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A B S T R A C T

Microgrids are an increasingly popular solution to provide energy resilience in response to increasing grid
dependency and the growing impacts of climate change on grid operations. However, existing microgrid
models do not currently consider the uncertain and long-term impacts of climate change when determining
a set of design and operational decisions to minimize long-term costs or meet a resilience threshold. In this
paper, we develop a novel scenario generation method that accounts for the uncertain effects of (i) climate
change on variable renewable energy availability, (ii) extreme heat events on site load, and (iii) population and
electrification trends on load growth. Additionally, we develop a two-stage stochastic programming extension
of an existing microgrid design and dispatch optimization model to obtain uncertainty-informed and climate-
resilient energy system decisions that minimizes long-term costs. Use of sample average approximation to
validate our two case studies illustrates that the proposed methodology produces high-quality solutions that
add resilience to systems with existing backup generation while reducing expected long-term costs.
1. Introduction

1.1. Background and motivation

Society is dependent on energy systems and the services they sup-
port such as security, healthcare, transportation, and communication.
Resilience of energy systems is gaining interest due to the grid’s in-
creasing vulnerability to disruptions from severe weather events [1,2].
Losses due to climate change-driven extreme heat have been estimated
as between $5 trillion and $29.3 trillion globally with more than 80%
of the economic losses absorbed by disadvantaged populations [3].
Extreme heat also increases electric loads significantly [4] and limits
the capacity of power plants [5], increasing the frequency of outages.

In recent history, climate-driven extreme temperature events have
caused outages costing the United States economy billions of dollars
in lost productivity and physical damages [6]. These events can lead
to hazardous conditions for large populations due to heat exposure in
buildings [7]. The observed trends of increasing frequency and severity
of these expensive events [8] motivate our approach of optimizing mi-
crogrid designs and measuring their resilience in longer-term operating
periods.
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The outputs from microgrid design tools and planning models typ-
ically include deployment of Distributed Energy Resources (DER), and
load management recommendations [9]. DERs are energy-generating
and storage technologies that are directly connected to small distribu-
tion systems which, in turn, may or may not be connected to the bulk
power system [10]. Microgrids are networks of DERs that can operate
without connection to the grid [11]. Microgrids that include renewable
DERs can provide reductions in utility expenditures and, when paired
with storage, may add resilience to the networked loads within the
microgrid [12]. Non-renewable DERs, such as diesel generators, can be
included in a microgrid design to provide power when it is economical
to do so, or when renewable and storage technologies are not sufficient
to meet demand during a grid outage. However, diesel generators
require a non-renewable fuel source, and fuel prices incentivize the use
of co-located renewables and/or storage to manage costs, especially in
remote locations [13]. Rules of thumb are typically not cost effective
in microgrid planning decisions, so tools have been developed which
employ optimization techniques to inform DER sizing and operations
for residential and commercial customers [14].
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Acronyms

AUC Area Under the Curve
BAU Business As Usual
CI Confidence Interval
CMIP6 6th Coupled Model Intercomparison Project
DER Distributed Energy Resources
EV Expected Value
EVSS Expected Value of the Stochastic Solution
HW Heat Wave
IPCC Intergovernmental Panel on Climate

Change
LCC Life-Cycle Cost
MDT Microgrid Design Toolkit
MEWS Multi-scenario Extreme Weather Simulator
NOAA National Oceanic and Atmospheric Admin-

istration
OOS Out-of-Sample
PV Photovoltaic
RCP Representative Concentration Pathways
RP Recourse Problem
SAA Sample Average Approximation
SSP Shared Socio-economic Pathways
TMY Typical Meteorological Year
VoLL Value of Lost Load
VRE Variable Renewable Energy

In light of climate change and the associated severe weather events
osing threats to energy systems, recent studies have incorporated
esilience considerations into planning decisions for both microgrids
nd broader energy systems. Perera et al. [15] develop a modeling
ramework that optimizes microgrid designs for communities vulner-
ble to wildfires. However, this study does not consider uncertainties
ssociated with climate change and the subsequent impact they may
ave on the energy demand, energy supply, and resilience of the sys-
em. Totschnig et al. [16] use an hourly simulation model to assess the
mpact of climate change on the resilience of the electricity sector for
ustria and Germany. For campus-sized and remote, grid-disconnected
icrogrids that may grow with the broader population, load growth
ue to population growth and electrification should be considered [17].

The first contribution of this paper is a methodology that generates
ulti-year scenarios for microgrid optimization models that incor-
orate uncertainty in: (i) climate-related impacts to energy demand;
ii) long-term population growth and electrification of buildings; and,
iii) uncertainty in Variable Renewable Energy (VRE) resources. Our
imulation assumes that these three factors are stochastic in nature and
ndependent of each other. Our second contribution extends an existing
icrogrid design and dispatch optimization model, REopt [18], to

btain solutions under uncertainty by recasting the single-year, deter-
inistic REopt model as a two-stage stochastic program in which each

cenario includes multiple years of operational decisions. The DERs
vailable to meet electrical loads in REopt include diesel generators,
hotovoltaics (PV), wind turbines, batteries, and combined heat and
ower systems; thermal generation and storage technologies are also
vailable to model the service of thermal loads on site. Our extension
f the existing work allows a user to obtain microgrid design deci-
ions that account for multiple, multi-year scenarios of VRE and load,
ather than a deterministic model with a single year of operations. We
ypothesize that our novel methodology will obtain microgrid design
nd dispatch decisions lower expected long-term costs when compared
o other scenario generation methods that incorporate fewer sources
f uncertainty. We use sample average approximation [19] to obtain
stimates of long-term costs and test this hypothesis.
2

1.2. Literature review

Within this study, we consider a microgrid design and dispatch
model that can measure resilience while considering the uncertain ef-
fects of population growth and electrification, climate change, and VRE
generation. Below, we subdivide the relevant literature into sections on
software tools, stochastic models, optimization under uncertainty, and
long-term planning models.

1.2.1. Microgrid planning software tools
Many models exist for microgrid planning and resilience, and they

differ by structure, technologies considered, and objective. Reviews
from Ringkjøb et al. [9] and Wang et al. [20] provide an overview of
energy system and microgrid planning tools, including commonly used
software such as REopt [21], HOMER [22], Microgrid Design Toolkit
(MDT) [23], and DER-CAM [24]. These models obtain microgrid de-
signs and operational decisions using either a search algorithm or a
mixed-integer linear program, and can conduct sensitivity analyses.
REopt, MDT, and DER-CAM consider neither multi-year nor multi-
scenario customizations [25] while a multi-year module of HOMER can
consider load and capital expense changes [26,27]. The methodology
in this paper augments REopt’s existing capabilities by developing a
scenario generation method and a two-stage stochastic programming
formulation.

1.2.2. Microgrid uncertainty models
Incorporating uncertainty is an increasingly important component

of microgrid and resilience assessments, as shown by Robert and
Gopalan’s work demonstrating that a dependence on an individual solar
generation forecast results in unanticipated shortages [28]. Monte Carlo
simulations, Markov reward processes, and sensitivity analyses have
been used to incorporate uncertainty within energy system planning
models and resilience assessments. Panteli and Mancarella [29] develop
a Monte Carlo simulation to compare normal, robust, redundant, and
responsive resilience strategies in a high-wind environment. Younesi
et al. [30] use Monte Carlo simulations with a three-state chain Markov
reward processes to evaluate the resilience of interconnected energy
system components. Two common limiting factors with Monte Carlo
simulations and Markov reward processes are available data with which
to populate the probability distributions within the model and solution
time. Sensitivity analyses demonstrate the impacts of input changes
on decisions, as implemented in Totschnig et al. and Ascione et al. to
assess and design resilient energy systems, respectively [16,31]. While
sensitivity analysis is less data-intensive than Markov reward processes,
each instance assumes certainty in the inputs. In response to these
restrictions and the available data for our approach, we apply stochastic
programming and sample multiple time-series VRE profiles to mitigate
overfitting a system design to a single forecast while providing upper
and lower bounds on the expected long-term cost of the optimal
solution.

1.2.3. Microgrid optimization under uncertainty
Microgrid planning models that incorporate uncertainty in both

load and VRE resources commonly focus on dispatch operations. Wang
et al. [32] develop a multi-objective approach to dispatch multiple
microgrids under load and renewable resource uncertainty in which
they minimize costs and emissions generation; their approach is in-
tended to be robust to sudden drops in intermittent VRE availability,
and they use a heuristic to obtain dispatch decisions. Konneh et al. [33]
summarize works that employ model predictive control to adapt to
sudden changes in load, and recent work by Hans et al. [34] extends
this method to cover islanded grid operations in a risk-averse frame-
work. Xiang et al. [35] present a robust optimization model to obtain
cost-minimizing and social benefit-maximizing dispatch decisions, in

which they incorporate uncertainty in both renewable generation and



Applied Energy 368 (2024) 123355M. Macmillan et al.
load using historical data from which they obtain point and inter-
val estimates; the authors utilize an orthogonal array to determine
the uncertainty set for their solution method, and then use Monte
Carlo sampling to verify solution quality. Wang et al. [36] present
a two-stage stochastic program that obtains expected cost-minimizing
dispatch decisions for multiple microgrids which interact with a central
utility; the utility decisions take place in the first stage while the
second stage determines the dispatch of the individual microgrids, and
they utilize a sequential sampling approach to generate scenarios of
load and renewables generation. Similar to the work in [35,36], we
use mathematical programming to obtain planning decisions, but we
include the capacities of generating technologies and storage systems
as design considerations.

Stochastic programming formulations that consider both design and
dispatch decisions for microgrids address the computational burden
of the planning problem by use of a combination of approximations,
heuristics, and truncated time horizons. Han and Lee [37] develop
a planning model for a multi-microgrid system in which the first
stage considers connections between renewable-powered microgrids,
the second stage considers individual microgrid operations over 24-h
dispatch periods, and the objective is to minimize capital and expected
operational costs. Like the work of Han and Lee, we consider a two-
stage approach, but our first stage considers the sizing of the generators
under the assumption that the microgrid shares a single bus, while Han
and Lee consider connections between generators and loads in the first
stage and assume fixed generator sizing.

1.2.4. Long-term planning models
The long life of assets purchased for energy system planning de-

cisions motivates us to investigate load growth due to population and
electrification trends. Takalani and Bekker’s rural microgrid assessment
highlights the significance of ‘‘future proofing’’ when making long-term
energy system plans [17]. Similar to Takalani and Bekker, we adopt
long-term population growth considerations to generate scenarios that
are informed and connected by multi-year load growth assumptions.
A key distinction that was not identified in the literature was the
application of these considerations in cases beyond rural locations such
as the (grid-connected) case studies we explore. While grid-connected
microgrids do not suffer outages during normal operations, accounting
for future growth can change the most economical design, as well
as resilience metrics in out-years when compared to the solutions
obtained from a single-year, deterministic model. This motivates the
development of our methodology to generate multi-year scenarios as
we describe in Section 2.

The rest of this paper is organized as follows. Section 2 describes
models, assumptions, and formulations used in this study. Section 3
presents the results from the analysis. Section 4 summarizes the key
takeaways of this assessment and proposes next steps.

2. Methodology

This section details the methodology that we employ to generate
independent and identically distributed scenarios that span multiple
years and serve as input to a microgrid design and dispatch optimiza-
tion model. The scenarios we generate incorporate uncertainty in (i)
the impacts of climate change on load, (ii) the impacts of climate
change on VRE availability, and (iii) load growth in out-years of micro-
grid operations. Fig. 1 displays the inputs and outputs of each model
that we employ in our framework, as well as interactions between
models.

To consider the anticipated impacts of climate change on extreme
temperature events which, in turn, affect load profiles, we use the
Multi-scenario Extreme Weather Simulator (MEWS). MEWS uses Na-
tional Oceanic and Atmospheric Administration (NOAA) daily sum-
maries and US climate normals [38] data to fit a stochastic model to his-
toric heat wave and cold snap patterns. MEWS then shifts these patterns
3

using the 6th Coupled Model Intercomparison Project (CMIP6) surface
temperature for a chosen future year and Shared Socio-economic Path-
ways (SSP) and Intergovernmental Panel on Climate Change (IPCC)
shifts in the frequency and intensity of Heat Wave (HW) events. The
resulting HW distributions for future conditions are used to develop
climate-informed, hourly load profiles with EnergyPlus which we then
further adjust for projected growth due to electrification and population
growth in future years. We simulate VRE profiles by randomly select-
ing (i) historical year-long profiles at hourly fidelity, and (ii) growth
factors from probability distributions informed by projections in the
literature.

The load profiles are then combined with VRE profiles, the elec-
tricity tariff, and technological specifications as inputs to our optimiza-
tion model, which solves multiple single-year instances of REopt. Our
methodology outputs a recommended design as well as its expected
lifecycle cost and resilience measures. The specific electrical and ther-
mal technologies that may be procured and operate to meet site loads
within REopt are summarized in Fig. 2, and the case study descriptions
in Section 3.1 specify which subset of technologies is available in each
instance.

2.1. Extreme weather and developing climate-adjusted loads

The Representative Concentration Pathways (RCP) and SSP from
the IPCC [2,39] are commonly used methods to generate climate
future forecasts. The IPCC is a large international body responsible
for developing reports to provide a scientific basis of the effects of
climate change for use in policy and research [40]. The RCPs provide
greenhouse concentration projections while the SSPs are a standardized
refinement of the RCPs that facilitates comparison between societal
choices and subsequent climate change impacts [41]. These forecasts
reflect a collection of anticipated climate change effects that include
multiple weather parameters. Both the RCPs and SSPs are frequently
used in climate change research, e.g., [41–44].

