for XGBoost classifying at-
tacks and anomalies in photovoltaic system dataset.

Precision Recall F1-score Support

0 (Normal) 1.00 0.98 0.99 84
1 (Point Anomaly Attack) 1.00 1.00 1.00 1284
2 (Missing Value Attack) 0.99 1.00 0.99 84

Accuracy 1.00 1452
Macro Avg 1.00 0.99 0.99 1452

Weighted Avg 1.00 1.00 1.00 1452

see that the adopted method successfully detects and classifies
the point anomalies, missing values, and normal datapoints
with high accuracy. Within our analysis, the classification
report generated by the XGBoost model demonstrates the
performance metrics across three distinct classes: normal,
point anomaly attacks, and missing value attacks. Precision,
indicates the accuracy of positive predictions, showing the
majority of the instances labeled within the classes are cor-
rectly predicted. Recall represents the model’s adeptness at
classifying the majority of genuine instances within a class.
This minimizes the risk of overlooking crucial datapoints. The
F1-score acts as a balanced representative of both precision
and recall. This metric indicates an equilibrium between
classifying true positives and avoiding false alarms. If all
these metrics across the classes are uniformly high, it assures
the model’s commendable capability to distinguish between
normal data and the two attack types. However, these metrics,
while representing performance of the XGBoost model, do not
clarify the reasoning behind the model’s decisions.

Figure 2 represents the confusion matrix for the attack on
the photovoltaic system dataset with proper representation of
true and predicted labeling. The presented confusion matrix
details the performance of our XGBoost classifier across
three distinct classes: 0, 1, and 2, representing normal, point
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Fig. 2: Confusion matrix.

anomaly attacks, and missing value attacks, respectively. Each
row of the matrix represents the true class instances, in
contrast against the predicted classes in the columns. While
off-diagonal cells, with various color intensities, demonstrate
misclassifications, the diagonal cells’ strong color gradient
represents true predictions for each class. A higher number
of missclassified instances is indicated by more intense color.
Beyond the immediate numerical insights on true and pre-
dicted classes, the matrix arises a deeper question: Why do
specific misclassifications manifest, and what intricacies in the
XGBoost model drive them? Figure 3 represents the Receiver
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Fig. 3: Receiver Operating Characteristics curve presenting
the performance of the XGBoost algorithm detecting and
classifying anomalies in the PV system dataset.

Operating Characteristics curve for the XGBoost model de-
tecting and classifying anomalies. Impressively, it reaches an
Area Under the Curve (AUC) value of 1 and indicates the
model’s accuracy in differentiating between anomalous and
non-anomalous instances. While such a high AUC score might
often be greeted with enthusiasm, it also warrants caution; it’s
uncommon in real-world scenarios and may suggest potential
overfitting or data leakage. Regardless of the high perfor-
mance, a critical aspect remains: understanding the decision-
making process of the complex XGBoost model.

As mentioned earlier, we used LIME to interpret the XG-
Boost classifier as a predictive model to differentiate between
normal and anomalous data points. LIME generates a surrogate
model around a particular instance to understand the complex
behavior of the model’s black-box nature. A surrogate model is
an approximation method that mimics the behavior of a more
complex model or system. It is often used when the original
model is too computationally expensive or time-consuming
to evaluate directly, or when the original model is a black-
box and difficult to interpret. To assess a specific instance,
LIME perturbs the instance’s feature space and looks for the
variations in the predictions of the model concerned (here,
XGBoost is the model). In this experiment, we applied LIME
to six selected features, which can help us visually understand
and identify a particular feature, which is crucial in classifying
a particular instance as attack (anomalous) or normal.

Fig. 4: Local explanations using LIME for photovoltaic dataset
for 47th instance.

Fig. 5: Local explanations using LIME for photovoltaic dataset
for 31st instance.

In Figure 4, we observe that, among the features assessed,
one feature (PV Pmax forecast sma) strongly stands out,
being represented entirely in red for a particular instance. This
results allows us to infer that this particular feature influenced
the XGBoost model strongly in classifying this particular
instance as anomalous data point because of its high absolute
weight in the LIME explanation. On the other hand, the
three features followed by PV Pmax forecast sma, are in the
green zone contributed toward a prediction of normalcy, which
means that, in this particular instance it can be inferred that
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these three features were not manipulated during the attack.
In Figure 5, we see a shift in the influence of the features on
the model’s predictive decision. Among the features evaluated,
five are represented in green (contributing toward deciding
normalcy) and one was represented in red (contributing to-
ward deciding as an attack). Thus, we observe an instance-
specific explanation, resulting in enhanced interpretability of
the complex XGBoost model, leading toward building trust in
the model’s decision to detect anomalous datapoint as a result
of a cyberattack.

IV. LIMITATIONS, CHALLENGES, VULNERABILITIES

Even though XAI is increasingly becoming a new the fron-
tier of AI systems’ adaptability, a wide variety of limitations,
challenges, and vulnerabilities pose significant risks, requiring
further extensive research on XAI for energy system cyberse-
curity. The complexity of explanations, the trade-off between
accuracy and interpretability, time and resource-intensive com-
putation, data privacy concerns, adversarial attacks, standard-
ization, regulation, etc. are a few limitations and challenges of
adaptability of XAI for cybersecurity deployment. In addition,
the explanation method needs to capture the physics or com-
plexity of the energy system and learn the interdependency
to properly explain the behavior of the models. Additionally,
the explainability is vulnerable to cyberattacks by malicious
actors, including model manipulation, information leakage,
model poisoning, model evasion, model stealing, and many
other machine learning attacks.

V. CONCLUSION AND FUTURE WORK

Complexities and uncertainties of modern power systems
are leading to the deployment of complex machine learn-
ing/deep learning models to address challenges in cyberse-
curity. In this article, we have shown the challenges to lever-
aging machine learning based cybersecurity approaches and
the importance of explainability to address these challenges.
Leveraging the usecase of a cyberattack on a PV plant we
demonstrated how LIME based explanations can help interpret
the results of the XGBoost based attack detection technique.
While this paper provides an initial proof of concept use case
for XAI in energy system cybersecurity, in the future work,
we aim to expand on this work by investigating different types
of explanations including physics based and counterfactual
explanations. By providing interpretable results this work
aims to accelerate the adoption of machine learning based
technologies in the field and help establish and maintain trust
in these technologies.
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