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Abstract

In the context of urgent climate challenges and the press-
ing need for rapid technology development, Reinforcement 
Learning (RL) stands as a compelling data-driven method for 
controlling real-world physical systems. However, RL imple-
mentation often entails time-consuming and computationally 
intensive data collection and training processes, rendering 
them inefficient for real-time applications that lack non-real-
time models. To address these limitations, real-time emula-
tion techniques have emerged as valuable tools for the lab-
scale rapid prototyping of intricate energy systems. While 
emulated systems offer a bridge between simulation and real-
ity, they too face constraints, hindering comprehensive char-
acterization, testing, and development. In this research, we 
construct a surrogate model using limited data from simu-
lated systems, enabling an efficient and effective training pro-
cess for a Double Deep Q-Network (DDQN) agent for fu-
ture deployment. Our approach is illustrated through a hy-
dropower application, demonstrating the practical impact of 
our approach on climate-related technology development.

Introduction
There is an increasing urgency in the energy sector towards 
continually developing new and existing technologies that 
can help to reduce overall carbon emissions. Towards this, 
Rapid Control Prototyping (RCP) allows for cost effective, 
fast-paced development as opposed to full-scale experimen-
tation. Digital Real-Time Simulation (DRTS) platforms al-
low the rapid prototyping of control systems by introducing 
real-time, low latency interaction between simulated plant 
model and real-time controller under development(Panwar 
et al. 2013).

In the last few years, RL has emerged as a practical 
data-driven approach for optimally controlling power sys-
tem applications. However, the RL approach poses several 
challenges during the training and deployment such as cost 
and efficiency of data collection, training, computation time 
and experimenter’s effort. Thus, efficient t raining o f RL 
agents can prove useful. When first i ntroducing untrained 
RL agents into a time-dependent and continuous system, it 
may be difficult t o p roperly t rain a nd a ct a s t he environ-
ment may have many states where instabilities may arise,

and training may need to be restarted from a stable point of
time. This can be a tedious process and will likely not be
very feasible. Towards this, non-real-time surrogate models
may allow for an easier training experience before using a
pre-trained agent in a time continuous environment.

Background and Related Work
The hydropower emulation platform presented in this work
is a combined hardware and real-time software-based setup
that faithfully represents hydro turbine shaft dynamics
(speed, torque) using a physics-based real-time plant model
and physical Variable Frequency Drive (VFD) driven dual
Induction Machines (IM) (Poudel, Panwar, and Hovsapian
2023). The plant dynamics can be real-time signals gener-
ated from a physics-based or data-driven simulation model,
or real-time data streams from an actual hydropower plant
(Panwar 2022). The objective of hydropower emulation is to
enable a hardware-based experimental platform that can be
used for RCP and can drastically reduce development time
and costs for hydropower technologies(Panwar et al. 2013),
(Panwar 2022). However, when using physics-based models
to drive physical hardware, there may be some complex dy-
namics that need to be addressed which may decrease em-
ulation fidelity. Optimal Control (OC) is one possibility to
reduce emulation error, however, relies on precise mathe-
matical models within an optimization framework to deter-
mine control law. Recent developments in Model Predictive
Control (MPC) for fast real-time control in real-world ap-
plications have shown promise for safety critical applica-
tions (Hewing et al. 2020). In contrast, RL uses an agent
to maximize rewards in an environment through trial and er-
ror. While OC optimizes predefined objectives, which might
be suboptimal due to model limitations and changing condi-
tions, RL agents have the flexibility to discover and optimize
better objectives, making them more suitable for complex
and dynamic environments (Song et al. 2023).