Climate change scenarios, such as those from the IPCC, span a
range of severities [40]. Stochastic weather generators utilize a severity
as input to generate weather sample paths [45,46]. We adopt the
MEWS model due to (i) its ability to generate extreme temperature
events by incorporating SSP scenarios, and (ii) its compatibility with
other infrastructure models [45]. Other tools were ruled out due to
either computational intractability [47] or lack of hourly time-series
outputs [48]. The inputs to MEWS include the latitude and longitude
of the site, the future analysis years of interest, historical weather data
from the National Oceanic and Atmospheric Administration [39], and
a historical weather file in Typical Meteorological Year (TMY) format.
The outputs are updated weather files for each specified analysis year,
which, in turn, serve as input to EnergyPlus, a physics-based model
that generates an hourly load profile using building characteristics and
hourly weather as input [49].

Our study considers the IPCC scenarios SSP 2-4.5, SSP 3-7.0, and
SSP 5-8.5 [41]. The radiative forcing levels (4.5 W/m2, 7.0 W/m2, and
8.5 W/m2) of the RCPs are the important variation for this study. These
values represent current goals to keep temperature increase below
1.5 ◦C all the way to the worst case future available with 5 ◦C global
mean temperature rise from the pre-industrial (1850–1900) mean. We
have therefore omitted combinations of RCP with SSP 1 and 4 because
they would be redundant for this study. Each of the scenarios run were
sampled on 5%, 50%, and 95% probability thresholds for heat wave
increase in frequency and intensity [45]. In this study, the future for
extreme heat therefore spans from very low amplification of heat waves
for medium increases in radiative forcing (i.e., 4.5 W/m2 at 5% heat
wave amplification levels) to very high amplification of heat waves for
high increases to radiative forcing (i.e., SSP 8.5 W/m2 at 95% heat
wave amplification).
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Fig. 1. Flowchart detailing the methodology in this paper.
Fig. 2. Schematic detailing the loads served or generated by each technology in REopt. Highlighted technologies represent the business-as-usual case for grid-connected operations;
when a diesel generator is present, it is only used during outages.
Image source: [14].
MEWS algorithm overview. This section provides an overview of the
methods used to generate future HW events in MEWS. Please refer to
previous publications or the source code of MEWS for exact details [45,
50–52]. MEWS uses a minimally complex method to create historical
distributions of HW and cold snaps. It then extrapolates in creases
in frequency and intensity of HW. Cold snaps are kept at historical
levels due to lack of information on how frequency and intensity will
change.

A HW event in MEWS consists of: (1) a start time determined by a
stochastic transition matrix, (2) a duration determined by a stochastic
transition matrix, (3) a duration normalized peak temperature change
𝛥𝑇 distribution above the climate normal temperature distribution’s
50th percentile, (4) a distribution of total change in energy 𝛥𝐸 above
the climate normal energy distribution’s 50th percentile, and (3) a
sinusoidal shape function whose parameters equate to randomly sam-
pled 𝐷𝑒𝑙𝑡𝑎𝑇 and 𝐷𝑒𝑙𝑡𝑎𝐸 to provide a diurnal pattern to the HW
event. The complete model contains 14 parameters that are determined
by an genetic optimization algorithm which minimizes the difference
4

between the MEWS model’s sample distribution and historical HW
and cold snap event durations. This fit is conducted for each month
of the year, 𝑚 = {1, 2,… , 12}. The distributions for 𝛥𝐸 and 𝛥𝑇 are
truncated Gaussian distributions which introduce 2 parameters each to
the MEWS model. The bounds of these distributions are initially the
historic most extreme events and are linear functions of the shift in
mean and standard deviation parameters for a given future analysis
year.

The 3 × 3 state transition stochastic matrix on the right-hand side
of Eq. (1) contains the remaining 10 parameters of the MEWS model:

𝑀𝑚(𝛥𝑡) =

⎡

⎢

⎢

⎢

⎣

1 − 𝑃ℎ𝑤,𝑚 − 𝑃𝑐𝑠,𝑚 𝑃𝑐𝑠,𝑚 𝑃ℎ𝑤,𝑚
1 − 𝑃𝑠𝑐𝑠,𝑚 (𝛥𝑡) 𝑃𝑠𝑐𝑠,𝑚 (𝛥𝑡) 0
1 − 𝑃𝑠ℎ𝑤,𝑚

(𝛥𝑡) 0 𝑃𝑠ℎ𝑤,𝑚
(𝛥𝑡)

⎤

⎥

⎥

⎥

⎦

(1)

The first, second, and third rows indicate no wave event, a cold snap
event (i.e., 𝑐𝑠), and a HW event (i.e., ℎ𝑤), respectively. The first row of
the transition matrix is time-invariant, while the other rows depend on
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𝛥𝑡, the time (in hours) since a wave event began. The subscripts 𝑐𝑠 and
ℎ𝑤 are represented by the ‘‘wave’’ index 𝑤 = {𝑐𝑠, ℎ𝑤}. The 𝑃𝑠𝑤,𝑚

(𝛥𝑡)
functions have a functional form illustrated in Fig. 3, in which:

• 𝑃0𝑤,𝑚
is the initial probability of sustaining a wave;

• 𝛥𝑡𝑝𝑤,𝑚
is the time to peak probability 𝑃𝑚𝑎𝑥𝑤,𝑚

for an event;
• 𝑃𝑚𝑎𝑥𝑤,𝑚

is the maximum probability of remaining in an event; and,
• 𝛥𝑡𝑐𝑤,𝑚

is the maximum event time.

The temporary increase of this function and subsequent decay pro-
vide better fits to the durations of historical wave events, which rarely
exhibit immediate decay. This model can be shifted to reflect future
conditions by using the procedure found in Villa et al. [45]. The fitted
models are then sampled to produce a collection of HW and cold snap
events with known durations. The duration-normalized truncated Gaus-
sian distributions are then sampled to produce the temperature change
and total energy associated with each event. These samples are used to
algebraically constrain the sinusoidal shape function in Eq. (2), which
is algebraically fit to the sampled total energy and peak temperature
by event:

𝛥𝑇 (𝑡, 𝐷, 𝛥𝑡𝑚𝑖𝑛) =

⎧

⎪

⎨

⎪

⎩

𝐴 sin
(

𝜋𝑡
𝐷𝑜𝑑𝑑

)

+ 𝐵
(

1 − cos
(

2𝜋𝑡
𝛥𝑡𝑚𝑖𝑛

))

+ 𝐶 𝑡 ≤ 𝐷𝑜𝑑𝑑

𝐵
(

1 − cos
(

2𝜋𝑡
𝛥𝑡𝑚𝑖𝑛

))

+ 𝐶 𝑡 > 𝐷𝑜𝑑𝑑 ,

(2)

in which the terms 𝐴, 𝐵, and 𝐶 are determined to ensure that the
total energy, and peak temperature constraints are satisfied when the
energy and temperature truncated Gaussian distributions are sampled.
The parameter 𝐷𝑜𝑑𝑑 is the largest odd multiple of 𝛥𝑡𝑚𝑖𝑛 that is less than
the HW event duration, 𝐷, as shown in Eq. (3):

𝐷𝑜𝑑𝑑 = 𝛥𝑡𝑚𝑖𝑛

[⌊

𝐷
𝛥𝑡𝑚𝑖𝑛

⌋

− 𝛿
(⌊

𝐷
𝛥𝑡𝑚𝑖𝑛

⌋

mod 2
)]

. (3)

Here, mod is the modulus operator, ⌊⌋ indicates the floor function
or closest integer less than the input, and 𝛿 is the Dirac delta func-
tion. Using 𝐷𝑜𝑑𝑑 instead of 𝐷 in Eq. (2) avoids erratic variations in
the maximum temperature condition with respect to the Heat Wave
(HW) duration, enabling mapping 𝛥𝑇 to sampled values from the
truncated Gaussian distributions for temperature and energy. After
obtaining wave event durations and peak temperatures, MEWS pro-
duces time-series weather instances at hourly fidelity that are then
provided as input to EnergyPlus to obtain electrical load profiles in our
methodology.

2.2. Variable renewable energy

Climate change has implications for the supply side in addition to
the demand side of energy systems [53]. Methods for projecting VRE
forecasts and trends at various resolutions and time periods include
artificial intelligence and machine learning models as seen in Azad
et al. [54], forecast combination and ensemble forecasting such as that
in Nowotarski et al. [55], day-ahead forecasts, hierarchical forecasting
which is implemented in Hyndman et al. [56], and probabilistic fore-
casting demonstrated in Möhrlen et al. [57], all of which are best-suited
for short- to medium-term projections at hourly resolution. This study
is concerned with long-term, hourly VRE forecasts which do not exist
on the scale in which we are interested. Instead, we consider annual
long-term VRE trend projections using large general circulation models
that project weather forecasts as an interaction between the atmosphere
and the environment as demonstrated in the papers reviewed in Craig
et al. (2018) [58].

Craig et al. (2022) [59] note that there is little interaction between
climate modeling and energy system modeling efforts, and call for
greater inclusion of the former when developing the latter. This paper
responds to this call by incorporating a range of anticipated effects of
5

Fig. 3. Probability decay function normalized by the initial probability of sustaining a
wave as a function of time elapsed, 𝛥𝑡. 𝑃0𝑤,𝑚

, 𝑃𝑚𝑎𝑥𝑤,𝑚
, 𝛥𝑡𝑝𝑤,𝑚

, and 𝛥𝑡𝑐𝑤,𝑚
denote the initial

probability, the peak probability, the time to peak probability, and the maximum time
associated with sustaining a wave event, respectively.
Image source: [45].

climate change on wind and solar resource. We use the minima and
maxima of reviewed projections to represent the range of anticipated
effects of climate change on wind resource [58]. Data is extracted
for the region most applicable to each case study, from which we
calculate a per-year percent change in VRE resource to account for
the difference between the publication year and the analysis year. The
collection of projections from the literature failed Kolmogorov–Smirnov
tests for normal and gamma distributions in each case and there was no
intersection between projected ranges in the literature, so we adopt a
uniform distribution for the relative resource change per year, in which
the range is that of the relevant studies in the literature. Then, for
each scenario-year pair, we select a year at random from the available
historical weather records [60,61], and we draw independent samples
from the uniform distribution to obtain a growth factor which we apply
to each time period. As a result, the VRE profiles maintain the same
shape as the historical year-long weather profiles we draw from, but
have an adjusted magnitude. These altered solar and wind profiles then
replace the relevant weather measures in the climate-adjusted weather
profiles generated by MEWS to serve as input to the load and VRE
models.

2.3. Multi-year load growth

While individual buildings may not be subject to the same planned
growth that regional grid operators plan for, it is important for load
profiles of campus-sized microgrids that grow with the local population
to capture uncertainties associated with population and electrification
increases that may results in fluctuations in load to avoid shortages
in future years [17]. Most microgrid design and analysis works in the
literature do not consider future loads, and instead use current loads
that are assumed to repeat over the project lifetime. The studies that
do consider long-term load growth in energy system design analyses
design do so for rural microgrids [62,63]. In instances where site-
specific data was not available, we adopt a similar methodology to
that implemented in Bhattacharyya et al. [63] and Kumar et al. [62]
that was applied to rural microgrids. Kumar et al. and Bhattacharyya
et al. use historical electrification data to populate their load growth
assumptions, while we use historical population data as we assume
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2
the campus is already grid-connected. For the nearest future year, a
random variate is generated from a triangular distribution, under the
assumption that we have a best guess and range of estimated growth
in the shorter term. For all future years, we assume a range but no best
guess, and so a random variate is generated from a uniform distribution
to represent growth from one period to the next. The product of
these inter-period growth factors is applied to each hour of the load
profile for each scenario-year pairing obtained via the methodology in
Section 2.1.

2.4. Optimization model

This section summarizes our augmentation of REopt to consider
multiple scenarios; the solution method we adopt is visualized in Fig. 4;
here, 𝜔 = (𝑚, 𝑛) denotes a scenario-year pairing of year 𝑚 and scenario
𝑛; 𝑋𝜔 denotes the optimal system design for scenario-year pairing 𝜔
after accounting for penalties when obtaining a lower bound on the
optimal expected lifecycle cost, 𝑧𝑃 ; and, �̂� is the fixed system design
when obtaining an upper bound on the expected optimal lifecycle
cost, 𝑧𝑃 . New solutions are assessed and penalties are updated until
the lower and upper bounds are within the optimality threshold, 𝜖.

e develop lower and upper bound formulations of REopt, separated
y uncertainty-informed scenarios. Our extension of REopt outputs an
ptimal system design and dispatch as well as the expected Life-Cycle
ost (LCC) of the system. Because load and VRE resources are assumed
o be uncertain, and the single chosen design must meet the load
nder any given scenario while minimizing expected lifecycle costs,
e formulate the problem as a two-stage stochastic program in which

he first stage consists of the size of each generating technology and
torage system in the design, and the second stage includes scenario-
pecific dispatch decisions that depend on both the system sizes in
he first stage and the VRE availability and load for each scenario in
he second stage. Solving the lower bound formulation outputs unique
ptimal system designs for each scenario; the designs may differ from
cenario to scenario in the lower bound model, subject to a penalty in
he objective function. The results of the lower bound are used to select
candidate fixed design for the upper bound formulation. If the ratio

etween the optimal objective values of the lower and upper bound
ormulations is not less than the optimality threshold, a bisection search
s employed to improve the upper bound, fixed candidate design. Once
he optimality threshold condition is satisfied, we explore the other
Eopt outputs such as the probability of survival and resilience by time
tep resilience metrics to assess the quality of the solutions produced
y our methodologies.

