

INCOSE

SEPT 12-15, 2023 • I-X CENTER • CLEVELAND, OHIO

A Multi-Dimensional Benefit Assessment of Automated Mobility Platforms (AMP) for Large Facilities

09/14/2023

Stanley E. Young, PE, PhD National Renewable Energy Laboratory

Outline

- 1. Background (air travel trends & challenges)
- 2. Framework for Multi-Dimensional Benefit Analysis (MDBA)
- 3. Results
- 4. Discussion & Conclusions

Air Travel Trends & Challenges

- Projected air travel growth
- Equity & efficiency
- Facility expansion

Mobility Gaps in Large Facilities

Problem/Objective:

Gaps in transportation exist in large facilities. Especially for the elderly, obese and anyone living with a disability, or injury. As facilities increase in size, this impacts more travelers, decreases efficiency, creates inequities.

Facility automated systems address:

- Long wait times
- Customer frustration / way-finding
- Energy and mobility inefficiencies
- Equity for People with Reduced Mobility

Air Travel Trends

Source: US Customs & Border Protection data processed and released by Department of Commerce; data also received from Transport Canada

* Per past practice, the Mid-East region and Africa are included in the Atlantic category.

Elderly air travelers is a rapidly growing segment

Airport Expansions

TECHNOLOGY, SYSTEMS AND VALUE CHAIN CONFERENCE & EXPO

SEPTEMBER 12-15, 2023

CLEVELAND I-X CENTER

Æ

NASA

INCOSE

Airport Mobility for PRMs

- Long hours, lower-wage, difficult conditions
- Labor shortage
- Challenging staff planning with "flight banks"
- Limited access to amenities for travelers

<u>Novel Solution</u> → Automated Mobility Platform (AMP)

- Independent mobility solution \rightarrow access all amenities
- Empty wheelchairs can reposition
- Wayfinding
- Real-time data collection, processing, and decisionmaking

Multi-Dimensional Benefit Assessment

 Mobility Energy • • Equity • Facility Management -

Automated Mobility Platform (AMP)

Define:

Mobility systems/services that leverage:

Automation, Sensing, Communications, Optimization/Analytics, Electric Propulsion

Transforming ENERGY

Mobility Gaps in Large Facilities

VEN/20

Findings

- Mobility
- Environment

-

- Equity
- Built Environment
- Mobility Energy Productivity (MEP)

Mobility

Quantifying the Accessibility Gap:

Assumed Escort Delay:

5 min → +56% increase in travel time
15 min → +150% increase in travel time

Not uncommon to see delays between 15-30 minutes during peak periods!

Environment

Moving Walkways:

Energy use * power ratio (depending on loading) * 1000 (W) / hourly passengers 100% occupancy: $120-240 \text{ kWh} \times 1,000/5,400 \text{ passengers/h} = 22-45 \text{ Wh/pax-mile}$ 25% occupancy: $120-240 \text{ kWh} \times 0.5 \times 1,000/1,350 \text{ passengers/h} = 45-90 \text{ Wh/pax-mile}$ 10% occupancy: $120-240 \text{ kWh} \times 0.3 \times 1,000/540 \text{ passengers/h} = 60-120 \text{ Wh/pax-mile}$

AMP autonomous wheelchair:

100-150 Wh/pax-mile ← Does not consider system level benefits of optimization

Utility Vehicle:

50-2000 Wh/pax-mile ← Depending on load

Key takeaway: AMPs on par with other options from energy consumption perspective

Escorts for PRMs are unreliable (leading to large wait times) for several reasons:

- Supply/demand mismatch during peak periods
- Large variations in demand \rightarrow leads to poor reliability
- Do not use system-level information for decision-making
- Limited access to airport amenities (often straight to gate)

AMPs for equity and inclusive design:

- Provide independent forms of mobility (travelers can experience airport similar to ambulatory population)
- Reposition to reduce wait times / improve reliability
- Intelligent, digital integration for improved performance

Built Environment

Conveyance	Operational Flexibility	Versatility Across Domains	System Scalability	Intelligence/ Wayfinding
AMP	Centrally controlled system capable of real-time decision-making	Yes (landside, airside, elevators, re-deployable)	Additional vehicles, swarm intelligence, improved efficiency as system scales	Communication capabilities, over-the-air updating, wayfinding
Walking	_	Depends, walking distance constraints (max. 0.25–0.5 miles)	_	No (utility maximizing; not system optimal)
Moving walkway	Fixed capacity (designed for peak), continuously running	No; indoors, long straightaways	Fixed capacity , new walkways can be added to straight terminals	No communication capabilities with other systems
Utility vehicle	Require labor; shifts planned in advance for peak demand	lssues arise in tight spaces (elevators)	Requires additional labor and vehicles	Human-to-human communication, wayfinding, limited communication with other systems
Wheelchair (escort)	Require labor; shifts planned in advance for peak demand	Yes (landside, airside, elevators)	Requires additional labor and wheelchairs	Human-to-human communication, wayfinding, limited communication with other systems

Mobility Energy Productivity (MEP)

	MEP Primary Dimension					
Terminal Conveyance	<u>Energy (Wh/pax-mile)</u>		Cost (\$)	<u>Travel Speed</u> (Relative to Walking Speed)		
	25% Occupancy	100% Occupancy	<u>COSI (Ş)</u>	Fully Ambulatory	PRM	
AMP vehicle (single passenger)	n/a	100-150	\$7.5k/vehicle/year	1x (non-dedicated guideway) – 3x (dedicated guideway)		
Walking	n/a	n/a	n/a	1x	n/a	
Moving walkway ^a	45-90	22-45	\$50k-\$75k/walkway/yr	0.5x (1.5x if walking)	Restricted	
UTV (multiple passenger)	125-200	25-50	\$80k-\$100k/vehicle/yr	1x (non-dedicated guideway) – 3x (dedicated guideway)		
Wheelchair (with escort)	n/a	n/a	\$70k-\$90k/escort/yr	n/a	<1x walk speed + waiting time + transfer time	

Discussion & Conclusions

- Costs/benefits of AMPs in large facilities
- Equity/inclusive design with AMPs

Overall Summary of Performance

	Mob (Public	oility /PRM)	Environment	Equity	Built Environment	MEP	Total
AMPs	1	1	0	1	1	1	5
Walking	0	-1	1	-1	1	-1	-1
Moving Walkways	0	-1	0	-1	-1	0	-3
UTVs	-1	1	0	1	0	0	1
Wheelchair (escorts)	-1	0	1	1	0	0	1

Performance along given dimension → 1=Good, 0=Neutral, -1=Poor

- Airport ecosystem growing rapidly, yet, highly uncertain (demand, technology, policy)
- Leveraging systems/services (e.g., automation, real-time communications and decision making) that are flexible, adaptable, and efficient can help hedge against future uncertainty
- AMPs are highly flexible, intelligent, efficient, and cost-effective
- AMPs can serve all population groups, which ensures equity and inclusivity of autonomous technologies

INCOSE

ENERGY& MOBILITY TECHNOLOGY, SYSTEMS AND VALUE CHAIN CONFERENCE & EXPO

SEPT 12-15, 2023 • I-X CENTER • CLEVELAND, OHIO

Questions? Email: Stanley.Young@nrel.gov

Stanley E. Young, PE, PhD National Renewable Energy Laboratory

NREL/PR-5400-87358

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-FOA-0002555. Funding provided by Department of Energy, Vehicle Technologies Office, Technology Integration. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.