Thus, power plant emulation can be assisted using the
help of several state-of-the-art RL algorithms seen in
(Lazaridis, Fachantidis, and Vlahavas 2020), which are sum-
marized with key differences, applications, and limitations.
Specifically, Deep Q-Network (DQN) learning is a model-
free RL approach where success has been seen where a dis-
crete action space is appropriate (Stevenson, Tariq, and Sar-
wat 2023). DQNs can be further improved in several ways
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as seen in (Hessel et al. 2018), including using noisy DQNs,
distributional DQNs, DDQN, and dueling DDQNs. To avoid
overestimation bias and improve training, a DDQN agent ar-
chitecture can be utilized to reduce error for hydropower
emulation by modifying setpoint signals from a real-time
model before sending them to physical hardware. The use
of Hardware-in-the-Loop (HIL) techniques in developing
control algorithms for real-world systems (Panwar et al.
2013),(Khalid, Stevenson, and Sarwat 2021),(Kollmer et al.
2018) is a popular way to train RL-based models for de-
ployment due to the ability to avoid high development costs.
However, depending on the role of the RL agent, training
in real-time using live data can be cost prohibitive and lead
to poor training. Thus, reduction in complexity of training
can be accomplished using non-real-time data-driven ma-
chine learning surrogate models of complex systems, such
as in (Angione C 2022), before moving to live time contin-
uous systems. This approach of utilizing a surrogate model
for pretraining the RL agent helps to bridge the “reality gap”
problem of RL algorithms as described in (Li et al. 2023) for
power systems implementations. As such, (Abid 2022) iden-
tifies multiple artificial intelligence-based surrogate model-
ing techniques used for energy system digital twin mod-
eling including least squares, Inverse Distance Weighting
(IDW), kriging, Radial Basis Functions (RBF), Artificial
Neural Networks (ANN), and Support Vector Regression
(SVR), with the most implemented being ANNs and krig-
ing. ANNs have the drawback of needing more extensive
data for surrogate modeling but show high performance in
systems with nonlinear dynamics, thus this approach will
be used. Furthermore in (Chaturvedi et al. 2023), an ANN
is shown as being a successful surrogate model for training
RL agents in an effective and efficient manner. Therefore, by
using a data-driven surrogate hydropower plant model to ef-
ficiently train a DDQN agent for error reduction in real-time
emulation, future hydropower emulation fidelity using phys-
ical equipment can be increased during RCP. This surrogate
model can be considered a digital twin if it is continually up-
dated and tuned using data from actual physical hydro plant
in the field. Specifically in this work, simulation data is used
to train (offline) a surrogate model which can be consid-
ered a digital model, digital shadow, or a digital twin (Adam
2022). Other methods such as Physics Informed Neural Net-
works (PINNs) can also be used (Raissi, Perdikaris, and Kar-
niadakis 2019), however in this case, the focus is not on
improving the dynamical representation of hydropower as
a digital surrogate model, but instead to accurately extend
it to actual physical emulation hardware. Any digital repre-
sentation (physics-based, data-driven, digital twin, etc.) will
still need to drive the emulation hardware which has unmod-
eled system dynamics where RL can be used to improve the
emulation accuracy and response.

The paper is organized as follows: Sec. II discusses prob-
lem formulation and surrogate model-based training; Sec. III
describes the hydropower plant surrogate model and train-
ing; Sec. IV describes the DDQN RL agent, it’s environment
and training process; Sec. V presents results and a brief dis-
cussion; Sec. VI presents the conclusions and future work.

Surrogate Model-Based Approach
For successful and smooth development and deployment of
RL algorithms to a real-world environment, training must
take place ideally in an environment that is forgiving, thus
allowing the update of an agent such that a physical envi-
ronment is not disturbed or damaged. Online training in both
simulated and emulated hardware environments can provide
this safe environment for training. However, when dealing
with fast action, high sample rate RL agents, it may be diffi-
cult to properly control an environment consisting of a phys-
ical real-time system. Taking an action and observing its ef-
fect may be asynchronous, or even delayed, making it dif-
ficult to train using real-time data. Conversely, fast dynam-
ics of physical system may impose requirements of costly
hardware for high baud-rate data and RL training. Thus, to
increase the efficiency of RL training, a surrogate model-
based approach is developed and used as a precursor to on-
line training with real-time data streams. The steps to imple-
menting RL for hydropower emulation, and the process of
using a surrogate hydropower plant model to train this RL
agent are shown in Figure 1.

Figure 1: Surrogate model-based approach for efficient RL

This approach of pre-training an RL agent with a non-
real-time environment first involves selecting and training
appropriate surrogate models. In this work, an ANN acts
as a hydropower plant model and a low pass filter is used
to represent surrogate emulation hardware (VFD and IM).
By using an ANN-based surrogate model, it is possible to
learn non-linear and site-specific dynamics and quickly em-
ulate without the need for making time-expensive simulation
models.

