Global Progress Toward Renewable Electricity: Tracking the Role of Solar (Version 3)

Nancy M. Haegel^(D), *Member*, *IEEE*, and Sarah R. Kurtz^(D), *Fellow*, *IEEE*

Abstract-2022 was a milestone year for photovoltaics (PV), with cumulative installed global capacity exceeding 1 TW. PV represented 56% of newly installed global electricity generating capacity for 2022, the second year in a row that this metric exceeded 50%. The combined contributions of nonhydro renewable electricity generation (solar, wind, tidal, geothermal, and biomass) was comparable to that of hydropower for the first time in history. However, the total combination of carbon-free generation sources (hydro, nuclear, and renewables) stayed constant at \sim 38% of total electricity, with the annual growth in overall generation ($\sim 2\%$) balancing the large fractional growth in solar (25%) and wind (14%). Following its initial publication in 2021 with 1990-2020 data, this annual article will continue to collect information from multiple sources and present it systematically as a convenient reference for IEEE JPV readers. This year, for the first time, we present data on the growth of storage capacity. We find that growth of stationary battery storage now exceeds growth of pumped hydropower storage. That same annual investment in new stationary batteries, however, is small compared to the growth of battery storage in electric vehicles.

Index Terms—Net expansions, renewable energy sources, solar energy, solar power generation.

I. INTRODUCTION

E LECTRICITY generation from renewable energy sources continued to grow in magnitude in 2022, and photovoltaics (PV) continued its growth both in magnitude and fractional contribution. Total electricity from all sources consumed globally in 2022 was \sim 29 170 TWh, representing \sim 17.2% of total energy consumption similar to 2020–2021 [1]. The share of renewable power generation (hydro and non-hydro renewables, mainly wind and PV) remained at \sim 30%. Newly installed generating capacity in 2022 for hydro, PV, and wind, was 82% of the global total, as shown in Fig. 2(c), with PV at more than 50% of new installed generating capacity for the second year in a row. The 2022 BP Statistical Review of World Energy [1] reported that "wind and solar reached a record high of 12% share of power generation."

Manuscript received 21 August 2023; accepted 22 August 2023. Date of publication 8 September 2023; date of current version 7 November 2023. This work was supported by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Grant DE-AC36-08GO28308. (*Corresponding author: Sarah R. Kurtz.*)

Nancy M. Haegel is with the National Renewable Energy Laboratory, Golden, CO 80401 USA (e-mail: nancy.haegel@nrel.gov).

Sarah R. Kurtz is with the University of California Merced, Merced, CA 95343 USA (e-mail: skurtz@ucmerced.edu).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/JPHOTOV.2023.3309922.

Digital Object Identifier 10.1109/JPHOTOV.2023.3309922

Fig. 1. (a) Annual electricity generation and (b) electricity generating capacity. Data are tabulated in Tables I and II with lines for the bolded data and open circles for the other sources.

PV is now the most rapidly growing generation technology in the energy transition. Reports based on estimated deployment rates suggesting that the $TW_{\rm DC}$ installed global capacity milestone had been achieved first appeared in March 2022 [2], and the $1 TW_{\rm AC}$ milestone was also reached by the year's end. The percentage of global electricity generated by PV, which we reported as 3.6% for 2021, was 4.5% for 2022, based on the ratio of gross

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 2. (a) Pie charts showing global share of electricity generation by technology for the indicated years. Data taken from Tables I and VIII and summarized in Tables III–VII (see appendix for details). The "other" category includes biomass and geothermal. (b). Pie charts showing global share of electricity-generation capacity by technology for the indicated years. Data taken from Tables III–VII (see appendix for details). (c). Pie charts showing global share of net expansions of electricity-generation capacity by technology for the indicated years. Data taken from Tables III–VII (see appendix for details). (c). Pie charts showing global share of net expansions of electricity-generation capacity by technology for the indicated years. Data taken from Tables III–VII (see appendix for details).

electricity generation from solar to gross electricity generation from all sources reported in [1], a remarkable 25% fractional growth. Global 2022 electricity generation from wind and solar combined (\sim 3430 TWh) was greater than electricity generation from nuclear power plants (\sim 2670 TWh), up a significant 18% from the previous year (\sim 2910 TWh). Non-CO₂ emitting generation sources (nuclear, hydro, and combined renewables) contributed 38% of the world's electricity in 2022, similar to 2021.

The goal of this annual article is to present data, in consistent graphical and tabular form, on the global progress toward renewable energy. As discussed in the initial 2021 publication [3], multiple institutions provide global energy data on a yearly basis. These organizations have varying missions and varying reporting times for annual updates. Different institutions also vary in their use of original sources and methodologies. Some may change methodologies over time, while others share reporting data. Assembling this collection of frequently cited sources in one place illustrates both major trends and the nature and degree of variations within the source group.

Here, we update the following three sets of graphs: annual generation by broad fuel source for global electricity (see Section II); yearly generation and newly installed capacity for specific fuel sources with a focus on renewables (see Section III); and generation and capacity over time with a more detailed breakout of fuel sources including PV (see Section IV). This year we also begin to track energy storage (see Section V). Data are included from six primary sources: the Energy Institute Statistical Review of World Energy, published in 2023 for the first time by the Energy Institute [1], taking over this respected resource after 71 years of publication by BP; the international data presented by the U.S. Energy Information Administration (EIA) [4]; the World Nuclear Association [5]; the International Energy Agency (IEA) [6]; the International Renewable Energy Agency (IRENA) [7]; and REN21 [8]. Short summaries of the mission and history for the six original organizations were provided in Appendix of the 2021 publication [3]. The Energy Institute is a professional membership organization, founded in 2003 (with precursor organizations dating back over 100 years), and home to a range of energy initiatives.

