
Received 3 November 2023, accepted 26 January 2024, date of publication 7 February 2024, date of current version 20 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3363615

HELICS: A Co-Simulation Framework for Scalable
Multi-Domain Modeling and Analysis
TREVOR D. HARDY 1, (Senior Member, IEEE), BRYAN PALMINTIER 2, (Senior Member, IEEE),
PHILIP L. TOP 3, (Member, IEEE), DHEEPAK KRISHNAMURTHY2, (Member, IEEE),
AND JASON C. FULLER 1, (Senior Member, IEEE)
1Pacific Northwest National Laboratory, Richland, WA 99354, USA
2National Renewable Energy Laboratory, Golden, CO 80401, USA
3Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Corresponding author: Trevor D. Hardy (trevor.hardy@pnnl.gov)

This work was supported in part by the Pacific Northwest National Laboratory under Contract DE-AC05-76RL01830; in part by the
Lawrence Livermore National Laboratory for the U.S. Department of Energy (DOE) under Contract DE-AC52-07NA27344; in part by the
National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy LLC, under Contract DE-AC36-08GO28308; in part
by the DOE Office of Energy Efficiency, Renewable Energy Solar Energy Technologies Office, and DOE Office of Electricity through the
Grid Modernization Laboratory Consortium; and in part by the Computational Resources sponsored by the DOE Office of Energy
Efficiency and Renewable Energy, National Renewable Energy Laboratory.

ABSTRACT As both the generation resources and load types have changed and grown over the past few
decades, there is a growing need for analysis that spans traditional simulation boundaries; for example,
evaluating the impact of distribution-level assets (e.g. rooftop solar, EV chargers) on bulk-power system
operation. Co-simulation is a technique that allows simulators to trade information during run-time,
effectively creating larger and more complex models. HELICS is a co-simulation platform that has been
developed to enable these kinds of power system analysis, incorporating tools from a variety of domains
including the electrical power grid, natural gas, transportation, and communications. This paper summarizes
the technical design of HELICS, describes how tools can be integrated into the platform, and reviews a
number of analyses that have been performed using HELICS. A short video summary of this paper can be
found at https://youtu.be/BIUiR_K87Wc.

INDEX TERMS Power system analysis computing, power system simulation, HELICS, co-simulation,
natural gas, transportation, multi-energy analysis, multi-domain analysis, energy system analysis.

I. INTRODUCTION
Traditionally, the electrical energy system has been con-
ceptually divided into the bulk power system (composed
of generation and transmission assets) and the distribution
system, with each of those domains having specific areas
of analytical interest. Analysis of the bulk power system
has focused on ensuring that there is sufficient generation
capacity at all times to meet the load of the system, that the
capacity of the transmission network is sufficient to transport
the electrical energy to the substations, and that generation
resources are dispatched in an economical manner while

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

keeping the system stable and secure in the face of typical
disruptions. Similarly, analysis of the distribution system has
often been most concerned with ensuring sufficient capacity
in the substation transformers, distribution transformers, and
distribution lines; managing voltage at the point of connection
with customers; and protecting the system from the impacts
of faults. The reality, though, is that these two domains are
physically one system–and consequently, there are certain
types of analysis that require a more integrated perspective.
For example, the idea of transactive energy [1], where
customers’ assets respond to value signals (often based on
wholesale energy prices) has been studied for many years and
has recently experienced regulatory change in the US with
FERC Order 2222 [2]; transactive energy requires analysis

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 24325

https://orcid.org/0000-0001-6748-8803
https://orcid.org/0000-0002-1452-0715
https://orcid.org/0000-0002-4331-2763
https://orcid.org/0000-0002-0462-0093
https://orcid.org/0000-0002-0945-2674


T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

techniques that span both bulk power systems and distribution
domains.

Further, analysis needs can easily extend beyond the bulk
power and distribution systems to other systems. Over the
past two decades, there has been a dramatic shift in the
United States away from coal as a prime-mover fuel to natural
gas [3]. While coal is often delivered by train car and can
be stored on-site at the generator, natural gas is transported
by pipe and is much more like a just-in-time fuel source.
Disruptions in the natural gas supply are not only felt more
quickly (as compared to coal) but have the potential for
greater impact on the electrical power system because both
the natural gas and electrical networks are linked through
these large generators [4].

Communications systems pose another analysis need; all
areas of the electrical power system have been affected by the
widespread adoption of communications technologies. Pha-
sor measurement units (PMUs) have been widely deployed
across the United States and have found use in bulk power
system operation for monitoring voltage stability [5] and
system oscillation detection [6]. The data required for these
applications relies on effective transport over communication
systems, and to understand the effects of communication
system imperfections (e.g., delays, out-of-order data arrival,
missing data), the communication system must be explicitly
modeled. Without a data-dynamic multi-domain analysis
technique, it would not be possible to assess the performance
of the applications and algorithms that use PMU data from
such real-world systems.