The model we develop seeks microgrid design and operations deci-
ions that minimize expected total LCC of the energy system across a
inite collection of scenarios which we generate using the methodology
n Section 2. We include a term for unmet load to ensure relatively com-
lete recourse. Additionally, we include boundary conditions to rectify
torage inventory and ensure year-to-year continuity. We present the
odel below in a general form using constructs that highlight the

cenario-year pairings and the decomposition method that we em-
loy to obtain upper and lower bounds on optimal expected lifecycle
ost.

Our abstraction of REopt resembles the methods employed in [64].
ecause the notation in this model, even in its compressed form, is
ignificant, we adopt the notational conventions described in Teter
t al. [65] for complex optimization models and summarize the nota-
ion in tabular form before describing our formulations in this section,
sing capital letters to denote variables, lowercase letters to denote
ndices, functions, or parameters, superscripts to denote either rele-
ant sets to a function or scenario-year pairings, and subscripts to
enote indices within sets. The unabridged formulation of REopt is
vailable in Appendix A, and a mapping of decision variables from the
eneral form below and the fully descriptive formulation is available
6

n Appendix B.
.4.1. Formulation: Stochastic program ()

Sets
ℎ ∈  = {1, 2..., ||} Time periods, (i.e., hours,

|| = 8760)
𝜔 ∈ 𝛺 = {1, 2, ..., |𝛺|} Scenario-year pairs
𝑋 ∈  Strategic design decisions (i.e.,

system sizes)
𝑌 𝜔
ℎ ∈ 𝜔

ℎ (𝑋) Operational (e.g., dispatch)
decisions made in time period ℎ
and scenario-year 𝜔 given
decision 𝑋

𝑊 𝜔 ∈ (𝑌 𝜔
1 ,… , 𝑌 𝜔

||

) Long-term operational decisions
made in time period ℎ and
scenario-year 𝜔 given
operational decision 𝑌 𝜔

ℎ

Parameters
𝐵𝜔
0 Initial inventory in scenario-year

𝜔
𝜌𝜔 Relative weight applied to

scenario-year 𝜔
[fraction]

Functions
𝑓𝑋 (⋅) Cost of a design decision [$]
𝑓𝑌 (⋅) Cost of an operational decision [$]
𝑓𝑊 (⋅) Cost of long-term operational

decisions
[$]

𝑓𝑉 (⋅) Cost of unmet load associated
with the unmet load 𝑉 𝜔

ℎ

[$/kW]

𝓁𝜔
ℎ (⋅) Unmet load associated with

operational decision in time
period ℎ and scenario-year 𝜔

[kW]

𝑏𝜔ℎ (⋅) Net change in storage inventory
associated with operational
decision in time period ℎ and
scenario-year 𝜔

Decision variables
𝑋 Design decision
𝑋𝜔 Design decision associated with

scenario-year 𝜔
𝑌 𝜔
ℎ Operational decision made in

time period ℎ and scenario-year
𝜔

𝑊 𝜔 Long-term operational decision
made in scenario-year 𝜔

𝑉 𝜔
ℎ Unmet load in time period ℎ and

scenario-year 𝜔
[kW]

𝐵𝜔
ℎ Storage inventory at the end of

time period ℎ in scenario-year 𝜔
𝑊 𝜔 Operational decisions in

scenario-year 𝜔

Formulation ()

minimize 𝑧 =
∑

𝜔∈𝛺
𝜌𝜔

[

𝑓𝑋 (𝑋𝜔) +
∑

ℎ∈

[

𝑓 𝑌 (𝑌 𝜔
ℎ ) + 𝑓𝑉 (𝑉 𝜔

ℎ )
]

+ 𝑓𝑊 (𝑊 𝜔)
]

(4a)

s.t. 𝑋𝜔 ∈  ∀ 𝜔 ∈ 𝛺 (4b)
𝑌 𝜔
ℎ ∈ 𝜔

ℎ (𝑋
𝜔) ∀ ℎ ∈ , 𝜔 ∈ 𝛺 (4c)

𝑊 𝜔 ∈ (𝑌 𝜔
1 ,… , 𝑌 𝜔

||

) ∀ 𝜔 ∈ 𝛺 (4d)

𝑉 𝜔
ℎ = 𝓁𝜔

ℎ (𝑌
𝜔
ℎ ) ∀ ℎ ∈ , 𝜔 ∈ 𝛺 (4e)

𝐵𝜔
ℎ = 𝐵𝜔

ℎ−1 + 𝑏𝜔ℎ (𝑌
𝜔
ℎ ) ∀ ℎ ∈ \{1}, 𝜔 ∈ 𝛺 (4f)

𝜔 𝜔 𝜔 𝜔
𝐵1 = 𝐵0 + 𝑏1 (𝑌1 ) ∀ 𝜔 ∈ 𝛺 (4g)
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Fig. 4. Graphical description of information flow in our two-stage stochastic programming method, adapted from [64]. Here, 𝜔 = (𝑚, 𝑛) denotes a scenario-year pairing of year 𝑚
and scenario 𝑛; 𝑋𝜔 denotes the optimal system design for scenario-year pairing 𝜔 after accounting for penalties when obtaining a lower bound on the optimal expected lifecycle
cost, 𝑧𝑃 ; and, �̂� is the fixed system design when obtaining an upper bound on the expected optimal lifecycle cost, 𝑧𝑃 . New solutions are assessed and penalties are updated until
the lower and upper bounds are within the optimality threshold, 𝜖.
f
i

a

𝐵𝜔
||

= 𝐵𝜔
0 ∀ 𝜔 ∈ 𝛺 (4h)

𝑋𝜔 = 𝑋 ∀ 𝜔 ∈ 𝛺 ∶ 𝜇𝜔 (4i)

In the objective of model (4a), we seek a minimum expected LCC,
which composed of the fixed cost of procuring the microgrid design
and the expected value of operational decisions over the operating
horizon. The weight applied to each scenario-year pair, 𝜌𝜔, assumes
equal-probability and a time-specific discount factor in future years.
Constraint (4b) specifies feasible design decisions, including constraints
on the maximum system size to obtain net metering benefits and
limits on individual system capacities. Constraint (4c) specifies feasible
operational decisions given the design decision 𝑋 for all time periods in
each scenario, including the power output of each technology and any
utility purchases to meet the site load in each time step; for example,
the power output of a diesel generator may not exceed its capacity. The
variable 𝑌 𝜔

ℎ is defined for each scenario-year and time step to account
for production factors and loads that vary by time period and scenario.
On the other hand, parameters such as monthly demand charges and
aggregated production incentives do not vary on an hourly basis and
are considered multi-period costs. As a result, 𝑊 𝜔 is introduced to
capture the costs that vary only by scenario-year 𝜔, as defined in
constraint (4d). Constraint (4e) defines the amount of unmet load 𝑉 𝜔

ℎ
as the unmet load associated with an operational decision 𝑌 𝜔

ℎ for each
time period in each scenario. The unmet load variable, 𝑉 𝜔

ℎ , is not
defined in the existing REopt model. Therefore, this formulation adds
this variable 𝑉 𝜔

ℎ is defined in Eq. (5). Eq. (5) is written adopting the
original REopt notation, as outlined in Hirwa et al. [66].

𝑉 𝜔
ℎ

⏟⏟⏟
unmet load

= 𝛿d,𝜔
ℎ

⏟⏟⏟
site load

−
∑

𝑡∈
𝑓 𝑝
𝑡ℎ ⋅ 𝑓

𝑙
𝑡 ⋅𝑋

𝑟𝑝
𝑡ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
DER production

−
∑

𝑏∈𝑒
𝑋𝑑𝑓𝑠

𝑏ℎ

⏟⏞⏞⏟⏞⏞⏟
battery discharge

−
∑

𝑢∈ 𝑝
𝑋𝑔

𝑢ℎ

⏟⏞⏞⏟⏞⏞⏟
grid purchase

+
∑

𝑡∈ 𝑒∕ 𝑔

∑

𝑏∈𝑒
𝑋𝑝𝑡𝑠

𝑏𝑡ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
battery charged by mircogrid

+
∑

𝑡∈ 𝑒∕ 𝑔

∑

𝑢∈ 𝑠
𝑡

𝑋𝑝𝑡𝑔
𝑡𝑢ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
production sold to grid

+
∑

𝑢∈ 𝑠𝑏

𝑋𝑠𝑡𝑔
𝑢ℎ

⏟⏞⏞⏞⏟⏞⏞⏞⏟
battery charged by grid

(5)
7

∀ ℎ ∈ , 𝜔 ∈ 𝛺
From left to right, the unmet load is equal to the (1) site load
minus (2) power produced by DERs, (3) power discharged from storage,
and (4) power purchased from the grid, plus the (5) power delivered
to charge storage and (6) power sold to the grid from DER produc-
tion and storage for each hour in each scenario-year pairing. The
defined notation for this constraint can be found in Hirwa et al. [66]
and Appendix A. Constraint (4f) balances battery state of charge 𝐵𝜔

ℎ
between consecutive time periods while constraint (4g) provides an
analogous restriction on inventory to constraint (4f) for the first time
period according to initial inventory conditions, 𝐵𝜔

0 . To ensure year-
to-year continuity, constraint (4h) balances storage inventory. Con-
straint (4i) enforces the nonanticipativity of 𝑋𝜔 which prevents the
strategic design decisions from adapting to individual scenarios.

2.4.2. Formulation: Lower bound ()
Model () is intractable when solved directly using an off-the-

shelf solver. However, removing constraint (4i) from the formulation,
separates the model naturally by scenario-year pair. Our relaxation of
model (), which we call (), moves this constraint into the objective
function, which allows the resulting scenario-year-specific sub-models
to be solved in parallel. The lower bound model allows for the micro-
grid generator and storage sizes to be different for each scenario-year
pair, subject to the penalty, 𝜇, which we vary by

Formulation ()

minimize𝑧 =
∑

𝜔∈𝛺
𝜌𝜔

[

𝑓𝑋 (𝑋𝜔) +
∑

ℎ∈

[

𝑓𝑌 (𝑌 𝜔
ℎ ) + 𝑓𝑉 (𝑉 𝜔

ℎ )
]

+𝑓𝑊 (𝑊 𝜔) + 𝜇𝜔(𝑋𝜔 −𝑋)
]

(6a)
s.t. (4b)–(4h)

In the lower bound formulation (), we take the Lagrangian relax-
ation of (4i) and the term ∑

𝜔∈𝛺 𝜇𝜔(𝑋𝜔 −𝑋) is moved to the objective
unction. We require ∑

𝜔∈𝛺 𝜇𝜔 = 0 to prevent the problem from becom-
ng unbounded, as the restriction on 𝑋 is removed. This is consistent

with the progressive hedging method developed by Rockefellar and
Wets [67], but we remove the proximal term to ensure that model () is

relaxation of model () [68]. As a result, the optimal objective value
of model () provides a lower bound to that of model (), i.e., 𝑧 ≤ 𝑧 .
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2.4.3. Formulation: Upper bound (̄)
While model  provides a lower bound of model () an upper

bound is still needed, i.e. a restriction of model (). This is achieved in
model (̄). In this formulation, we fix 𝑋 to a single strategic design
ecision, making it a feasible solution to model (). The resulting
ormulation, model ̄ , is a restriction and upper bound of model  .

Additional parameter
�̂� Strategic design decision

Formulation (̄)

minimize 𝑧̄ = 𝑓𝑋 (�̂�) +
∑

𝜔∈𝛺
𝜌𝜔

[

∑

ℎ∈

[

𝑓 𝑌 (𝑌 𝜔
ℎ ) + 𝑓𝑉 (𝑉 𝜔

ℎ )
]

+ 𝑓𝑊 (𝑊 𝜔)
]

(7a)

s.t. 𝑌 𝜔
ℎ ∈ 𝜔

ℎ (�̂�) ∀ ℎ ∈ , 𝜔 ∈ 𝛺 (7b)
(4e)–(4h)

The objective function (7a) is adjusted to specify a singular, fixed
esign decision such that �̂� = 𝑋 ∈  . The fixed design also enabled

for the removal of constraint (4i) and the nonanticipativity term from
the objective. As a result of the fixed design, model (̄) is a restriction
of (). The optimal solution to ̄ will provide an upper bound to the
optimal value of (), i.e., 𝑧̄ ≥ 𝑧 .

.4.4. Solution methods
We solve models () and (̄) to obtain lower and upper bounds,

espectively, on the objective value of model (). By first solving
ach scenario-year-specific submodel in model () with penalties 𝜇𝜔 =
0, ∀𝜔 ∈ 𝛺, we can obtain up to |𝛺| candidate (fixed) designs, which
we can assess by solving model (̄). We can update the penalties, 𝜇𝜔,
using progressive hedging [67] to refine the lower and upper bounds
as needed until the optimality criterion for a case is met, and we can
further improve the upper bound using a multi-dimensional bisection
search [69] due to the continuous domain and relatively small number
of design decisions.

2.5. Resilience assessment

In addition to understanding the effects of our methods on system
sizing and dispatch decisions, we are also concerned with its effects
on the climate resilience of the system. Within REopt, a microgrid
or DER planner can evaluate the resilience of their microgrid system
with the outage simulator [18,66,70]. This tool details the amount of
time a system can continue to meet the critical load throughout the
year with probability of survival and expected resilience by time step
metrics. Every hour, the outage simulator calculates how many hours
the on-site system can meet the critical load (probability of survival)
and the duration of survival for outages starting at each hour of the
year (expected resilience by time step) [14]. These metrics are built
into the REopt outage simulator [71] and are described in Section 4.6
from Hirwa et al. [66]. This feature can also assess expected microgrid
system performance and costs under user-specified grid outages. This
study explores the resilience of our systems optimized with and without
consideration of outages.