Category	Fo	ssil		Nuclear			Hydro		Non-hy	dro RE	To	tal
Source	BP/EI	EIA	BP/EI	EIA	WNA	BP/EI	EIA	REN21	BP/EI	EIA	BP/EI	EIA
Year												
1985	6286	6043	1489	1426	1328	1979	1952		79	55	9886	9464
1986	6440	6104	1595	1519	1440	2006	1992		86	60	10181	9660
1987	6758	6399	1735	1655	1600	2033	1996		92	66	10671	10100
1988	6998	6614	1891	1796	1727	2098	2072		95	69	11141	10534
1989	7456	7054	1945	1845	1832	2088	2060		108	118	11658	11062
1990	7615	7141	2001	1910	1890	2159	2144		121	134	11961	11310
1991	7722	7244	2096	1998	1988	2209	2183		127	145	12222	11551
1992	7807	7288	2112	2017	2009	2209	2189		136	157	12336	11633
1993	7858	7367	2185	2083	2073	2342	2314		142	163	12600	11906
1994	8119	7568	2226	2127	2111	2356	2337		148	171	12924	12183
1995	8335	7804	2323	2211	2191	2484	2454		156	179	13382	12627
1996	8627	8066	2407	2293	2269	2517	2490		161	185	13797	13011
1997	8911	8347	2390	2273	2264	2561	2545		174	200	14129	13340
1998	9214	8621	2431	2317	2298	2581	2552		185	212	14511	13678
1999	9498	8831	2524	2394	2379	2601	2589		199	228	14926	14016
2000	10009	9346	2581	2451	2444	2647	2622		217	243	15564	14635
2001	10232	9572	2654	2518	2511	2579	2567		232	258	15800	14887
2002	10669	9993	2696	2547	2553	2626	2611		261	288	16358	15407
2003	11273	10518	2641	2519	2505	2623	2616		284	311	16935	15934
2004	11721	10979	2761	2620	2616	2817	2787		325	348	17737	16705
2005	12295	11460	2769	2627	2626	2911	2907		364	384	18464	17348
2006	12808	11976	2803	2661	2661	3022	3008		411	429	19167	18045
2007	13643	12782	2746	2610	2608	3073	3036		475	488	20059	18887
2008	13779	12870	2738	2599	2598	3252	3173		550	574	20436	19191
2009	13581	12701	2699	2562	2558	3246	3230		637	666	20279	19134
2010	14489	13713	2768	2629	2630	3430	3409		759	787	21590	20509
2011	15084	14326	2652	2518	2518	3493	3471		904	940	22278	21226
2012	15514	14695	2471	2347	2346	3642	3630		1062	1101	22833	21745
2013	15804	15036	2490	2364	2359	3788	3761		1239	1307	23468	22440
2014	16085	15155	2541	2420	2410	3889	3831		1406	1473	24074	22849
2015	16069	15356	2575	2448	2441	3880	3845	3940	1631	1673	24309	23293
2016	16259	15610	2614	2489	2477	4014	3983	4102	1844	1926	24952	23971
2017	16587	15948	2637	2517	2503	4071	4028	4185	2176	2238	25699	24691
2018	17129	16304	2700	2570	2563	4190	4161	4210	2482	2521	26746	25518
2019	17032	16251	2796	2669	2657	4243	4184	4306	2794	2821	27100	25887
2020	16548	15835	2689	2596	2553	4359	4323	4370	3151	3169	26987	25884
2021	17510	16833	2803	2698	2653	4289	4225	4218	3665	3577	28520	27295
2022	17677		2679		2545	4334		4429	4204		29165	

 TABLE I

 GLOBAL ELECTRICITY GENERATION BY TECHNOLOGY CATEGORY (TWH FOR INDICATED YEAR)

Source data for Table I can be found at:

https://www.energyinst.org/statistical-review

https://www.eia.gov/international/data/world/electricity/electricity-generation

https://www.world-nuclear.org/information-library/facts-and-figs/nuclear-generation-by-country.aspx

https://www.ren21.net/reports/global-status-report/

II. TRACKING PROGRESS TOWARD RENEWABLE ELECTRICITY

Fig. 1 shows yearly global electricity generation and generating capacity, from 1990 to 2022. Source data are presented in Tables I and II, respectively. Data from the Statistical Review of World Energy, 72nd edition [1], are indicated in Fig. 1(a) by solid lines, with open circles used to mark other data sources as indicated. For Fig. 1(b), solid lines represent the data in bold in Table II, with open circles used to mark the other data sources. Data source variations, of interest for detailed understanding and analysis, are seen in the tabulated data, but are not significant when plotted on the logarithmic scale over time.