To address these kinds of analysis challenges, there are two
options: build a new simulator that models all the necessary
domains in an integrated code base, or find a method for tying
existing simulators together such that the inputs and outputs
from each are coupled during runtime. From a practical
standpoint, the former is generally untenable as it requires a
new, integrated simulation tool for every unique combination
of domains. The latter is not only much more practical
but allows the use of existing tools and the (often) years
of development, improvement, and validation they bring to
the table. This technique is called ‘‘co-simulation’’ and has
been in use in various forms for several decades. Past and
current platforms include HLA [7], FMI [8], Mosaik [9],
IGMS [10], FNCS [11] and HELICS [12]. Co-simulation
has been used to address a wide variety of these emerging
analysis needs: communication system impacts in managing
microgrid assets for power balancing [13], transactive energy
mechanisms for appropriate integration of the wholesale and
retail markets [14] (even at very-large scales [15]), transient
analysis [16], and DER integration and management [17],
[18], [19], [20].

This work focuses on the Hierarchical Engine for Large-
scale Infrastructure Co-Simulation (‘‘HELICS’’), a co-
simulation platform that was originally planned and defined
through the work in [12], which described the design of the
core co-simulation platform prior to its’ full implementation.
With several years of active development, these original plans

have been implemented and expanded upon to produce a
general purpose, flexible co-simulation platform. HELICS
has been used in a wide variety of analyses and use cases,
and is available as open-source software [21]. This work will
summarize the design of HELICS as it is implemented today,
including recent improvements, user-support tools that have
been added to increase ease of use, and the analyses and use
cases that have been conducted using HELICS.

II. DESIGN OF HELICS
The design requirements for HELICS are described in detail
in [12]; in summary, HELICS needed to be scalable, open-
source, modular, cross-platform, minimally invasive, easy to
integrate and use, support a broad range of simulators, and
accommodate mathematical considerations such as iteration.
These design requirements led directly to the software design
strategy of using a layered approach in the software and a
concept of a hierarchy in co-simulation topology.

A. DESIGN PRIORITIES AND PHILOSOPHY
The following design priorities directed much of the design
of HELICS and supporting tools.

1) Make it as easy as possible for participating simulation
tools of all kinds to work together

2) Participating simulation tools cannot impose restric-
tions or requirements on other federates

3) Participating simulation tools should maintain control
and autonomy

4) Implement in layered and modular architecture so as to
be adaptable to a wide variety of scenarios and needs

5) Centralized control and/or management should be
minimized

The first design priority, ease of integration, influenced
the development of language bindings for many common
programming languages, such as Python, MATLAB, Java,
and others. It also led to continuous improvements in
documentation and ease of use in the APIs and allowed
conversion between data types and units in the interfaces.

The second priority (excluding tools from placing require-
ments on each other) requires that the timing and interfaces
of one participating simulation tools not impose additional
timing or interface requirements on others. This allows a
great deal of flexibility in how participating simulation tools
are defined at the expense of a more complicated timing
coordination inside of HELICS; this flows back to the first
priority. Fundamentally, HELICS allows each participating
simulation tool to make the choices that work the best for it
individually with the expectation that HELICS will manage
the timing and data exchange complications that may arise.

The third priority, maintaining local control and autonomy,
motivated HELICS to be implemented as a library rather
than a runtime; this significantly affects how HELICS is
used in many cases. Many simulation tools that interact
with HELICS can be run as standalone executables, and
having HELICS as a library means that any tool that provides
HELICS support can choose when and how it implements

24326 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

the HELICS APIs and how it will operate when part of a
HELICS federation. This autonomy is in contrast to other co-
simulation environments or platforms that than only allow
operations when a specific run-time application is running.
Furthermore, this autonomy requirement drove the HELICS
library and APIs to provide fine-grained control over the co-
simulation operations within a participating simulation tool.

The use of layers in the HELICS design philosophy (the
fourth design priority) is applicable in the general software
design philosophy as described above and also supports the
use of a hierarchy of brokers and layers within the co-
simulation itself, providing significant scalability advantages
for HELICS. This is closely tied with the decision to
minimize central control as articulated in the fifth design
priority. (Researchers in [22] have performed a scalability
comparison of HELICS with other co-simulation platforms
and the results bear out the advantages of distributed time-
keeping for co-simulations with many federates.)

In any coordinated co-simulation, there must be some
central entity doing some coordination, and HELICS makes
the conscious choice to minimize the operations performed
by that entity. In each co-simulation there is an entity
called the ‘‘root broker’’ and the root broker has two main
responsibilities: 1) trigger the start of co-simulation data
exchange 2) act as a last-chance router for messages and
data. Note that managing the timekeeping for all participating
simulation tools is not centralized in any way; this is
intentionally not the role of any broker. Removing this central
control was anticipated to be necessary for large scale co-
simulations as it removes a major bottleneck and make
parallelism across the participating simulation tools quite
natural.

The timekeeping operation is intentionally distributed to
allow scalability and a high degree of user control. Each
participating simulation tool has a local time coordinator
responsible for determining when to allow it to execute its
local model and other simulation tasks. The algorithmic
principle it uses is that each simulation tool can execute a
particular simulation time when there is no possibility of
data coming from other participating simulation tools to be
produced at any simulation time prior to the time about to
be simulated. That is, each participating simulation tool has
causality respected and enforced by HELICS. Simulation
tools requesting the same simulation time are assumed to
execute in parallel, and exchanged data generated at a
particular simulation time would be available at the next
iteration of that simulation time or when a greater simulation
time is executed. (There is a flag that can be set to allow one
of these simulators running in parallel to wait until all other
simulators have finished.)