In addition, we calculate the Area Under the Curve (AUC) metric
from Sepúlveda-Mora and Hegedus [22], as demonstrated in Eq. (8):

𝐴𝑈𝐶𝑁 =
𝑁
∑

𝑡=1
𝑃 (surviving an outage of 𝑡 hours) ⋅ (1 h). (8)

This metric can capture uncertainty across many time periods and
requires minimal data that is generally needed for Value of Lost Load
(VoLL)-based or composite indicator resilience metrics [72]. To cal-
culate this metric, the probability of survival from the REopt outage
simulator is used to populate the function. Additionally, the quotient of
a the 𝐴𝑈𝐶𝑁 and 𝑁 represents the probability of the system surviving
an outage of duration 1 to 𝑁 that starts at a random time step.
8
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2.6. Stochastic metrics

We utilize metrics from the stochastic programming literature to
assess the quality of solutions that we obtain using the methodology
described in Section 2.4. Similar to the notation implemented in [73],
we refer to the solution to model () via the methods in Section 2 as
the Recourse Problem (RP) solution. The first metric is the Expected
Value of the Stochastic Solution (EVSS) which justifies the application
of the stochastic model by comparing the RP solution to an alternative,
single-scenario instance that uses the expected value of each random
variable as input, which we refer to as the EV problem. The EVSS is
the difference between the expected LCC of the EV design under a
collection of Out-of-Sample (OOS) scenarios, 𝑧𝐸𝑉 , and that of the RP
design, 𝑧𝑅𝑃 , as demonstrated in Eq. (9):

𝐸𝑉 𝑆𝑆 = 𝑧𝑅𝑃 − 𝑧𝐸𝑉 . (9)

We can further assess solution quality by performing an out-of-sample
validation to obtain a valid confidence interval of the optimality gap,
using the Sample Average Approximation (SAA) method from Mak
et al. [19]. The calculation of this metric is shown in Eqs. (10) and (11):

̄ =
∑

𝑘∈𝐾
𝜌𝑘(𝑧𝑘𝑅𝑃 − 𝑧𝑘𝐿𝐵) (10)

̃ =
𝑡𝛼,𝑛−1𝑠(𝑛)

√

𝑛
, (11)

in which:

• 𝑧𝑘𝑅𝑃 and 𝑧𝑘𝐿𝐵 are the lifecycle costs of the solution using the RP
design and the lower-bound model allowing a free design for each
scenario-year pair, respectively, for out-of-sample scenario 𝑘;

• 𝑠(𝑛) is the sample standard deviation for the differences 𝑧𝑘𝑅𝑃 −𝑧
𝑘
𝐿𝐵 ,

𝑘 ∈ {1,… , 𝑛};
• 𝜌𝑘 = 1∕𝑛, ∀𝑘 ∈ {1,… , 𝑛}; and,
• 𝑡𝛼,𝑛−1 is the 𝑡-statistic inverted at 𝛼 with 𝑛−1 degrees of freedom.

Using this framework, the (1 − 𝛼)-level confidence interval on the
optimality gap is [0, �̄� + �̃�].

. Results

.1. Case study descriptions

Table 1 summarizes key inputs for the two sites chosen for case
tudies: Albuquerque, New Mexico and Kodiak, Alaska. Each case study
ssumes default costs available in REopt [71] but includes a capital
ost multiplier for purchased technologies in Kodiak due to its remote
ocation. These locations are unique in climate and VRE availability, as
emonstrated in Fig. 5. Historical VRE data was collected for both lo-
ations going back to 1998. The annual average wind and Photovoltaic
PV) capacity factors for all collected years are visualized in Fig. 5 and
xhibit disparate VRE profiles for the two case studies. Additionally,
he summary of (i) daily high and low temperatures and (ii) annual
recipitation for Kodiak and Albuquerque, shown in Table 1, further
llustrate the difference in climate between the two case studies. For
oth case studies, we model present day, 2035, and 2050. For the
odiak case, we developed a multi-building campus load informed by

otal energy usage and peak demand on a monthly basis provided
y a partner. We assume an office building for Albuquerque because
o further site-specific data was provided. The average loads for all
resent-year scenarios for the Kodiak and Albuquerque cases were
pproximately 1400 kW and 50 kW, respectively. We fit a weighted
ollection of the DOE reference commercial building loads [74] to
he historical campus load by minimizing the sum of squared error of
onthly peak-average ratio of the expected and observed loads, then
e scale the hourly load profiles in each month so that the average and
eak load of the simulated campus load matches the historical billing
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Table 1
Case study inputs.

Location Kodiak Albuquerque

Building Multi-building campus Medium office
Avg. Hi/Lo Temp. 8 ◦C/2 ◦C 21 ◦C/7 ◦C
Annual Precip./Snow 127 cm/200 cm 21 cm/25 cm

Load growth scalar
2023 No change
2035 [1+Tri(0.15,0.25,0.2)] 1+Tri(0.15,0.19,0.17)
2050 [1+Tri(0.15,0.25,0.2)] ∗ [1+Uni(0.0,0.2)] 1+Tri(0.15,0.19,0.17) ∗ [1+Uni(0.01,0.15)]

VRE change: PV
2023 No change
2035 [−5.5%, 1.8%] [−0.7%, 0%]
2050 [−10%, 3.2%] [−1.3%, 0%]

VRE change: Wind
2023 No change
2035 [−10.5%, 0%] [−7.0%, 7.0%]
2050 [−18.9%, 0%] [−12.6%, 11.5%]

Business as usual (BAU) system No existing generators or storage

Back-up system Battery generator No existing generators or storage
Capital cost multiplier 1.5 1.0
Electricity tariff Kodiak Electric Assn. Large Power Public Service Co of NM 2B Small Power Service - TOU
ASHRAE climate zone 6A 4B

Building standard ASHRAE 90.1-2016
Fig. 5. VRE capacity factors from 1998–2020.
data exactly. The output of this methodology includes a (i) load profile
that replicates historical billing, and (ii) a collection of building energy
models that are compatible with the scenario generation methodology
in Section 2.

3.2. MEWS results

The MEWS fits for Albuquerque and Kodiak were carried out us-
ing climate norms from Albuquerque International Airport (Station
USW00023050) from 1931 to 2021 and Seward Airport (Station
USW00026438) from 1965 to 2022, respectively. The fits failed to re-
ject a null hypotheses of equal distributions according to the
Kolmogorov–Smirnov p-test at 𝛼 = 0.05. For Albuquerque temperature
distributions, 75% failed to reject for HW events and 67% for cold
snaps. For Albuquerque duration distributions, all but one failed to
reject for HW events and 75% passed for cold snaps. The worst-case
temperature fit was in July as shown on the top of Fig. 6; the failed p-
test is most likely due to the multimodal nature of the historical record
due to the time resolution of data collected, and does not require closer
9

fitting. Similar results were observed for Kodiak, as illustrated in the
bottom of Fig. 6.

The CMIP6 surface temperature increases for Albuquerque are
shown in Fig. 7. The polynomial fits (solid lines) for each SSP were used
to produce different future shifts to temperature distributions per the
MEWS algorithm as shown in Fig. 8. The future distribution in yellow-
orange in Fig. 8 was used to sample new HW and cold snap events
on 200 weather files each for the three climate scenarios (SSP2-4.5,
SSP3-7.0, and SSP5-8.5), three HW event percentiles (5%, 50%, and
95%), and 3 years (2020, 2035 and 2050). The resulting files contained
maximum temperatures of 54.7 ◦C for Albuquerque and 39.9 ◦C for
Kodiak in 2050. Minimum temperatures in the ensemble were −23.3 ◦C
−38.5 ◦C for Albuquerque and Kodiak, respectively.

3.3. Microgrid optimization results

All case study instances in this section were solved using the RE-
opt.jl package v0.32 with Xpress version 16.1. Individual scenario-
year-specific instances of REopt took less than 30 s each. We adopt a
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Fig. 6. Worst case month (July) fit for Albuquerque temperatures (top). A similar, multimodal distribution is present for the historical observations for Kodiak in July (bottom).
Fig. 7. CMIP6 Surface temperature change for Albuquerque (left) and Kodiak (right).
stopping criterion of obtaining a solution within 5% of optimality to be
consistent with other design-and-dispatch papers in the literature [13,
64,75,76]; in each case study, this threshold was reached in less than
three hours. The recourse problem uses 22 scenarios for each case study
while the sample average approximation uses 30 additional scenarios;
each scenario spans three analysis years which are solved individually
when solving models () and () as part of the methodology in
Section 2.4.

Table 2 summarizes the results obtained via the two-stage stochastic
programming approach in Section 2.4 for the Kodiak and Albuquerque
case studies. Both cases benefit from the addition of renewable DER
when compared to the business-as-usual case of purchasing no new as-
sets. The difference in available VRE resources motivates the purchase
of wind and PV exclusively for Kodiak and Albuquerque, respectively;
storage technologies are not economical in either case. Fig. 9 sum-
marizes the dispatch decisions for a week in August in an example
10
scenario-year pairing for the Albuquerque case study. The PV system is
sized to meet the office building load during the week when occupancy
is high with limited or no curtailment, and then excess energy produc-
tion by the PV system on the weekend is curtailed when the site load is
low due to a lack of net metering available. While PV productivity and
load vary by scenario-year pairing, this trend is consistent by scenario
and year.

The high year-to-year variation in the annual average capacity
factor of wind in Kodiak (see Fig. 5(c)) yields a much greater EVSS
associated with the optimal design when compared to the variation
of the annual solar resource in Albuquerque (see Fig. 5(b)). This
demonstrates the value of our methodology for cases in which the
most economical renewable technology has a highly variable annual
production for a microgrid planning model like REopt. This differs
from unit commitment and other energy applications in which the
operating time window is relatively short and generator decisions are
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Fig. 8. Illustration of Albuquerque MEWS shift for July SSP5-8.5 95% CI for HW shift and future year 2050.
Fig. 9. Example load and electricity dispatch profile for one week in August of a single scenario-year pairing of the Albuquerque case study.
made in a day-ahead or real-time market, and in which VRE changes
can have a significant impact on pricing; this phenomenon is likely due
to the behind-the-meter nature of our model, in which the pricing from
the utility is relatively stable over the course of the year and, in our
case, deterministic. The 95% CI on each case study’s optimality gap
has an upper bound of less than 5%, indicating that the sample sizes
employed for the recourse problem were sufficient to provide a high-
quality stochastic solution. Fig. 10 summarizes the designs selected for
the Kodiak case study as sources of uncertainty are incrementally added
and evaluates the expected LCC of each solution using the same out-of-
sample validation scenarios as shown in the prior results. The MEWS
instance was developed when only considering the anticipated effects
of climate-driven extreme temperature events on load growth. The
MEWS & PG instance considers the anticipated effects of climate-driven
extreme temperature events and population growth on load growth,
where ‘‘PG’’ represents population growth. In the MEWS & PG & VRE
instance, the anticipated effects of climate-driven extreme temperature
events and population growth on load growth as well as a variety of
VRE profiles are considered. The RP instance then adds the anticipated
effects of climate change on VRE availability in scenario generation.
Considering all of the above sources of uncertainty in the scenario
generation methodology for the Kodiak case study prevents oversizing
11
Table 2
Summary of microgrid designs and expected lifecycle costs under the BAU case of
purchasing nothing, and solving the EV (i.e., deterministic) and RP (i.e., model ())
instances for the Kodiak and Albuquerque case studies.

Result Kodiak Albuquerque

BAU LCC [$MM] 23.0 0.771
EV design Wind: 3057 kW PV: 189.75 kW
EV LCC [$MM] 24.8 0.602
RP design (X*) Wind: 855 kW PV: 179.25 kW
RP LCC [$MM] 22.4 0.601
Expected savings vs. BAU [$MM] 0.573 0.184
EVSS [$MM] 2.4 0.001

95% confidence interval on
optimality gap [%]

[0, 4.51] [0, 0.923]

the wind turbine, resulting in an improved expected LCC compared to
other (incomplete) scenario generation methods.

3.4. Resilience assessment

Figs. 11 and 12 summarize the resilience results for the Kodiak and
Albuquerque case studies, respectively. The left sub-figures show the
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Fig. 10. Summary of expected lifecycle cost and optimal wind system size for the Kodiak case study, as additional sources of uncertainty are added using the methodology in
Section 2.

Fig. 11. Summary of outage survival statistics, with and without (a) the optimal design obtained by solving model (), and (b) the assumed existing backup system, for the
Kodiak case study.

Fig. 12. Summary of outage survival statistics, with and without the optimal design obtained by solving model (), for the Albuquerque case study.
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Fig. 13. Comparison of resilience metrics for the Kodiak case study with and without (i) the optimal microgrid design obtained by solving model (), and (ii) the existing backup
system. ‘‘AUC’’ represents the 𝐴𝑈𝐶𝑁

𝑁
of the specified outage duration and ‘‘Prob’’ represents the probability of survival of the specified outage duration.
Fig. 14. Comparison of resilience metrics for the Albuquerque case study with the optimal microgrid design obtained by solving model (). ‘‘AUC’’ represents the 𝐴𝑈𝐶𝑁

𝑁
of the

specified outage duration and ‘‘Prob’’ represents the probability of survival of the specified outage duration.
probability of survival of a given outage duration, while the right sub-
figures display the outage survival by time step. The results show that
while adding renewable technologies can supplement existing backup
infrastructure to significantly extend the outage survival, the intermit-
tency of VRE resources prevent these additional assets from provid-
ing backup power in the absence of co-located storage or fuel-fired
generators.