Electricity generation [see Fig. 1(a)], a measure of energy provided, is presented in TWh, where 1 TWh = 3.6×10^{15} J. Installed nameplate capacity [see Fig. 1(b)] is the rated output of a generator or other electric power production equipment under specific conditions designated by the manufacturer. The "capacity factor" is the ratio of the actual output of a system or collection of systems under true operating conditions (reflecting, e.g., variable resource, facility downtime, performance variations, large scale climate effects, etc.) and the output of that electricity source operating continuously at its commercial product or plant rating. Capacity factors for electricity generating technologies vary significantly, both within a technology depending on the performance, and between technologies as determined by the physics of the particular energy conversion process and the variability of the electricity demand. Actual electricity generation [see Fig. 1(a)] is the most relevant information for understanding and tracking the evolution of the energy system in terms of contributing fuel sources. Installed capacity [see Fig. 1(b)] allows one to track the status of global installations and new technology investment.

Different organizations report source data using different fuel sub-categories. In Fig. 1, the Statistical Review values for fossil generation and capacity are determined by summing component data for oil, gas, coal and "other" (where "other" is pumped hydro, non-renewable waste and statistical discrepancies) to obtain a total fossil value. Nonhydro renewable totals are calculated by subtracting the sum of total fossil, nuclear, and hydro from the total electricity value. This addresses the fact that individual values for certain non-hydro renewable components

Category	Fossil	Nu	clear	Hy	dro	Non-hydro RE	Total
Source	EIA	EIA	WNA	EIA	REN21	EIA	EIA
Year							
1985	1566	253		538			2393
1986	1597	278		552			2466
1987	1626	299		569			2537
1988	1668	312		583			2605
1989	1727	320		573			2686
1990	1764	325		566			2736
1991	1792	325		570			2773
1992	1832	329		578			2830
1993	1877	336		591			2899
1994	1925	339		604			2968
1995	1962	342		616			3022
1996	2022	349		626			3100
1997	2074	349		640			3165
1998	2117	346		650			3218
1999	2168	349		666			3291
2000	2279	352		677		61	3481
2001	2361	355		687		70	3587
2002	2476	360		702		79	3732
2003	2578	362		720		89	3866
2004	2682	368		738		101	4008
2005	2773	370		750		121	4137
2006	2925	372		773		141	4337
2007	3040	372		799		164	4508
2008	3146	372		829		197	4679
2009	3266	372		860		246	4884
2010	3413	376		888		299	5119
2011	3544	369		914		377	5349
2012	3662	373		942		459	5585
2013	3775	372		987		536	5820
2014	3905	333	382	1024	1036	636	6051
2015	4002	344	391	1056	1071	756	6314
2016	4135	352	392	1084	1095	888	6623
2017	4220	358	400	1106	1112	1038	6889
2018	4328	370	392	1121	1135	1189	7175
2019	4379	370	392	1137	1150	1354	7407
2020	4433	372	394	1160	1168	1600	7735
2021	4436	376	389	1186	1197	1841	8013
2022			394		1220		

 TABLE II

 GLOBAL ELECTRICITY GENERATION CAPACITY BY TECHNOLOGY CATEGORY (GW)

Source data for Table II can be found at:

https://www.eia.gov/international/data/world/electricity/electricity-capacity

https://world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-archive/world-nuclear-power-reactors-anduranium-

requ-(14).aspx for the latest number https://www.ren21.net/reports/global-status-report/

(PV, wind, concentrating solar power, geothermal, etc.) were not uniformly reported in earlier years, though that situation has evolved rapidly. The EIA values are taken directly from the website [4] by selecting the desired categories.

Several trends are clearly illustrated in Fig. 1. As noted, electricity generation from combined non-hydro renewables in 2022 was almost the same as electricity generated from hydropower worldwide. Combined generation from nuclear power plants decreased slightly. Finally, as previously discussed [3], continued projected growth in non-hydro renewables, specifically PV and wind, compared to the growth rate in total electricity, suggests major potential for future electrification of other energy sectors, with corresponding benefits to overall efficiency and decarbonization.

III. TRACKING THE RATE OF CHANGE

In Fig. 2(a)–(c), we plot global data for the past five years (2018–2022) for: fraction of electricity generation by source; fraction of current electricity generating capacity; and fraction

of net expansions of electricity generating capacity for the given year. Data for fossil, nuclear, and hydro are drawn from Table I and are summarized by year in Tables III -VII. Data for wind, solar and other technologies are drawn from Table VIII and also summarized in Tables III-VII, with the electricity generation data in Fig. 2(a) taken from Tables I and VIII and the electricitygeneration capacity data in Fig. 2(b) taken from Tables II and IX. The net expansions of the electricity-generating capacity data in Fig. 2(c) are obtained by subtracting the data in Fig. 2(b) for each year from the following year. The choice of data sets to use for Fig. 2 and tabulated in Tables III–VII is detailed in Appendix. Some values in Tables III–VII are not directly available and were calculated from multiple source data as described in Appendix. Data sources used for the most recent year pie charts (2022) are driven in part by the time frames in which various sources release new data.