Problem Formulation
As a continuation of prior works (Poudel, Panwar, and Hov-
sapian 2023), (Panwar 2022), the physical emulation of a
hydropower system will be achieved using a mechanical
drive system with two IMs coupled through a mechanical
shaft, and a driving VFD. One IM emulates the hydro tur-
bine by following speed setpoints provided by simulation,
driven by the VFD. The other IM emulates the hydro gener-
ator, and also driven by the VFD to provide counter torque
through the mechanical shaft (Poudel, Panwar, and Hovs-
apian 2023). The problem with sending simple simulation
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signals directly to drive the IMs, are the communication de-
lays, losses and non-linearities associated with the mechan-
ical system that are either inaccurately represented in the
simulation model or are missing entirely. By placing an RL
agent between the simulation signal and the receiving VFD
(IM driver), mechanical losses and non-linearities may be
accounted for through signal modification. Ideally, with the
correct RL mapping (from proper training) from environ-
ment variables to signal modification (a), the following Eq.
(1) should be true in regard to Figure 2.

ωg′ = ωg + a ∋ ωg = ωs ∀ t (1)

Figure 2: RL implementation into the surrogate environment

During training, the RL agent would receive the error (e)
between ωg and ωs to determine the correct actions to take
by updating the policy (discussed more in Sec. IV).

Hydropower Plant Surrogate Model
Model Architecture and Input Features
The utilized ANN model for the surrogate hydropower plant
is a Long Short-Term Memory (LSTM) based neural net-
work. The surrogate model architecture consists of a single
input, single hidden LSTM, and output layer. The LSTM
layer is made up of 64 units and a Rectified Linear Unit
(ReLu) activation. The surrogate model takes as an input
and predicts step ahead output values of a hydropower plant
based on the 7 measurements taken from a physics based
real-time hydropower plant model. These parameters are
generator speed (ωg), generator speed reference (ωref

g ), gen-
erator power (Pg), stator power (Pst), stator power reference
(P ref

st ), gate position (G), and turbine water flow (Qtur).
Thus, the surrogate model uses 7 inputs to predict 7 values
for the next time step.

Training
The data used to train the surrogate model was produced by
varying the power setpoint for hydropower plant model as
a step change. In total, 20 step change events were recorded
including 10 pumping-mode events, and 10 generating mode
events. For each event, the 7 inputs to the surrogate model
were sampled at a rate of 20 samples/sec (50ms per sample)
for 20 seconds with a 5% pre-event trigger. Using 90% of
the produced events for training, the surrogate model was
trained such that the current timestep with 7 input features
was used to predict the next timestep of 7 outputs. The surro-
gate model was then validated on the last 10% of produced
data after each training epoch on pumping and generating
events. The results for 2000 epochs of training is seen in
Figure 3.

Figure 3: Results from surrogate model training

The final surrogate model produced Root Mean Squared
Error (RMSE) values of 0.00023, 0.00090, 0.00035,
0.00025, 0.00024, 0.00161, and 0.00046 for ωg , ωref

g , Pg ,
Pst, P ref

st , G, and Qtur respectively. The outputs of the
trained surrogate can be seen validated for a generating event
in Figure 4 which demonstrates the ability of the surrogate
model to represent multiple output signals.

Implemented DDQN Agent
Observations, Actions, Policy, and Reward
Function
A DDQN agent uses operational parameters, or observa-
tions, taken from its environment (surrogate models) as input
features to take appropriate action. In this case, hydropower
generator speed from the surrogate hydropower plant model
and surrogate emulation hardware (ωg and ωs, respectively)
are used as environment observations. After training, the
DDQN will have converged to a correct set of state-actions
pairs, thus mapping environment states to appropriate ac-
tions. In this application, the DDQN’s action space consists
of 101 discrete actions (a) to increase or decrease ωg before
sending the modified signal, ω

′

g , to the surrogate emulation
hardware as determined by (2).

ω
′

g = ωg + (a · i)− n · (i− 1)

2
− i (2)

Here, a is the action taken by the DDQN. i is the integer
step the DDQN is allowed to increase or decrease ωg by, in
this case 0.0001 (p.u.). Lastly, n is equal to the total num-
ber of discrete actions possible, in this case 101. The second
term and third term combined in Eq. 2 sets the middle of
the action space to output 0, thus no modification is done
to ωg for that timestep. Anything above or below this mid-
dle action will either increase or decrease ωg accordingly.
The DDQN’s policy consists of LSTM with 16 units and a
dense layer with 32 processing elements and a ReLu acti-
vation function. DQN is based on the Bellman equation for
Q-values as seen in (3).

Q(s,a) = (1−α)·Q(s,a)+α·(r(s,a)+γ ·maxa′Q(s′,a′)) (3)

In this equation, Q(s,a) represents the Q-value for taking
action a in state s. α is the learning rate. r(s,a) is the imme-
diate reward obtained after taking action a in state s. γ is the
discount factor. s′ represents the next state. maxa′ Q(s′,a′) is
the maximum Q-value among all possible actions a′ in s′.
This forms the foundation for updating the Q-values in the

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

3



Figure 4: Surrogate Power Plant Output Signals

DQN algorithm, where a neural network is instead used to
approximate the Q-values as seen in (4).