Figs. 13 and 14 summarize the resilience metrics described in
Section 2.5 for Kodiak and Albuquerque, respectively. For both case
studies, the BAU case has a value of zero for all metrics and system
sizes. Adding the cost-optimal wind turbine to the Kodiak back-up
system increases the AUC of the 336-h outage from 29% to 50% while
the probability of survival of a 336-h outage increases from 0% to 11%.
The lack of a backup system in the Albuquerque case study explains the
limited AUC of a 24-h outage of 6.6% when the cost-optimal PV system
is included.

These results demonstrate how our methodology is able to design
a system that accounts for the long life of electricity-producing assets
and the potential changes in load and VRE resources that may take
13
place for a building or campus over the life of the microgrid. The
differences between the Kodiak and Albuquerque case studies highlight
that the methodology is best-suited for locations with highly variable
and productive VRE resources. Additionally, the resilience measures
for the microgrid improve more prominently when it is paired with a
back-up storage and/or generator system that may not be economical to
purchase when optimizing for expected long-term utility, procurement
and operations costs.

3.5. Caveats

While the initial weather files that serve as input to EnergyPlus to
generate the load profiles are also that which populate the VRE profiles,
the additional adjustments we apply to these profiles as described
in Sections 2.2–2.3 are applied independently using separate forecast
models, i.e., the adjustments to VRE do not impact the temperature
profiles. It would be preferable to directly use a single local, down-
scaled climate projection model as a source of weather, such as those
applied in [77,78] and presented in [79] in the place of scalar multiples
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that maintain the shape of the load and VRE profile and only alter
magnitude; this is an opportunity for further improvement of our multi-
year load and VRE forecasting framework, which we intend to develop
in future work.

4. Conclusions and future work

In this paper, we augment an existing microgrid design and dis-
patch model to consider uncertainties including future load growth,
climate change impacts on load, and climate change impacts on VRE
availability. Our novel contribution includes a two-stage stochastic
programming extension of an existing mixed-integer linear program
and a scenario generation methodology that incorporates these sources
of uncertainty. We illustrate the value of the methodology by selecting
two case studies that vary significantly in climate, VRE availability, and
site load. The results show that our methodology is well-suited for sites
with high VRE variability, and that adding renewable technologies to
an existing backup system can significantly extend the resilience of the
site in extended outages.

The methodology that we present is general enough to include
the heating and cooling technologies available in REopt, and analy-
sis of co-optimizing design for thermal and electrical loads will be
explored in future work. The methodology could also be extended to
consider weather-induced outage events in addition to the heat waves
and cold snaps provided by MEWS. Applying this methodology on a
wider variety of climate zones, building types, and load patterns may
help to assess what the cost of additional resilience would be for a
given building by including stochastic outages within the optimization,
instead of optimizing for cost and then assessing resilience afterward.
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Appendix A. Model () (REopt) formulation

This appendix introduces the complete formulation of the mixed-
integer linear programming formulation used in our methodology. The
formulation is a direct extension of both Hirwa et al. and Ogunmodede
et al. [66,80]. We first provide notation used for these additions, in
alphabetic order, and categorized as: (i) indices and sets, (ii) parame-
ters, and (iii) variables. Our naming convention represents sets using
calligraphic capital letters, parameters employing lower-case letters,
and variables invoking upper-case letters. Subscripts denote indices,
whereas superscripts and other ‘‘decorations’’ represent similar con-
structs such as scenarios with the same ‘‘stem’’. This formulation spans
the equivalent of a single scenario-year pairing in our model (), for
which we provide more details in Appendix B.

A.1. Sets and parameters

Sets
 Storage systems
 Technology classes
 Time-of-use demand periods
 Electrical time-of-use demand tiers
 Fuel types
 Time steps
 Subdivisions of power rating
 Months of the year
 Monthly peak demand tiers
 Outages (groups of consecutive hours)
 Power rating segments
 Technologies
 Total electrical energy pricing tiers
 Net metering regimes
Subsets and indexed sets
e ⊆  Electrical storage systems
c ⊆ th Cold thermal energy storage systems
h ⊆ th Hot thermal energy storage systems
th ⊆  Thermal energy storage systems
d ⊆  Diesel fuel
𝑑 ⊆  Time steps within electrical power

time-of-use demand tier 𝑑
g ⊆  Time steps in which grid purchasing is

available
𝑚 ⊆  Time steps within a given month 𝑚
𝑡 ⊆  Subdivisions applied to technology 𝑡
c ⊆  Capital cost subdivisions
lb Look-back months considered for peak

pricing
𝑡𝑘 ⊆  Power rating segments from

subdivision 𝑘 applied to technology 𝑡
𝑏 ⊆  Technologies that can charge storage

system 𝑏
𝑐 ⊆  Technologies in class 𝑐
𝑓 ⊆  Technologies that burn fuel type 𝑓
𝑢 ⊆  Technologies that may access electrical

energy sales pricing tier 𝑢
𝑣 ⊆  Technologies that may access

net-metering regime 𝑣
 ac ⊆  cl Absorption chillers
 CHP ⊆  f CHP technologies
 cl ⊆  Cooling technologies
 e ⊆  Electricity-producing technologies
 ec ⊆  cl Electric chillers
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 f ⊆  e Fuel-burning, electricity-producing
technologies

 g ⊆  e Generator technologies
 ht ⊆  Heating technologies
 td ⊆  Technologies that cannot turn down,

i.e., PV and wind
 c ⊆  s Electrical energy curtailment pricing

tiers
 nm ⊆  𝑠 Electrical energy sales pricing tiers

used in net metering
 s ⊆  Electrical energy sales pricing tiers
 s

𝑡 ⊆  s Electrical energy sales pricing tiers
accessible by technology 𝑡

 sb ⊆  s Electrical energy sales pricing tiers
accessible by storage

Scaling parameters
𝑀 Sufficiently large number [various]
𝛥 Time step scaling [h]
Parameters for costs and their functional forms
𝑐afc Utility annual fixed charge [$]
𝑐amc Utility annual minimum charge [$]
𝑐cb
𝑡𝑠 𝑦-intercept of capital cost curve for

technology 𝑡 in segment 𝑠
[$]

𝑐cm
𝑡𝑠 Slope of capital cost curve for

technology 𝑡 in segment 𝑠
[$/kW]

𝑐e
𝑢ℎ Export rate for energy in energy

demand tier 𝑢 in time step ℎ
[$/kWh]

𝑐g
𝑢ℎ Grid energy cost in energy demand

tier 𝑢 during time step ℎ
[$/kWh]

𝑐kW
𝑏 Capital cost of power capacity for

storage system 𝑏
[$/kW]

𝑐kWh
𝑏 Capital cost of energy capacity for

storage system 𝑏
[$/kWh]

𝑐omb
𝑏 Operation and maintenance cost of

storage system 𝑏 per unit of energy
rating

[$/kWh]

𝑐omp
𝑡 Operation and maintenance cost of

technology 𝑡 per unit of production
[$/kWh]

𝑐om𝜎
𝑡 Operation and maintenance cost of

technology 𝑡 per unit of power rating,
including standby charges

[$/kW]

𝑐r
𝑑𝑒 Cost per unit peak demand in

time-of-use demand period 𝑑 and tier 𝑒
[$/kW]

𝑐rm
𝑚𝑛 Cost per unit peak demand in tier 𝑛

during month 𝑚
[$/kW]

𝑐u
𝑓 Unit cost of fuel type 𝑓 [$/MMBTU]

𝑐uml Cost of unmet load [$/kWh]
Demand parameters
𝛿d
ℎ Electrical load in time step ℎ [kW]
𝛿c
ℎ Cooling load in time step ℎ [kW]
𝛿gs
𝑢 Maximum allowable sales in electrical

energy demand tier 𝑢
[kWh]

𝛿h
ℎ Heating load in time step ℎ [kW]
𝛿lp Look-back proportion for ratchet

charges
[fraction]

𝛿mt
𝑛 Maximum monthly electrical power

demand in peak pricing tier 𝑛
[kW]

𝛿t
𝑒 Maximum power demand in

time-of-use demand tier 𝑒
[kW]

𝛿tu
𝑢 Maximum monthly electrical energy

demand in tier 𝑢
[kWh]
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Incentive parameters
𝚤𝑡 Upper incentive limit for technology 𝑡 [$]
𝑖n𝑣 Net metering limits in net metering

regime 𝑣
[kW]

𝑖r𝑡 Incentive rate for technology 𝑡 [$/kWh]
𝚤𝜎𝑡 Maximum power rating for obtaining

production incentive for technology 𝑡
[kW]

Technology-specific time-series factor parameters
𝑓 ed
𝑡ℎ Electrical power derate factor of

technology 𝑡 at time step ℎ
[unitless]

𝑓 fa
𝑡ℎ Fuel burn ambient correction factor of

technology 𝑡 at time step ℎ
[unitless]

𝑓ha
𝑡ℎ Hot water ambient correction factor of

technology 𝑡 at time step ℎ
[unitless]

𝑓ht
𝑡ℎ Hot water thermal grade correction

factor of technology 𝑡 at time step ℎ
[unitless]

𝑓p
𝑡ℎ Production factor of technology 𝑡

during time step ℎ
[unitless]

Technology-specific factor parameters
𝑓d
𝑡 Derate factor for turbine technology 𝑡 [unitless]

𝑓 l
𝑡 Levelization factor of technology 𝑡 [fraction]

𝑓 li
𝑡 Levelization factor of production

incentive for technology 𝑡
[fraction]

𝑓pf
𝑡 Present worth factor for fuel for

technology 𝑡
[unitless]

𝑓pi
𝑡 Present worth factor for incentives for

technology 𝑡
[unitless]

̄
𝑓 td
𝑡 Minimum turn down for technology 𝑡 [unitless]
Generic factor parameters
𝑓 e Energy present worth factor [unitless]
𝑓om O&M present worth factor [unitless]
𝑓 tot Tax rate factor for off-taker [fraction]
𝑓 tow Tax rate factor for owner [fraction]
Power rating and fuel limit parameters
𝑏fa
𝑓 Amount of available fuel of type 𝑓 [MMBTU]

̄
𝑏𝜎𝑐 Minimum power rating for technology

class 𝑐
[kW]

�̄�𝜎𝑡 Maximum power rating for technology
𝑡

[kW]

̄
𝑏𝜎s
𝑡𝑘𝑠 Minimum power rating for technology

𝑡, subdivision 𝑘, segment 𝑠
[kW]

�̄�𝜎s
𝑡𝑘𝑠 Maximum power rating for technology

𝑡, subdivision 𝑘, segment 𝑠
[kW]

Efficiency parameters
𝜂+
𝑏𝑡 Efficiency of charging storage system 𝑏

using technology 𝑡
[fraction]

𝜂−𝑏 Efficiency of discharging storage
system 𝑏

[fraction]

𝜂ac Absorption chiller efficiency [fraction]
𝜂b Boiler efficiency [fraction]
𝜂ec Electric chiller efficiency [fraction]
𝜂g+ Efficiency of charging electrical

storage using grid power
[fraction]

Storage parameters
�̄�bkW

𝑏 Maximum power output of storage
system 𝑏

[kW]

̄
𝑤bkW

𝑏 Minimum power output of storage
system 𝑏

[kW]

�̄�bkWh
𝑏 Maximum energy capacity of storage

system 𝑏
[kWh]
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̄
𝑤bkWh

𝑏 Minimum energy capacity of storage
system 𝑏

[kWh]

𝑤d
𝑏 Decay rate of storage system 𝑏 [1/h]

̄
𝑤mcp

𝑏 Minimum percent state of charge of
storage system 𝑏

[fraction]

𝑤0
𝑏 Initial percent state of charge of

storage system 𝑏
[fraction]

Fuel burn parameters
𝑚fb
𝑡 𝑦-intercept of the fuel rate curve for

technology 𝑡
[MMBTU/h]

𝑚fbm
𝑡 Fuel burn rate 𝑦-intercept per unit size

for technology 𝑡
[MMBTU/kWh]

𝑚fm
𝑡 Slope of the fuel rate curve for

technology 𝑡
[MMBTU/kWh]

CHP thermal performance parameters
𝑘te
𝑡 Thermal energy production of CHP

technology 𝑡 per unit electrical output
[unitless]

𝑘tp
𝑡 Thermal power production of CHP

technology 𝑡 per unit power rating
[unitless]

A.2. Variables

Boundary conditions
𝑋se

𝑏,0 Initial state of charge for storage system 𝑏 [kWh]

Continuous variables
𝑋bkW

𝑏 Power rating for storage system 𝑏 [kW]
𝑋bkWh

𝑏 Energy rating for storage system 𝑏 [kWh]
𝑋de

𝑑𝑒 Peak electrical power demand allocated
to tier 𝑒 and time-of-use demand period 𝑑

[kW]

𝑋dfs
𝑏ℎ Power discharged from storage system 𝑏

during time step ℎ
[kW]

𝑋dn
𝑚𝑛 Peak electrical power demand allocated

to tier 𝑛 during month 𝑚
[kW]

𝑋f
𝑡ℎ Fuel burned by technology 𝑡 in time step

ℎ
[MMBTU/h]