The pie charts illustrate a major ongoing theme: the global electricity system continues to be dominated by fossil energy [see Fig. 2(a), but is undergoing an increasingly rapid rate of change [see Fig. 2(c)]. We plot electricity generation, generating

Technology	Electricity (TWh)	Electricity (%)	Capacity (GW)	Capacity (%)	Net expansion (GW)	Net expansion (%)
Fossil	17,129	64.8%	4,328	61.4%	159	28.9%
Nuclear	2,700	10.2%	392	5.6%	34	6.2%
Hydro	4,190	15.8%	1,135	16.1%	44	8.0%
Wind	1,270	4.8%	564	8.0%	107	19.4%
Solar	576	2.2%	483	6.9%	190	34.5%
Other*	636	2.5%	144	2.0%	17	3.1%
Total	26,501	100%	7,046	100%	551	100%

 $\begin{tabular}{l} TABLE III \\ GLOBAL 2018 \begin{tabular}{l} GLOBAL 2018 \begin{tabular}{l} TABLE III \\ GLOBAL 2018 \begin{tabular}{l} TABLE III \\ FIG. 2 \begin{tabular}{l} TABLE II$

*Biomass and Geothermal

 TABLE IV

 GLOBAL 2019 DATA SUMMARY FOR CREATING PIE CHARTS IN FIG. 2

Technology	Electricity (TWh)	Electricity (%)	Capacity (GW)	Capacity (%)	Net expansion (GW)	Net expansion (%)
Fossil	17,032	63.4%	4,379	60.2%	51	22.0%
Nuclear	2,796	10.4%	392	5.4%	0	0.0%
Hydro	4,243	15.8%	1,150	15.8%	15	6.5%
Wind	1,421	5.3%	621	8.5%	57	24.6%
Solar	705	2.6%	585	8.0%	102	44.0%
Other*	668	2.5%	151	2.1%	7	3.0%
Total	26,865	100%	7,278	100%	232	100%

*Biomass and Geothermal

Technology	Electricity (TWh)	Electricity (%)	Capacity (GW)	Capacity (%)	Net expansion (GW)	Net expansion (%)
Fossil	16,548	61.9%	4,433	58.5%	54	17.6%
Nuclear	2,689	10.1%	394	5.2%	2	0.7%
Hydro	4,359	16.3%	1,168	15.4%	18	5.9%
Wind	1,594	6.0%	732	9.7%	111	36.3%
Solar	854	3.2%	710	9.4%	125	40.8%
Other*	703	2.6%	147	1.9%	-4	-1.3%
Total	26,747	100%	7,584	100%	323	100%

*Biomass and Geothermal

TABLE VI GLOBAL 2021 DATA SUMMARY FOR CREATING PIE CHARTS IN FIG. $\ensuremath{2}$

Technology	Electricity (TWh)	Electricity (%)	Capacity (GW)	Capacity (%)	Net expansion (GW)	Net expansion (%)
Fossil	17,510	61.9%	4,436	56.5%	3	1.1%
Nuclear	2,803	9.9%	389	5.0%	-5	-1.9%
Hydro	4,289	15.2%	1,195	15.2%	27	10.3%
Wind	1,854	6.6%	825	10.5%	93	35.6%
Solar	1,059	3.7%	843	10.7%	133	51.0%
Other*	751	2.7%	157	2.0%	10	3.8%
Total	28,266	100%	7,845	100%	261	100%

*Biomass and Geothermal

TABLE VII GLOBAL 2022 DATA SUMMARY FOR CREATING PIE CHARTS IN FIG. 2

Technology	Electricity (TWh)	Electricity (%)	Capacity (GW)	Capacity (%)	Net expansion (GW)	Net expansion (%)
Fossil	17,677	61.2%	4,490**	54.6%**	54**	14.4%
Nuclear	2,679	9.3%	394	4.8%	5	1.3%
Hydro	4,334	15.0%	1,219	14.8%	24	6.4%
Wind	2,105	7.3%	899	10.9%	74	19.8%
Solar	1,323	4.6%	1053	12.8%	210	56.1%
Other*	777	2.7%	164	2.0%	7	1.9%
Total	28,895	100%	8,219	100%	340	100%