Q(s,a) = E(s,a→ s′,r)∼H · (r(s,a) + γ · maxa′Q(s′,a′)) (4)

The neural network policy, E, maps s to Q-values for all
possible actions. The loss function is then based on the dif-
ference between the predicted Q-values and the target Q-
values derived from the Bellman equation. In this case, the
Adam optimizer and Huber loss function is used in pol-
icy updates. The DDQN algorithm is also an actor-critic
method, therefore, there are actually two DQN agents us-
ing the same architecture. The actor DQN is the main agent
in the environment, while the critic DQN is used to stabilize

the training process of the actor DQN (Hessel et al. 2018).
The objective of the DDQN agent is to reduce the emulation
error of the real-time simulation and physical hydropower
plant emulation hardware. Thus, the absolute error (e) be-
tween ωg and ωs will be monitored and used to train the
DDQN. The reward function can be seen in (5).

Reward = −error ; error = |ωg − ωs | (5)
It should be noted that the hyperparameters of the RL

agent may be further optimized, however were chosen not
to find the optimal performance, but rather to demonstrate
the approach.

Training
The DDQN was trained using outputs of the surrogate hy-
dropower plant being evaluated on validation data sets along
with outputs from the surrogate emulation hardware as input
observations. The DDQN agent was trained with a learning
rate of 0.0001 for 4000 episodes, however, converged around
2000 episodes as seen in Figure 5.

Figure 5: Results from DDQN Agent training

Results
Training results show reduced error in the surrogate model’s
ability to represent a hydropower plant given a limited data
set. Likewise, the RL agent can consistently learn over time
from the surrogate environment and perform corrective ac-
tions during transient periods of distortion from the surro-
gate emulation hardware. A single illustrative comparison
between the original system without a trained DDQN agent
and one with the DDQN agent included can be seen in Fig-
ure 6.

Without an agent present, a constant error (Green) is in-
troduced by the surrogate emulation hardware from the orig-
inal ωg output coming from the surrogate hydropower plant
model (Blue). Once the DDQN agent is introduced, correc-
tive action is taken during the transition period from a power
setpoint increase, decreasing the speed error of the emulated
shaft. From training, the optimal performance was achieved
after 2000 episodes of training. Additional training to 4000
episodes yielded no increase in performance, however, with
more tuning and architectural design of the DDQN agent,
better performance can be achieved.

The trained RL agent was tested on 7 different generating
and pumping events to test the performance during different
transient periods. The hydropower events started in steady
state and were triggered by adjusting the ωref . The resulting
effect on RL agent reward for different starting ωref and
∆ωref values can be seen in Figures 7a, and 7b, respectively.
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Figure 6: DDQN agent’s performance improvement for re-
ducing emulated shaft speed error

(a)

(b)

Figure 7: Affect of a) starting ωref , and b) change in ωref

on emulation performance.

Conclusions and Future Work
In this work, an accurate emulation of hydropower plant
dynamics using a physics-based real-time plant model and
physical VFD-driven dual IM drive is the final goal. To re-
duce emulation error and noise from the physical hardware,
an RL DDQN agent will be deployed to intercept and mod-
ify setpoint signals coming from the real-time simulation
model before sending them to the physical hardware. How-
ever, training in real-time using live data-streams can pro-
duce inefficiencies due to real-time environment constraints
leading to poor training. Thus, a surrogate model-based ap-
proach to efficient learning of the RL DDQN agent is used.

A hydropower plant is accurately represented using a

data-driven ANN with limited data from a physics-based
simulation of both generating and pumping modes of oper-
ation. The outputs of the surrogate hydropower plant model
are provided as inputs to a DDQN agent whose purpose is to
reduce error between the generator speed of the hydropower
plant model generator and a surrogate emulated hardware
shaft. This is accomplished by intercepting and modifying
the generator speed signal such that any noise or distortion
can be prevented on the output of the surrogate emulation
hardware. After training within the surrogate environment,
the DDQN agent demonstrates the capability to reduce em-
ulation error. In the future, the pre-trained DDQN will be de-
ployed in a real-time platform and further trained using real-
time data streams from the real-time emulation. Eventually
the RL algorithm will be deployed in a real-world hardware
emulation environment.
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