𝑋fb
𝑡ℎ 𝑦-intercept of fuel burned by technology 𝑡

in time step ℎ
[MMBTU/h]

𝑋g
𝑢ℎ Power purchased from the grid for

electrical load in demand tier 𝑢 during
time step ℎ

[kW]

𝑋gts
ℎ Electrical power delivered to storage by

the grid in time step ℎ
[kW]

𝑋mc Annual utility minimum charge adder [$]
𝑋pi

𝑡 Production incentive collected for
technology 𝑡

[$]

𝑋plb Peak electrical demand during look back
periods

[kW]

𝑋ptg
𝑡𝑢ℎ Exports from production to the grid by

technology 𝑡 in demand tier 𝑢 during time
step ℎ

[kW]

𝑋pts
𝑏𝑡ℎ Power from technology 𝑡 used to charge

storage system 𝑏 during time step ℎ
[kW]

𝑋ptw
𝑡ℎ Thermal power from technology 𝑡 sent to

waste or curtailed during time step ℎ
[kW]

𝑋rp
𝑡ℎ Rated production of technology 𝑡 during

time step ℎ
[kW]

𝑋𝜎
𝑡 Power rating of technology 𝑡 [kW]

𝑋𝜎s
𝑡𝑘𝑠 Power rating of technology 𝑡 allocated to

subdivision 𝑘, segment 𝑠
[kW]

𝑋se
𝑏ℎ State of charge of storage system 𝑏 at the

end of time step ℎ
[kWh]
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𝑋stg
𝑢ℎ Exports from storage to the grid in

demand tier 𝑢 during time step ℎ
[kW]

𝑋tp
𝑡ℎ Thermal production of technology 𝑡 in

time step ℎ
[kW]

𝑋tpb
𝑡ℎ 𝑦-intercept of thermal production of CHP

technology 𝑡 in time step ℎ
[kW]

𝑋uml
ℎ Unmet load at time step ℎ [kW]

Binary variables
𝑍dmt

𝑚𝑛 1 If tier 𝑛 has allocated demand during
month 𝑚; 0 otherwise

[unitless]

𝑍dt
𝑑𝑒 1 if tier 𝑒 has allocated demand during

time-of-use period 𝑑; 0 otherwise
[unitless]

𝑍nmil
𝑣 1 If generation is in net metering

interconnect limit regime 𝑣; 0 otherwise
[unitless]

𝑍pi
𝑡 1 If production incentive is available for

technology 𝑡; 0 otherwise
[unitless]

𝑍𝜎s
𝑡𝑘𝑠 1 If technology 𝑡 in subdivision 𝑘,

segment 𝑠 is chosen; 0 otherwise
[unitless]

𝑍to
𝑡ℎ 1 If technology 𝑡 is operating in time step

ℎ; 0 otherwise
[unitless]

𝑍ut
𝑚𝑢 1 If demand tier 𝑢 is active in month 𝑚; 0

otherwise
[unitless]

.3. Objective function

̂) minimize
∑

𝑡∈ ,𝑘∈c ,𝑠∈𝑡𝑘

(

𝑐cm
𝑡𝑠 ⋅𝑋𝜎s

𝑡𝑘𝑠 + 𝑐cb
𝑡𝑠 ⋅𝑍𝜎s

𝑡𝑘𝑠

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Generating Technology Capital Costs

+
∑

𝑏∈

(

𝑐kW
𝑏 ⋅𝑋bkW

𝑏 + (𝑐kWh
𝑏 + 𝑐omb

𝑏 ) ⋅𝑋bkWh
𝑏

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Storage Capital Costs

+

(1 − 𝑓 tow) ⋅ 𝑓om ⋅
(

∑

𝑡∈
𝑐om𝜎
𝑡 ⋅𝑋𝜎

𝑡

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Fixed O&M Costs

+
∑

𝑡∈ f ,ℎ∈

𝑐omp
𝑡 ⋅𝑋rp

𝑡ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Variable O&M Costs

)

+ (1 − 𝑓 tot) ⋅ 𝛥 ⋅
∑

𝑓 ∈
𝑐u
𝑓 ⋅

∑

𝑡∈𝑓 ,ℎ∈
𝑓pf
𝑡 ⋅𝑋f

𝑡ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Fuel Charges

+

∑

ℎ∈
𝑋uml

ℎ

⏟⏞⏞⏟⏞⏞⏟
Unmet Load Costs

+(1 − 𝑓 tot) ⋅ 𝑓 e⋅

(

𝛥 ⋅
∑

𝑢∈ p ,ℎ∈g
𝑐g
𝑢ℎ ⋅𝑋

g
𝑢ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Grid Energy Charges

+
∑

𝑑∈,𝑒∈
𝑐r
𝑑𝑒 ⋅𝑋

de
𝑑𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Time-of-Use Demand Charges

+
∑

𝑚∈,𝑛∈
𝑐rm
𝑚𝑛 ⋅𝑋dn

𝑚𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Monthly Demand Charges

+

𝑐afc +𝑋mc
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Fixed Charges

−𝛥 ⋅
(

∑

ℎ∈g

(

∑

𝑢∈ sb
𝑐e
𝑢ℎ ⋅𝑋

stg
𝑢ℎ +

∑

𝑡∈ ,𝑢∈ s
𝑡

𝑐e
𝑢ℎ ⋅𝑋

ptg
𝑡𝑢ℎ

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Energy Export Payment

)

− (1 − 𝑓 tow) ⋅
∑

𝑡∈
𝑋pi

𝑡

⏟⏟⏟
Production Incentives

he objective function is the same as that in () and minimizes
nergy life cycle cost, i.e., capital costs, O&M costs, and utility costs;
t maximizes (by subtracting) payments for energy exports and other

ncentives.
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A.4. Constraints

We mathematically present and describe the remaining constraints
from [14].

A.4.1. Fuel constraints

𝛥 ⋅
∑

𝑡∈𝑓 ,ℎ∈
𝑋f

𝑡ℎ ≤ 𝑏fa
𝑓 ∀𝑓 ∈  ⧵ d (A.1a)

𝛥 ⋅
∑

𝑡∈𝑓 ,ℎ∈out
𝑜

𝑋f
𝑡ℎ ≤ 𝑏fa

𝑓 ∀𝑓 ∈ d, 𝑜 ∈  (A.1b)

𝑋f
𝑡ℎ = 𝑚fm

𝑡 ⋅ 𝑓p
𝑡ℎ ⋅𝑋

rp
𝑡ℎ + 𝑚fb

𝑡 ⋅𝑍to
𝑡ℎ ∀𝑡 ∈  g, ℎ ∈  (A.1c)

𝑋f
𝑡ℎ = 𝑓 fa

𝑡ℎ ⋅
(

𝑋fb
𝑡ℎ + 𝑓p

𝑡ℎ ⋅ 𝑚
fm
𝑡 ⋅𝑋rp

𝑡ℎ
)

∀𝑡 ∈  𝐶𝐻𝑃 , ℎ ∈  (A.1d)

𝑚fbm
𝑡 ⋅𝑋𝜎

𝑡 −𝑀 ⋅ (1 −𝑍to
𝑡ℎ ) ≤ 𝑋fb

𝑡ℎ ∀𝑡 ∈  CHP, ℎ ∈  (A.1e)

𝑋f
𝑡ℎ = 𝑚fm

𝑡 ⋅𝑋tp
𝑡ℎ ∀𝑡 ∈  ht ⧵  𝐶𝐻𝑃 , ℎ ∈  (A.1f)

Constraints (A.1a)–(A.1c) enforce the fuel requirements for the
combustion-powered technologies. Specifically, constraint (A.1a) limits
the available quantity for each fuel type except for diesel (e.g., natural
gas) per annum. Constraint (A.1a) is consistent with [14] with the
exception of the removal of the diesel generator technology, which is
now treated separately in constraint (A.1b). Constraint (A.1b) limits the
available quantity of diesel fuel consumed during an outage with the
assumption that a tank gets refilled before the start of the next outage.
Constraint (A.1c) calculates the amount of fuel burned by each diesel
generator in each time step as a function of the generator’s (i) power
output and (ii) runtime, an assumption that [13] verify using industry
fuel consumption data. Constraint (A.1d) defines fuel consumption
for CHP systems using both a per-operating-hour rate and a per-unit-
production rate; constraint (A.1e) sets this decision variable to a fixed
proportion of the system’s power rating if it is operating, and to zero
otherwise. Constraint (A.1f) enforces a variable burn rate per unit of
energy produced for each electric, non-CHP technology.

A.4.2. Thermal production constraints

𝑋tpb
𝑡ℎ ≤ min

{

𝑘tp
𝑡 ⋅𝑋𝜎

𝑡 ,𝑀 ⋅𝑍to
𝑡ℎ

}

∀𝑡 ∈  CHP, ℎ ∈  (A.2a)

𝑋tpb
𝑡ℎ ≥ 𝑘tp

𝑡 ⋅𝑋𝜎
𝑡 −𝑀 ⋅ (1 −𝑍to

𝑡ℎ ) ∀𝑡 ∈  CHP, ℎ ∈  (A.2b)

𝑓ha
𝑡ℎ ⋅ 𝑓ht

𝑡ℎ ⋅
(

𝑘te
𝑡 ⋅ 𝑓p

𝑡ℎ ⋅𝑋
rp
𝑡ℎ +𝑋tpb

𝑡ℎ

)

= 𝑋tp
𝑡ℎ ∀𝑡 ∈  CHP, ℎ ∈  (A.2c)

Constraints (A.2a)–(A.2b) limit the fixed component of thermal pro-
duction of CHP technology 𝑡 in time step ℎ to the product of the thermal
power production per unit of power rating and the power rating itself
if the technology is operating, and 0 if it is not. Constraint (A.2c)
relates the thermal production of a CHP technology to its constituent
components, where the relationship includes a term that is proportional
to electrical power production in each time step.

A.4.3. Storage system constraints

Boundary Conditions and Size Limits

𝑋se
𝑏,0 = 𝑤0

𝑏 ⋅𝑋
bkWh
𝑏 ∀𝑏 ∈  (A.3a)

̄
𝑤bkWh

𝑏 ≤ 𝑋bkWh
𝑏 ≤ �̄�bkWh

𝑏 ∀𝑏 ∈  (A.3b)

̄
𝑤bkW

𝑏 ≤ 𝑋bkW
𝑏 ≤ �̄�bkW

𝑏 ∀𝑏 ∈  (A.3c)

Constraint (A.3a) initializes a storage system’s state of charge using
a fraction of its energy rating; constraints (A.3b) and (A.3c) limit
the storage system size under the implicit assumption that a storage
17

system’s power and energy ratings are independent. These constraints s
are identical to those given in (), but work in conjunction with
significantly modified storage constraints that directly follow.

Storage Operations

𝑋pts
𝑏𝑡ℎ +

∑

𝑢∈ s
𝑡

𝑋ptg
𝑡𝑢ℎ ≤ 𝑓p

𝑡ℎ ⋅ 𝑓
l
𝑡 ⋅𝑋

rp
𝑡ℎ ∀𝑏 ∈ e, 𝑡 ∈  e, ℎ ∈ g (A.3d)

𝑋pts
𝑏𝑡ℎ ≤ 𝑓p

𝑡ℎ ⋅ 𝑓
l
𝑡 ⋅𝑋

rp
𝑡ℎ ∀𝑏 ∈ e, 𝑡 ∈  e, ℎ ∈  ⧵g (A.3e)

pts
𝑏𝑡ℎ ≤ 𝑓p

𝑡ℎ ⋅𝑋
tp
𝑡ℎ ∀𝑏 ∈ th, 𝑡 ∈ 𝑏 ⧵  CHP, ℎ ∈  (A.3f)

pts
𝑏𝑡ℎ +𝑋ptw

𝑡ℎ ≤ 𝑋tp
𝑡ℎ ∀𝑏 ∈ h, 𝑡 ∈  CHP, ℎ ∈  (A.3g)

se
𝑏ℎ = 𝑋se

𝑏,ℎ−1 + 𝛥 ⋅

(

∑

𝑡∈ e
(𝜂+

𝑏𝑡 ⋅𝑋
pts
𝑏𝑡ℎ) + 𝜂g+ ⋅𝑋gts

ℎ −𝑋dfs
𝑏ℎ ∕𝜂−𝑏

)

∀𝑏 ∈ e, ℎ ∈ g (A.3h)

se
𝑏ℎ = 𝑋se

𝑏,ℎ−1 + 𝛥 ⋅

(

∑

𝑡∈ e
(𝜂+

𝑏𝑡 ⋅𝑋
pts
𝑏𝑡ℎ) −𝑋dfs

𝑏ℎ ∕𝜂−𝑏

)

∀𝑏 ∈ e, ℎ ∈  ⧵g (A.3i)

se
𝑏ℎ = 𝑋se

𝑏,ℎ−1 + 𝛥 ⋅
⎛

⎜

⎜

⎝

∑

𝑡∈𝑏

𝜂+
𝑏𝑡 ⋅𝑋

pts
𝑏𝑡ℎ −𝑋dfs

𝑏ℎ ∕𝜂−𝑏 −𝑤d
𝑏 ⋅𝑋

se
𝑏ℎ

⎞

⎟

⎟

⎠

∀𝑏 ∈ th, ℎ ∈  (A.3j)
se
𝑏ℎ ≥

̄
𝑤mcp

𝑏 ⋅𝑋bkWh
𝑏 ∀𝑏 ∈ , ℎ ∈  (A.3k)