*Biomass and Geothermal

**Estimated

Fuel	Coal	Gas	Oil	Wi	ind	Solar	(all))	Sola	r (PV)	Bior	nass	Geo	thermal
Source	BP/EI	BP/EI	BP/EI	BP/EI	EIA	BP/EI	EIA	IEA	IRENA	EIA	REN21	EIA	REN21
Year													
1985	3748.4	1426.3	1110.8	0.1	0.1		0.0			31.7		22.4	
1986	3839.0	1432.7	1168.3	0.1	0.1		0.0			34.3		25.0	
1987	4058.1	1516.5	1183.2	0.2	0.2		0.0			38.2		26.9	
1988	4200.7	1540.9	1256.6	0.3	0.3		0.0			40.4		27.2	
1989	4377.0	1728.5	1350.2	2.6	2.6	0.3	0.3			81.7		32.8	
1990	4460.2	1789.7	1364.7	3.6	3.6	0.4	0.4			93.9		35.7	
1991	4557.1	1815.2	1349.9	4.1	4.1	0.5	0.5	0.09		102.7		36.9	
1992	4649.9	1829.4	1328.2	4.7	4.6	0.5	0.5	0.10		113.3		38.1	
1993	4727.9	1863.8	1266.6	5.7	5.6	0.6	0.6	0.13		116.7		39.0	
1994	4891.9	1925.1	1302.1	7.1	7.3	0.6	0.7	0.15		123.0		38.9	
1995	5038.9	2036.4	1259.9	8.3	7.9	0.6	0.7	0.17		131.5		38.1	
1996	5279.7	2101.6	1245.7	9.2	9.3	0.7	0.8	0.20		133.8		40.6	
1997	5395.6	2271.1	1244.6	12.0	12.1	0.7	0.8	0.23		143.9		42.0	
1998	5511.3	2408.5	1294.6	15.9	16.1	0.8	0.9	0.28		149.0		44.6	
1999	5630.9	2600.7	1266.7	21.2	21.3	0.9	1.0	0.35		156.4		47.7	
2000	5991.9	2772.5	1244.8	31.4	31.3	1.1	1.2	0.6		158.7		51.4	
2001	6071.6	2950.9	1209.4	38.4	38.4	1.4	1.5	0.8		166.8		51.0	
2002	6323.0	3152.0	1193.6	52.4	52.7	1.8	1.9	1.1		180.9		51.8	
2003	6768.4	3302.7	1201.4	63.3	64.5	2.3	2.3	1.4		190.3		53.5	
2004	6989.4	3551.7	1179.7	85.6	84.6	3.0	3.0	1.8		203.8		55.7	
2005	7361.1	3741.5	1192.8	104.6	104.2	4.2	4.2	2.5		218.8		56.4	
2006	7763.0	3959.9	1084.7	133.5	133.4	5.8	5.7	3.7		231.5		57.8	
2007	8253.8	4284.5	1104.5	171.5	171.3	7.8	7.7	5.3		248.2		60.4	
2008	8270.2	4428.0	1081.1	221.4	221.4	12.7	12.6	7.3	11.9	276.8		63.1	
2009	8118.1	4460.6	1001.8	276.8	277.8	21.1	21.0	11.7	20.1	301.1		65.1	
2010	8639.9	4883.8	965.4	346.4	339.4	33.9	33.6	32.0	32.1	348.1		64.8	
2011	9083.9	4937.6	1062.3	440.7	435.1	65.6	66.3	63.7	62.4	372.0		65.8	
2012	9114.4	5256.8	1142.3	530.5	521.5	101.5	104.2	98.8	96.3	407.1		67.0	
2013	9583.6	5136.1	1084	635.5	645.1	138.6	146.7	139.4	131.4	445.6		68.4	
2014	9761.9	5293.9	1029.6	705.9	717.3	197.3	202.2	184.5	183.7	479.7	429	73.2	
2015	9414.4	5636.0	1018.9	831.4	827.4	256.0	260.2	251	242.2	507.6	464	77.1	75
2016	9435.7	5880.6	942.8	962.1	957.3	328.4	341.5	329	314.6	547.2	504	79.2	78.5
2017	9722.0	5995.8	869.0	1141.5	1127.1	445.5	445.1	443	425.3	582.6	555	81.7	85
2018	10102.5	6259.7	767.1	1269.5	1263.5	575.8	569.8	589	549.7	601.2	581	85.3	89.3
2019	9871.5	6452.7	707.9	1420.6	1399.1	705.2	701.0	679	676.2	632.2	591	87.5	95
2020	9472.2	6418.3	657.8	1594.0	1590.5	854.4	849.1	826	830.7	637.5	602	90.7	97
2021	10211.1	6565.6	733.5	1854.1	1807.8	1059.3	1036.2	1026	1034	640.0	656	91.8	99
2022	10317.2	6631.4	728.6	2104.8		1322.6		1293			672		

TABLE VIII GLOBAL ELECTRICITY GENERATION BY FUEL (TWH FOR INDICATED YEAR); TOTAL, NUCLEAR, AND HYDRO ARE TABULATED IN TABLE I(A)

Source data for Table VIII can be found at:

https://www.energyinst.org/statistical-review

https://www.eia.gov/international/data/world/electricity/electricity-generation https://www.ren21.net/reports/global-status-report/

https://public.tableau.com/views/IRENARETimeSeries/Charts?:embed=y&:showVizHome = no&publish = yes&:toolbar=no

https://www.iea.org/energy-system/renewables/solar-pv

capacity and net capacity expansions (new installation minus any decommissioning) to highlight both where we stand and the new installations that will drive the future electricity generating mix. Nonfossil generation sources (solar, wind, hydro, geothermal, and nuclear) constitute more than 80% of capacity expansions for the past three years. PV and wind combined are more than 75% of capacity expansion each year over the same period.

One interesting thing to note in Fig. 2(c) is that, based on the updates in the international installed capacity numbers from EIA for 2020 and 2021, the "new installations" fraction of fossilbased generation sources for 2021 is very small—an increase of only 3 GW (from 4433 GW to 4436 GW), though other sources suggest this will rebound for 2022. It will be interesting to monitor if the EIA 2021 value for fossil generation capacity increases as the data mature. This is a common pattern and would increase fossil fractional growth for that year. However, it may also be the case that new construction, for both coal and natural gas facilities, was delayed in 2021, due to the pandemic and supply chain issues. This would suggest that the reported all-time high in demand for coal-fired electricity (10 440 TWh, 36% of total electricity) in 2022 as reported by IEA [9] was accomplished via increasing utilization of existing assets. Finally, although we are not tracking these categories separately, it is interesting to note that five tidal stream devices (2.7 MW) and six wave power devices (165 kW) were deployed in 2022 [8]. While these numbers are negligible on the overall scale, they do illustrate the growing diversity of renewable energy sources.

IV. TRACKING THE ROLE OF PV

Fig. 3 shows yearly global electricity generation and generating capacity, from 1990 to 2022, but now breaking out the contributing technologies to the "nonhydro renewables" from Fig. 1. Source data are presented in Table VIII and IX, respectively. In Fig. 3(a), the solid lines again represent data from [1], with open circles used to mark other data sources. For Fig. 3(b), solid lines represent the data in bold in Table IX, with open circles used to mark the other data sources. We note again that source variations, although of interest for detailed understanding and analysis, are relatively minor when assessing major trends over the time frames of interest for the global energy transformation.

According to [1], electricity generated globally from PV in 2022 was 1322.6 TWh, continuing its rapid growth trajectory.

 TABLE IX

 GLOBAL ELECTRICITY-GENERATING CAPACITY BY TECHNOLOGY (GW). TOTAL, NUCLEAR, AND HYDRO ARE TABULATED IN TABLE I(B)

Fuel		Wind		Solar (all)		Solar	(PV)		Bio	mass	Geothermal		ıal
Source	BP/EI	EIA	REN21	EIA	IRENA	BP/EI	REN21	IEA	EIA	REN21	BP/EI	EIA	REN21
	(AC)	(AC)	(AC)	(AC)	(AC)	(AC)	(DC)	(DC)	(AC)	(AC)	(AC)	(AC)	(AC)
Year													
1985													
1986													
1987													
1988													
1989													
1990											5.9		
1991													
1992								0.05					
1993								0.065					
1994								0.09					
1995	4.8							0.11			6.8		
1996	6.1					0.2		0.15					
1997	7.6					0.2		0.2					
1998	9.9					0.3		0.27					
1999	13.4					0.4		0.37					
2000	16.9	17.3		1.0	0.8	0.8		0.57	33.8		8.2	8.4	
2001	24	23.9		1.2	1.1	1.1		0.79	36.3		7.9	8.1	
2002	30.7	30.8		1.5	1.4	1.4		1.2	38.1		8.1	8.2	
2003	38.7	38.5		2.0	2.0	2.0		1.6	39.5		8.2	8.3	
2004	47.7	47.0		3.0	3.1	3.1		2.7	42.3		8.2	8.3	
2005	58.4	59.2		4.4	4.5	4.5		4.1	48.4		8.6	8.7	
2006	73.2	73.0		5.8	6.1	6.1		5.9	52.6		8.8	8.9	
2007	91.6	91.6		8.2	8.5	8.5		8.0	55.2		9.0	9.1	
2008	115.6	115.2		14.1	14.7	14.7		14.3	57.8		9.3	9.4	
2009	150.1	150.0		21.9	22.8	22.8		22.4	64.2		9.8	9.9	
2010	181.1	180.4		38.3	40.3	41.6		39.3	70.1		10.0	10.1	
2011	220.2	220.0		69.8	72.2	73.9		70.4	76.4		10.1	10.0	
2012	267.3	267.9		98.6	101.6	104.2		100.0	81.4		10.5	10.7	
2013	300	301.5		134.4	136.6	140.5		137.6	88.7		10.7	11.0	
2014	349.5	349.3		179.9	176.1	180.7		177.6	95.2		11.2	11.4	
2015	416.3	415.8	433	227.7	224.1	228.9		228.0	100.3		11.8	12.1	
2016	467	466.4	487	299.8	296.1	301.1	303	304.7	109.2	112	12.1	12.4	13.5
2017	514.4	514.2	539	394.9	390.9	395.9	405	407.4	115.6	121	12.7	13.0	12.8
2018	564.5	564.2	591	488.2	483.5	489.3	512	511.7	122.2	131	13.2	13.5	13.2
2019	620.8	620.8	650	590.7	585.9	592.2	621	632.2	127.6	137	13.9	14.1	14.0
2020	731.7	731.4	745	716.8	713.9	720.4	767	767.0	137.2	133	14.1	14.4	14.2
2021	824.2	823.1	829	853.1	855.2	861.5	942	910	149.2	143		14.7	14.5
2022	898.8		906		1046	1053.1	1185	1185		149			14.6

Source data for Table IX can be found at:

https://www.energyinst.org/statistical-review

https://www.eia.gov/international/data/world/electricity/electricity-capacity

https://www.ren21.net/reports/global-status-report/

https://public.tableau.com/views/IRENARETimeSeries/Charts?:embed=y&:showVizHome=no&publish=yes&:toolbar=no&publish=yes&:tool

https://iea-pvps.org/snapshot-reports/snapshot-2023/ https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023

PV-generated electricity exceeded 1000 TWh in 2021 for the first time in history, after decades of development, but could reach 2000 TWh within just a couple years. It is also interesting to note from Fig. 3(b) that PV and wind are now at very comparable global installed capacities, with wind reaching the 1 TW milestone in June 2023 [10]. Wind produced 2015 TWh of electricity, reflecting its higher average capacity factor. Over 200 GW of PV was added globally in 2022.

Five different sources for solar (Statistical Review of World Energy, EIA, IEA, IRENA and REN21) are given in Table IX. Variations here can arise for multiple reasons. Among these are: variations in reporting PV capacity as $W_{\rm DC}$ or $W_{\rm AC}$: differences that arise in reports of PV shipments versus installations, variations in cross-border electricity accounting, or handling of the balance between new and retired resources; and changing methodologies in source reporting. Those with interests in pursuing these variations can find further details in the primary sources.