Constraints (A.3d) and (A.3e) restrict the electrical power that
harges storage and is exported to the grid (in the former case), or that
harges storage only (in the latter case, when grid export is unavailable)
rom each technology in each time step relative to the amount of
lectricity produced. Constraint (A.3f) provides an analogous restric-
ion to that of constraint (A.3e) for thermal production, and constraint
A.3g) provides the same restriction for the thermal production of
HP systems. Constraints (A.3h), (A.3i), and (A.3j) balance state of
harge for each storage system and time period for three specific cases,
espectively: (i) available grid-purchased electricity, (ii) lack of grid-
urchased electricity, and (iii) thermal storage, in which we account
or decay. Constraint (A.3k) ensures that minimum state-of-charge
equirements are not violated.

harging Rates
bkW
𝑏 ≥

∑

𝑡∈𝑏

𝑋pts
𝑏𝑡ℎ +𝑋gts

ℎ +𝑋dfs
𝑏ℎ ∀𝑏 ∈ e, ℎ ∈ g (A.3l)

bkW
𝑏 ≥

∑

𝑡∈𝑏

𝑋pts
𝑏𝑡ℎ +𝑋dfs

𝑏ℎ ∀𝑏 ∈ e, ℎ ∈  ⧵g (A.3m)

bkW
𝑏 ≥

∑

𝑡∈𝑏

𝑋pts
𝑏𝑡ℎ +𝑋dfs

𝑏ℎ ∀𝑏 ∈ th, ℎ ∈  (A.3n)

se
𝑏ℎ ≤ 𝑋bkWh

𝑏 ∀𝑏 ∈ , ℎ ∈  (A.3o)

Constraints (A.3l) and (A.3m) require that a battery’s power rating
ust meet or exceed its rate of charge or discharge; the latter constraint

onsiders the case in which the grid is not available. Constraint (A.3n)
eflects the power requirements for the thermal system. Constraint
A.3o) requires a storage system’s energy level to be at or below the
orresponding rating.

old and hot thermal loads
∑

∈ 𝑐𝑙

𝑓p
𝑡ℎ ⋅𝑋

tp
𝑡ℎ +

∑

𝑏∈𝑐
𝑋dfs

𝑏ℎ = 𝛿c
ℎ ⋅ 𝜂

ec +
∑

𝑏∈c ,𝑡∈ cl
𝑋pts

𝑏𝑡ℎ ∀ℎ ∈  (A.4a)

∑

∈ CHP
𝑋tp

𝑡ℎ +
∑

𝑡∈ ht⧵ CHP
𝑓p
𝑡ℎ ⋅𝑋

tp
𝑡ℎ +

∑

𝑏∈h
𝑋dfs

𝑏ℎ = 𝛿h
ℎ ⋅ 𝜂b +

∑

𝑡∈ CHP
𝑋ptw

𝑡ℎ +
∑

𝑏∈h ,𝑡∈ ht
𝑋pts

𝑏𝑡ℎ +
∑

𝑡∈ ac
𝑋tp

𝑡ℎ∕𝜂
ac ∀ℎ ∈  (A.4b)

Constraints (A.4a) and (A.4b) balance cold and hot thermal loads,
espectively, by equating the power production and the power from

torage with the sum of the demand, the power to storage, and, in
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the case of cold loads, from the absorption chillers as well. Here, for
legacy reasons, we have scaled the power by the efficiency of the
respective technology; based on our variable definitions, we could have
equivalently adjusted these by a coefficient of performance.

A.4.4. Production constraints

𝑋rp
𝑡ℎ ≤ �̄�𝜎𝑡 ⋅𝑍to

𝑡ℎ ∀𝑡 ∈  , ℎ ∈  (A.5a)

̄
𝑓 td
𝑡 ⋅𝑋𝜎

𝑡 −𝑋rp
𝑡ℎ ≤ �̄�𝜎𝑡 ⋅ (1 −𝑍to

𝑡ℎ ) ∀𝑡 ∈  , ℎ ∈  (A.5b)

𝑋tp
𝑡ℎ ≤ 𝑋𝜎

𝑡 ∀𝑡 ∈  ⧵  e, ℎ ∈  (A.5c)

Constraint set (A.5) ensures that the rated production lies between
a minimum turn-down threshold and a maximum system size; con-
straints (A.5a) and (A.5b) are copied from [80], while constraint (A.5c)
is new. Constraint (A.5a) restricts system power output to its rated
capacity when the technology is operating, and to 0 otherwise. Con-
straint (A.5b) ensures a minimum power output while a technology is
operating; otherwise, the constraint is dominated by simple bounds on
production. Constraint (A.5c) ensures that the thermal production of
non-CHP heating and cooling technologies does not exceed system size.

A.4.5. Production incentives

𝑋pi
𝑡 ≤ min

{

𝚤𝑡 ⋅𝑍
pi
𝑡 ,

∑

ℎ∈
𝛥 ⋅ 𝑖r𝑡 ⋅ 𝑓

pi
𝑡 ⋅ 𝑓p

𝑡ℎ ⋅ 𝑓
li
𝑡 ⋅𝑋rp

𝑡ℎ

}

∀𝑡 ∈  (A.6a)

𝑋𝜎
𝑡 ≤ 𝚤𝜎𝑡 +M ⋅ (1 −𝑍pi

𝑡 ) ∀𝑡 ∈  (A.6b)

Constraint (A.6a) calculates total production incentives, if available, for
each technology. Constraint (A.6b) sets an upper bound on the size of
system that qualifies for production incentives, if production incentives
are available.

A.4.6. Power rating

𝑋𝜎
𝑡 ≤ �̄�𝜎𝑡 ⋅

∑

𝑠∈𝑡𝑘

𝑍𝜎s
𝑡𝑘𝑠 ∀𝑐 ∈ , 𝑡 ∈ 𝑐 , 𝑘 ∈ 𝑡 (A.7a)

∑

𝑡∈𝑐 ,𝑠∈𝑡𝑘

𝑍𝜎s
𝑡𝑘𝑠 ≤ 1 ∀𝑐 ∈ , 𝑘 ∈  (A.7b)

∑

𝑡∈𝑐

𝑋𝜎
𝑡 ≥

̄
𝑏𝜎𝑐 ∀𝑐 ∈  (A.7c)

𝑋rp
𝑡ℎ = 𝑋𝜎

𝑡 ∀𝑡 ∈  td, ℎ ∈  (A.7d)

𝑋rp
𝑡ℎ ≤ 𝑓 ed

𝑡ℎ ⋅𝑋𝜎
𝑡 ∀𝑡 ∈  ⧵  td, ℎ ∈  (A.7e)

̄
𝑏𝜎s
𝑡𝑘𝑠 ⋅𝑍

𝜎s
𝑡𝑘𝑠 ≤ 𝑋𝜎s

𝑡𝑘𝑠 ≤ �̄�𝜎s
𝑡𝑘𝑠 ⋅𝑍

𝜎s
𝑡𝑘𝑠 ∀𝑡 ∈  , 𝑘 ∈ 𝑡, 𝑠 ∈ 𝑡𝑘 (A.7f)

∑

𝑠∈𝑡𝑘

𝑋𝜎s
𝑡𝑘𝑠 = 𝑋𝜎

𝑡 ∀𝑡 ∈  , 𝑘 ∈ 𝑡 (A.7g)

Constraint (A.7a) permits nonzero power ratings only for the se-
lected technology and corresponding subdivision in each class. Con-
straint (A.7b) allows at most one technology to be chosen for each
subdivision in each class. Constraint (A.7c) limits the power rating
to the minimum allowed for a technology class. Constraint (A.7d)
prevents renewable technologies from turning down; rather, they must
provide output at their nameplate capacity. Constraint (A.7e) limits
rated production from all non-renewable technologies to be less than or
equal to the product of the power rating and the derate factor for each
time period. Constraint (A.7f) imposes both lower and upper limits on
power rating of a technology, allocated to a subdivision in a segment,
and constraint (A.7g) sums the segment sizes to the total for a given
technology and subdivision.
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t

A.4.7. Load balancing and grid sales

∑

𝑡∈ e⧵ g
(𝑓p

𝑡ℎ ⋅ 𝑓
l
𝑡 ⋅𝑋

rp
𝑡ℎ ) +

∑

𝑏∈e
𝑋dfs

𝑏ℎ +
∑

𝑢∈ p
𝑋g

𝑢ℎ =
∑

𝑡∈ e⧵ g

∑

𝑏∈e
𝑋pts

𝑏𝑡ℎ

+
∑

𝑡∈ e⧵ g

∑

𝑢∈ s
𝑡

𝑋ptg
𝑡𝑢ℎ +

∑

𝑢∈ sb
𝑋stg

𝑢ℎ +𝑋gts
ℎ +

∑

𝑡∈ 𝑒𝑐
𝑋tp

𝑡ℎ∕𝜂
ec + 𝛿d

ℎ ∀ℎ ∈ 𝑔 (A.8a)

∑

𝑡∈ e
(𝑓p

𝑡ℎ ⋅ 𝑓
l
𝑡 ⋅𝑋

rp
𝑡ℎ ) +

∑

𝑏∈e
𝑋dfs

𝑏ℎ =
∑

𝑏∈e ,𝑡∈ e

(

𝑋pts
𝑏𝑡ℎ +

∑

𝑢∈ c
𝑋ptg

𝑡𝑢ℎ

)

+
∑

𝑡∈ ec
𝑋tp

𝑡ℎ∕𝜂
ec + 𝛿d

ℎ

∀ℎ ∈  ⧵𝑔 (A.8b)
∑

∈ p
𝑋g

𝑢ℎ ≥ 𝑋gts
ℎ ∀ℎ ∈ g (A.8c)

∑

∈e
𝑋dfs

𝑏ℎ ≥
∑

𝑢∈ sb
𝑋stg

𝑢ℎ ∀ℎ ∈ g (A.8d)

⋅
∑

ℎ∈g

⎛

⎜

⎜

⎝

𝑋stg
𝑢ℎ +

∑

𝑡∈𝑢

𝑋ptg
𝑡𝑢ℎ

⎞

⎟

⎟

⎠

≤ 𝛿gs
𝑢 ∀𝑢 ∈  sb ∩ nm (A.8e)

𝛥 ⋅
∑

ℎ∈g ,𝑡∈𝑢

𝑋ptg
𝑡𝑢ℎ ≤ 𝛿gs

𝑢 ∀𝑢 ∈  nm ⧵ sb (A.8f)

𝑋uml
ℎ = 𝛿d

ℎ −
∑

𝑡∈
𝑓 𝑝
𝑡ℎ ⋅ 𝑓

𝑙
𝑡 ⋅𝑋

𝑟𝑝
𝑡ℎ −

∑

𝑏∈𝑒
𝑋𝑑𝑓𝑠

𝑏ℎ −
∑

𝑢∈ 𝑝
𝑋𝑔

𝑢ℎ

+
∑

𝑡∈ 𝑒∕ 𝑔

∑

𝑏∈𝑒
𝑋𝑝𝑡𝑠

𝑏𝑡ℎ +

∑

∈ 𝑒∕ 𝑔

∑

𝑢∈ 𝑠
𝑡

𝑋𝑝𝑡𝑔
𝑡𝑢ℎ +

∑

𝑢∈ 𝑠𝑏

𝑋𝑠𝑡𝑔
𝑢ℎ ∀ ℎ ∈ , 𝜔 ∈ 𝛺 (A.8g)

Constraint (A.8a) balances load by requiring that the sum of power
i) produced, (ii) discharged from storage, and (iii) purchased from the
rid is equal to the sum of (i) the power charged to storage, (ii) the
ower sold to the grid from in-house production or storage, (iii) the
ower charged to storage directly from the grid, (iv) any additional
ower consumed by the electric chiller (where this is an additional term
elative to the original model ()), and (v) the electrical load on site.
onstraint (A.8b) provides an analogous load-balancing requirement

or hours in which the site is disconnected from the grid due to an
utage (and contains the same additional term relative to the original
odel ()). Constraint (A.8c) restricts charging of storage from grid
roduction to the grid power purchased for each hour. Similarly,
onstraint (A.8d) restricts the sales from the electrical storage system to
ts rate of discharge in each time period. Constraints (A.8e) and (A.8f)
estrict the annual energy sold to the grid at net-metering rates; only
ne of these is implemented in each case according to user-specified
ptions. While a collection of pre-specified technologies may contribute
o net-metering rates in both cases, constraint (A.8e) allows storage to
ontribute to net-metering while constraint (A.8f) does not.

.4.8. Rate tariff constraints

et Metering
∑

∈
𝑍nmil

𝑣 = 1 (A.9a)

∑

∈𝑣

𝑓d
𝑡 ⋅𝑋𝜎

𝑡 ≤ 𝑖n𝑣 ⋅𝑍
nmil
𝑣 ∀𝑣 ∈  (A.9b)

⋅
∑

ℎ∈g

⎛

⎜

⎜

⎝

∑

𝑢∈ nm ,𝑡∈𝑢

𝑋ptg
𝑡𝑢ℎ +

∑

𝑢∈ nm∩ sb
𝑋stg

𝑢ℎ

⎞

⎟

⎟

⎠

≤ 𝛥 ⋅
∑

𝑢∈ p ,ℎ∈g
𝑋g

𝑢ℎ (A.9c)

onstraint (A.9a) limits the net metering to a single regime at a
ime. Constraint (A.9b) restricts the sum of the power rating of all
echnologies to be less than or equal to the net metering regime.
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Constraint (A.9c) ensures that energy sales at net-metering rates do not
exceed the energy purchased from the grid.