Reporting of *solar* electricity and capacity has been composed in the past of contributions from both PV and solar thermal power, depending on the source. As discussed last year, the rapid growth in PV since 2005 has made PV the increasingly dominant contributor to this broader solar category, a trend that accelerated in 2022. Tables VIII and IX indicate whether solar data is a combination of these technologies or PV only. These tables also indicate our assessment of which data are W_{DC} or W_{AC} . However, we note that there may be inconsistencies in the documentation of dc and ac PV ratings and that some sources may include a mixture of ac and dc data.

V. TRACKING ENERGY STORAGE

Pumped hydropower is the dominant energy storage technology supporting the electricity grid. However, Fig. 4 shows how its dominance is beginning to change. While pumped hydropower is and will continue to be the largest storage asset in the near future, with ~ 175 GW of global storage capacity in 2021, batteries (e.g., lithium batteries) are now being installed at a rate that exceeds the typical expansion of pumped hydropower. Fig. 4 plots EIA data for the cumulative global pumped hydropower

https://www.irena.org/Fublications/2023/Mai/Kenewable-capacity-statistics-202

Fig. 3. (a) Annual electricity generation and (b) electricity generating capacity by fuel. Data are tabulated in Tables VIII and IX (see appendix) with lines for the bolded data and open circles for the other sources.

Fig. 4. Global pumped-hydro storage capacity (EIA, thick black line) and annual changes in storage capacity. The dashed black line indicates the differences in thick black line, while the dashed red line indicates the additions of grid-scale batteries as reported by the IEA. [11].

capacity as a thick black line. The annual changes in the pumped hydropower capacity are shown by a dashed black line, reflecting new additions and a few retirements. Installations of grid-scale batteries reported by IEA [11] are indicated by the dashed red line, reaching 11 GW in 2022, almost 4x the 3 GW average annual increase in pumped hydropower capacity between 1991 and 2021. Batteries installed behind the meter are not included

Fig. 5. Electricity delivered by grid-scale storage assets in the United States, as reported by the EIA 923. [12].

in the values for Fig. 4, suggesting that the total installation rate of batteries is actually higher than shown.

While Fig. 4 tracks the installed power capacity for storage, a better metric may be the amount of electricity that is delivered by these assets. We were unable to find a public data set estimating the electricity from batteries globally, but, noting that the United States hosts a substantial fraction of the grid-scale batteries, Fig. 5 shows the electricity delivered from three storage technologies from 2017 to 2022 as reported by the EIA [12]. The electricity from flywheels and batteries is partially used for ancillary services, but this capacity is being increasingly used to shift solar electricity for use after the sun sets. This new use may explain the doubling of electricity from batteries seen for both 2021 and 2022.

While the growth of batteries for stationary storage has been spectacular, the global fleet of electric vehicles (EV) already represents a larger energy storage capacity than the stationary storage. The IEA estimates that EVs sold in 2022 had batteries with a total of 550 GWh of capacity [13]. While it is challenging to compare vehicle and stationary storage, the total power rating of 11 GW of stationary batteries presented earlier represents ~ 22 to 33 GWh of energy capacity based on commonly cited lithium battery power-to-energy ratios ($\sim 2-3$) [14]. One sees that energy storage capacity is substantially larger today in the EV fleet than in grid-scale stationary applications. We will begin to present the storage data in table form as more of the primary data sources begin tracking that information.

VI. CONCLUSION

2022 was a globally recognized milestone year in PV due to the achievement and then rapid eclipse of the 1 TW benchmark for solar capacity. Total global electricity generation from PV of 1323 TWh, with ~ 263 TWh of that added in 2022, reflected a ~25% increase in just one year. Despite lingering supply chain and tariff/trade issues around the globe, PV advanced dramatically in 2022, contributing 56% of newly installed global electricity generating capacity.

At the same time, PV provided just $\sim 5\%$ of 2022 global electricity generation. However, new levels of penetration of PV were achieved on electricity grids around the world, reaching or exceeding 20% in leading markets such as California, South Australia and Hawaii [15]. At the end of 2022, nine

countries had PV penetration levels on their national grids in excess of 10% [16]. PV is at the cusp of the energy transformation, with the next 5-10 years playing a critical role in determining our ability to reach 2035 and 2050 decarbonization goals.

Batteries are increasingly being used to shift the time when the solar electricity is delivered, especially in those locations where solar exceeds 20% of the generated electricity. Worldwide, batteries are now being added for grid storage faster than pumped hydropower storage is added. The rapid growth of batteries for grid storage parallels the even larger growth in using batteries to power EVs.

The global PV R&D community continues to play a significant role. PV device innovation continues [17], and commercial products continue to advance in both performance and reliability. Reliability and module lifetime play a major role in reducing projections for the amount of both virgin materials required and end-of-life waste anticipated. A growing body of work is addressing the need for a circular economy for PV, identifying key levers for sustainability and anticipating raw materials and supply chain needs for multi TW scale. R&D needs are being identified to develop new approaches to recycling and materials recovery.

In addition to the growth documented here for utility, commercial and residential PV, opportunities for "PV Everywhere" (e.g., integrated with agriculture, broadly integrated into buildings, on reservoirs, etc.) are also growing, as the world increasingly recognizes the critical interactions between energy generation and sustainable ecosystems for air, land and water. We anticipate seeing these new visions for PV impact its growth in the future.

APPENDIX

The sources of the data reported in Figs. 1–3 were described in detail in the Appendix of Version 1 [3]. The same sources, as enumerated in Section I, were consulted for Version 3, following the release of the 72nd Statistical Review of World Energy on June 26, 2023. Updated data from other sources were downloaded July 1 or 2, 2023.

As previously noted, many of these sources revise their data in retrospect, as new information comes in and/or reporting accuracy increases. Where updated tabulated data are available for download, we have incorporated updates from previous years into our Version 3 tables. The data presented in Figs. 1–3 are tabulated in Tables I–IX. The selection of data for Tables III–VI has little effect on the creation of Fig. 2(a) and (b) but can have a greater effect on the appearance of Fig. 2(c).

The electricity data in Fig. 2(a) and Tables III–VII were taken from The Statistical Review of World Energy. The capacity data in Fig. 2(b) and Table II used WNA data for nuclear, Statistical Review of World Energy data for wind and solar and REN21 data for hydro, biomass and geothermal.

EIA fossil fuel capacity data for 2022 are not yet available, and the Statistical Review of World Energy does not include fossil capacity information, requiring the use of additional sources to create the 2022 pie chart in Fig. 2(c). Because of a change in data presented in the REN21 documents, this year we used data from the Global Energy Monitor organization [18]. Data in their Global Coal Plant and Global Gas Plant trackers were used to estimate the change in fossil capacity from 2021 to the end of 2022.

ACKNOWLEDGMENT

The authors acknowledge helpful discussions and collaborative efforts in recent years with Ron Sinton, Robert Margolis, and David Feldman. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

REFERENCES

- "Statistical review of world energy," *The Energy Institute*, London, U.K., 72nd ed. Accessed: Jun. 26, 2023. [Online]. Available: https://www. energyinst.org/statistical-review
- [2] W. J. Fitzgerald, "Humans have installed 1 terawatt of solar capacity, generated over 1 petawatt of solar electricity in 2021," Mar. 14, 2022. [Online]. Available: https://pv-magazine-USA.com/2022/03/14/humansinstall-1-terawatt-of-solar-capacity-generate-over-1-petawatt-of-solarelectricity-in-2021/
- [3] N. M. Haegel and S. R. Kurtz, "Global progress toward renewable electricity: Tracking the role of solar," *IEEE J. Photovolt.*, vol. 11, no. 6, pp. 1335–1342, Nov. 2021, doi: 10.1109/JPHOTOV.2021.3104149.
- [4] "EIA electricity generation data," 2022. [Online]. Available: https://www. eia.gov/international/data/world/electricity/electricity-generation
- [5] "World nuclear association homepage." Accessed: Aug. 21, 2023. [Online]. Available: https://world-nuclear.org/
- [6] "Energy system," IEA. Accessed: Aug. 21, 2023. [Online]. Available: https://www.iea.org/energy-system
- [7] "IRENA homepage." Accessed: Aug. 21, 2023. [Online]. Available: https: //www.irena.org/
- [8] "REN21 homepage." Accessed: Aug. 21, 2023. [Online]. Available: https: //www.ren21.net/
- [9] "Coal market update," IEA. Accessed: Aug. 21, 2023. [Online]. Available: https://iea.blob.core.windows.net/assets/6d364082-35fc-49cfbf3e-c06a05a3445d/CoalMarketUpdate_July2023.pdf
- [10] R. Whitlock, "Global wind industry reaches one terawatt milestone in June," Jul. 28, 2023. [Online]. Available: https://www. renewableenergymagazine.com/wind/global-wind-industry-reachesone-terawatt-milestone-20230615
- [11] "Annual grid-scale battery storage additions, 2017-2022," IEA. Accessed: Aug. 21, 2023. [Online]. Available: https://www.iea.org/data-and-statistics/charts/annual-grid-scale-battery-storage-additions-2017-2022
- [12] "Form EIA-923 detailed data with previous form data (EIA-906/920)," EIA. Accessed: Aug. 21, 2023. [Online]. Available: https://www.eia.gov/ electricity/data/eia923/
- [13] "Battery demand by mode, 2016-2022," IEA. Accessed: Aug. 21, 2023. [Online]. Available: https://www.iea.org/data-and-statistics/ charts/battery-demand-by-mode-2016-2022
- [14] B. Nef, "Global energy storage market to grow 15-Fold by 2030L," [Online]. Available: https://about.bnef.com/blog/global-energy-storagemarket-to-grow-15-fold-by-2030/
- [15] N. M. Haegel et al., "Photovoltaics at multi-terawatt scale: Waiting is not an option," *Science*, vol. 380, no. 6640, pp. 39–42, 2023, doi: 10.1126/science.adf6957.
- [16] "Snapshot of global PV markets 2023," IEA. Accessed: Apr. 2023. [Online]. Available: https://iea-pvps.org/wp-content/uploads/2023/04/IEA_ PVPS_Snapshot_2023.pdf
- [17] P. Verlinden et al., "Photovoltaic device innovation for a solar future," *Device*, vol. 1, no. 1, Jul. 2023, Art. no. 100013.
- [18] "Global energy monitor." Accessed: Aug. 21, 2023. [Online]. Available: https://globalenergymonitor.org/