Monthly Total Demand Charges

𝛥 ⋅
∑

ℎ∈𝑚

𝑋g
𝑢ℎ ≤ 𝛿tu

𝑢 ⋅𝑍ut
𝑚𝑢 ∀𝑚 ∈ , 𝑢 ∈  p (A.10a)

𝑍ut
𝑚𝑢 ≤ 𝑍ut

𝑚,𝑢−1 ∀𝑢 ∈  p ∶ 𝑢 ≥ 2, 𝑚 ∈  (A.10b)

̄tu
𝑢−1 ⋅𝑍

ut
𝑚𝑢 ≤ 𝛥 ⋅

∑

ℎ∈𝑚

𝑋g
𝑢−1,ℎ ∀𝑢 ∈  p ∶ 𝑢 ≥ 2, 𝑚 ∈  (A.10c)

Constraint (A.10a) limits the quantity of electrical energy purchased
rom the grid in a given month from a specified pricing tier to the max-
mum available. Constraint (A.10b) forces pricing tiers to be charged
n a specific order, and constraint (A.10c) forces one pricing tier’s
urchases to be at capacity if any charges are applied to the next tier.

eak Power Demand Charges: Months

dn
𝑚𝑛 ≤ 𝛿mt

𝑛 ⋅𝑍dmt
𝑚𝑛 ∀𝑛 ∈  , 𝑚 ∈  (A.11a)

dmt
𝑚𝑛 ≤ 𝑍dmt

𝑚,𝑛−1 ∀𝑛 ∈  ∶ 𝑛 ≥ 2, 𝑚 ∈  (A.11b)

̄mt
𝑛−1 ⋅𝑍

dmt
𝑚𝑛 ≤ 𝑋dn

𝑚,𝑛−1 ∀𝑛 ∈  ∶ 𝑛 ≥ 2, 𝑚 ∈  (A.11c)
∑

∈
𝑋dn

𝑚𝑛 ≥
∑

𝑢∈ p
𝑋g

𝑢ℎ ∀𝑚 ∈ , ℎ ∈ 𝑚 (A.11d)

Constraint (A.11a) limits the energy demand allocated to each tier
to no more than the maximum demand allowed. Constraint (A.11b)
forces monthly demand tiers to become active in a prespecified order.
Constraint (A.11c) forces demand to be met in one tier before the
next demand tier. Constraint (A.11d) defines the peak demand to be
greater than or equal to all of the demands across the time horizon,
where an equality is actually induced by the sense of the objective
function. A user-defined option precludes CHP technology production
from reducing peak demand; if selected, constraint (A.11d) becomes:

∑

𝑛∈
𝑋dn

𝑚𝑛 ≥
∑

𝑢∈ p
𝑋g

𝑢ℎ +
∑

𝑡∈ CHP

⎛

⎜

⎜

⎝

𝑓p
𝑡ℎ ⋅ 𝑓

l
𝑡 ⋅𝑋

rp
𝑡ℎ −

∑

𝑏∈h
𝑋pts

𝑏𝑡ℎ −
∑

𝑢∈ 𝑠
𝑡

𝑋ptg
𝑡𝑢ℎ

⎞

⎟

⎟

⎠

∀𝑚 ∈ , ℎ ∈ 𝑚.

eak Power Demand Charges: Time-of-Use Demand and Ratchet Charges

de
𝑑𝑒 ≤ 𝛿t

𝑒 ⋅𝑍
dt
𝑑𝑒 ∀𝑒 ∈  , 𝑑 ∈  (A.12a)

dt
𝑑𝑒 ≤ 𝑍dt

𝑑,𝑒−1 ∀𝑒 ∈  ∶ 𝑒 ≥ 2, 𝑑 ∈  (A.12b)

̄t
𝑒−1 ⋅𝑍

dt
𝑑𝑒 ≤ 𝑋de

𝑑,𝑒−1 ∀𝑒 ∈  ∶ 𝑒 ≥ 2, 𝑑 ∈  (A.12c)
∑

𝑒∈
𝑋de

𝑑𝑒 ≥ max

{

∑

𝑢∈ p
𝑋g

𝑢ℎ, 𝛿
lp ⋅𝑋plb

}

∀𝑑 ∈ , ℎ ∈ 𝑑 (A.12d)

𝑋plb ≥
∑

𝑛∈
𝑋dn

𝑚𝑛 ∀𝑚 ∈ lb (A.12e)

Constraints (A.12a)–(A.12d) correspond to constraints (A.11a)–(A.11d),
respectively, but pertain to a type of charge not related to monthly
use, but rather to time of use within a month. These ratchet charges are
implemented using constraints (A.12d). The charge applied for each
time-of-use period is a linearizable function of the greater of the peak
electrical demand during that period (as given by the first term on the
right-hand side of (A.12d)) and a fraction of the peak demand that
occurs over a collection of months (known as look-back months) during
the year (as given by the second term on the right-hand side of (A.12d)).
Constraint (A.12e) ensures the peak demand over the set of look-back
months is no lower than the peak demand for each look-back month. In
this way, charges are based not only on use in a given month, but also
on a fraction of use over the last several months, and becomes relevant
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when this latter use is high relative to current use. If CHP technologies
are not allowed to reduce peak demand, constraint (A.12d) becomes:

∑

𝑒∈
𝑋de

𝑑𝑒 ≥
∑

𝑢∈ p
𝑋g

𝑢ℎ +
∑

𝑡∈ CHP

⎛

⎜

⎜

⎝

𝑓p
𝑡ℎ ⋅ 𝑓

l
𝑡 ⋅𝑋

rp
𝑡ℎ −

∑

𝑏∈h
𝑋pts

𝑏𝑡ℎ −
∑

𝑢∈ 𝑠
𝑡

𝑋ptg
𝑡𝑢ℎ

⎞

⎟

⎟

⎠

∀𝑑 ∈ , ℎ ∈ 𝑑

A.4.9. Minimum utility charge

𝑋mc ≥𝑐amc −
⎛

⎜

⎜

⎝

𝛥 ⋅
∑

𝑢∈ p ,ℎ∈g
𝑐g
𝑢ℎ ⋅𝑋

g
𝑢ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Grid Energy Charges

+
∑

𝑑∈,𝑒∈
𝑐r
𝑑𝑒 ⋅𝑋

de
𝑑𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Time-of-Use Demand Charges

+
∑

𝑚∈,𝑛∈
𝑐rm
𝑚𝑛 ⋅𝑋dn

𝑚𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Monthly Demand Charges

−

𝛥 ⋅
⎛

⎜

⎜

⎝

∑

ℎ∈g

⎛

⎜

⎜

⎝

∑

𝑢∈ sb
𝑐e
𝑢ℎ ⋅𝑋

stg
𝑢ℎ +

∑

𝑡∈ ,𝑢∈ s
𝑡

𝑐e
𝑢ℎ ⋅𝑋

ptg
𝑡𝑢ℎ

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Energy Export Payment

(A.13)

onstraint (A.13) enforces a minimum payment to the utility provider,
hich is a fixed constant less charges incurred from grid energy, time-
f-use demand and monthly demand payments, plus sales from exports
o the grid.

.4.10. Non-negativity

plb, 𝑋mc ≥ 0 (A.14a)
𝜎
𝑡 , 𝑋

pi
𝑡 ≥ 0 ∀𝑡 ∈  (A.14b)

ptg
𝑡𝑢ℎ ≥ 0 ∀𝑢 ∈  , 𝑡 ∈ 𝑢, ℎ ∈  (A.14c)
stg
𝑢ℎ , 𝑋

g
𝑢ℎ ≥ 0 ∀𝑢 ∈  , ℎ ∈  (A.14d)

de
𝑑𝑒 ≥ 0 ∀𝑑 ∈ , 𝑒 ∈  (A.14e)
dn
𝑚𝑛 ≥ 0 ∀𝑚 ∈ , 𝑛 ∈  (A.14f)
gts
ℎ , 𝑋uml

ℎ ≥ 0 ℎ ∈  (A.14g)
bkW
𝑏 , 𝑋bkWh

𝑏 ≥ 0 𝑏 ∈  (A.14h)
𝜎s
𝑡𝑘𝑠 ≥ 0 ∀𝑡 ∈  , 𝑘 ∈ , 𝑠 ∈ 𝑡𝑘 (A.14i)
pts
𝑏𝑡ℎ ≥ 0 ∀𝑏 ∈ , 𝑡 ∈  , ℎ ∈  (A.14j)
se
𝑏ℎ, 𝑋

dfs
𝑏ℎ ≥ 0 ∀𝑏 ∈ , ℎ ∈  (A.14k)

rp
𝑡ℎ , 𝑋

f
𝑡ℎ, 𝑋

fb
𝑡ℎ , 𝑋

tpb
𝑡ℎ , 𝑋tp

𝑡ℎ , 𝑋
ptw
𝑡ℎ ≥ 0 ∀𝑡 ∈  , ℎ ∈  (A.14l)

A.4.11. Integrality

𝑍nmil
𝑣 ∈ {0, 1} ∀𝑣 ∈  (A.15a)

𝑍𝜎s
𝑡𝑘𝑠 ∈ {0, 1} ∀𝑡 ∈  , 𝑘 ∈ , 𝑠 ∈ 𝑡𝑘 (A.15b)

𝑍pi
𝑡 ∈ {0, 1} ∀𝑡 ∈  (A.15c)

𝑍to
𝑡ℎ ∈ {0, 1} ∀𝑡 ∈  , ℎ ∈  (A.15d)

𝑍dt
𝑑𝑒 ∈ {0, 1} ∀𝑑 ∈ , 𝑒 ∈  (A.15e)

𝑍dmt
𝑚𝑛 ∈ {0, 1} ∀𝑚 ∈ , 𝑛 ∈  (A.15f)

𝑍ut
𝑚𝑢 ∈ {0, 1} ∀𝑚 ∈ , 𝑢 ∈  (A.15g)

Finally, constraints (A.14) ensure all of the variables in our formu-
lation assume non-negative values. In addition to non-negativity re-
strictions, constraints (A.15) establish the integrality of the appropriate

variables.
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Appendix B. Mapping ( ) to ()

A single-scenario instance of model () (i.e., |𝛺| = 1) is a condensed
ersion of the formulation of REopt, (), detailed above in Appendix A.

The variables in () are indexed by scenario-year pairing, 𝜔. Therefore,
for a specific scenario-year pair (i.e., with 𝜔 fixed), we can present a
complete mapping of our formulation to the expanded version. Every
decision variable and constraint in () can be mapped to a variable
and constraint in a scenario-year-specific instance of (), respectively.

The technology and system sizing variable 𝑋 from  is mapped
to the technology purchase variables 𝑋bkW

𝑏 , 𝑋bkWh
𝑏 , 𝑋𝜎

𝑡 , 𝑋s𝜎
𝑡𝑘𝑠, and 𝑍s𝜎

𝑡𝑘𝑠
from . The hourly operational variable 𝑌 𝜔

ℎ from () is mapped to 𝑋rp
𝑡ℎ ,

𝑍to
𝑡ℎ , 𝑋ptg

𝑡𝑢ℎ , 𝑋stg
𝑢ℎ , 𝑋g

𝑢ℎ, 𝑋dfs
𝑏ℎ , 𝑋pts

𝑏𝑡ℎ, 𝑋gts
ℎ , 𝑋f

𝑡ℎ, 𝑋tpb
𝑡ℎ , 𝑋tp

𝑡ℎ , 𝑋ptw
𝑡ℎ , and 𝑋fb

𝑡ℎ from
(). Long-term operational decisions 𝑊 𝜔 from () can be mapped to
𝑍dt

𝑑𝑒, 𝑋
dn
𝑚𝑛, 𝑍dmt

𝑚𝑛 , 𝑍ut
𝑚𝑢, 𝑍nmil

𝑣 , 𝑋de
𝑑𝑒 , 𝑋mc, 𝑋plb, 𝑍pi

𝑡 , and 𝑋pi
𝑡 from (). The

storage state-of-charge variable 𝐵𝜔
ℎ from () can be mapped to 𝑋se

𝑏,0 and
𝑋se

𝑏ℎ from ().
Constraint (4b) from () corresponds to () constraint set (A.7) as

well as constraints (A.3a)–(A.3c) to define the feasible sizing of gener-
ating and storage technologies, respectively. Constraint (4c) from ()
corresponds to () constraint sets (A.1), (A.2), (A.4), (A.5), and (A.6)
as well as constraints (A.3d)–(A.3g), (A.3l)–(A.3o), and (A.8a)–(A.8f).
Constraint (4d) from () corresponds to () constraint sets (A.9),
(A.10), (A.11), and (A.12) as well as constraint (A.13). Constraint (4e)
was introduced in () and corresponds to constraint (A.8g) in (). To
maintain the established nomenclature from (), our original variable
for unmet load, 𝑉 𝜔

ℎ was updated to 𝑋uml
ℎ . Constraints (4f)–(4h) from ()

correspond to () constraints (A.3h)–(A.3k). The variables in () are
also subject to non-negativity and integrality constraints. In the interest
of space, the non-negativity and integrality constraints presented in
() are grouped by variables with the same indices. As a result, some
constraints from () such as constraint (A.14a) correspond directly
to constraint (4d) in () while other constraints from () such as
constraint (A.14b) establish the non-negativity of variables 𝑋𝜎

𝑡 and
𝑋pi

𝑡 which correspond to constraints (4b) and (4c) from (), respec-
tively. All variables, continuous and binary, are accounted for in the
constraint sets (A.14) and (A.15). The variables within each individual
non-negativity and integrality constraint can be mapped back to each
variable and associated constraint in ().
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