Generally, a simulation time earlier than the one requested
by a given simulation tool is granted when any of its inputs
from other simulation tools change; when this happens, all
data from that simulation time is available. However, this
conservative and distributed time management strategy can,
in a few cases, be very non-optimal. Therefore, HELICS

allows the use of a centralized coordinator (at user discretion)
when setting up the co-simulation. Additionally, HELICS can
execute asynchronous timekeeping, essentially turning off
time coordination in favor of user control or when real-time
management is used by all participating simulation tools.

B. HELICS LAYERS
Tomeet the design requirements for amodular cross-platform
design, the software for HELICS is partitioned into a series
of layers with programming APIs between each. This allows
development, testing, and modification of the individual
layers without major concern of impact to the higher-level
layers. A brief description of each of the layers is included in
the following section, and a diagram is shown in Figure 1.

FIGURE 1. Layers of HELICS.

1) OPERATING SYSTEM/COMMUNICATIONS LAYER
The operating system/communications layer is responsible
for the individual networking components and specific
operating systems aspects. HELICS includes several messag-
ing types between participating simulation tools, including
ZeroMQ, UDP, TCP, MPI, interprocess communication, and
inprocess channels; others can be added as needs arise.
Support for user-defined communication channels is also
planned but currently unimplemented. These communication
modules enable communication between different processes,
computers, and operating systems. They can be swapped
with a simple change in user-exposed configuration files or
command line arguments and also can be mixed and matched
for specific communication channels between federation
participants via the HELICS multi-broker (see section III-C).
Helper objects exist to allowmixedmode communication and
bridging between different networking technologies.

2) CORE LIBRARY LAYER
The core layer represents the minimum set of features nec-
essary for a co-simulation, including time synchronization,
execution control, and data exchange between simulation
tools. The core layer uses the APIs of the platform layer
to manage data exchange and is agnostic to the actual
communication protocol in use. The core layer manages
the threads used by HELICS and handles the HELICS
messages that go between the different components. The
actual message transmission is left to the communications

VOLUME 12, 2024 24327



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

layer. The core layer handles the data management and
buffering as the data flows between the different interfaces.

3) APPLICATION LAYER
The application layer is the primary interface among appli-
cation simulation tools interacting with the co-simulation
framework. Although the core API communication layer was
designed to be simple and generic, the application layer
API is intended to make it easier for generic applications of
different types to interact in a flexible fashion. The core layer
represents a generic low-level co-simulation. The application
layer adds meaning to it with the inclusion of support for
specific data types as well as user-defined units and types
associated with the value- and message-based interfaces.

4) APPS LAYER
The apps layer builds additional functionality on top of the
application API and defines additional helper tools such
as players, recorders, probes, and a broker application.
In addition, there are support layers intended to allow
interoperability between different co-simulation platforms
such as FMI. The intention is to allow generic tools that can
be used in a wide variety of situations with tighter HELICS
integration than regular user applications.

5) DOMAIN LAYER
When working with specific domains, it may be necessary to
define certain conventions in use. These conventions and any
APIs around themwould live in the domain layer. These could
include things such as the naming conventions, connection
methodologies, unit conventions, and other types of standards
that may only be applicable to a small subset of users (but
could be highly useful to those users) and allow tools to be
swapped in and out with ease. A more detailed description is
given in Section III-E.

6) MANAGEMENT LAYER
The upper layer of HELICS operates on the whole of the
co-simulation or set of co-simulations and is designed to
help manage large co-simulations in a sensible fashion. This
includes common tasks such as debugging, datamanagement,
and workflow tooling. Significant future effort is expected
in this area as co-simulations become more complex and
detailed with a greater number of simulation tool instances.

C. FEDERATE TYPES
A ‘‘federate’’ is defined as a specific instance of a simulation
tool. Multiple instances of a simulation tool (with different
input data or models) may be used in a given co-simulation,
and each are referenced as a unique federate. The application
layer defines a few specific federate types to more cleanly
separate the APIs and intent. For logical separation, the
application API differentiates ‘‘value federates,’’ ‘‘message
federates,’’ and ‘‘combination federates,’’ which, as the name
implies, uses both message and value federate constructs.

1) VALUE FEDERATES
Value federates are intended to replicate connections between
federates on a physical level. Examples of the types of
data that would typically be exchanged as values could be
voltages, forces, positions, irradiance, etc. Because HELICS
value connections are attempting to represent a physical
reality, the connections are continuous (persistent), unidirec-
tional, have state, have a specific data type, and optionally
can be assigned a unit of measurement. (See Section II-D1
for additional discussion on value interface characteris-
tics.) Value federates represent these value connections
through specific HELICS interfaces called ‘‘publications’’
and ‘‘inputs.’’ The structure and definitions for a value
federate are intended to match the features of an FMU for
co-simulation, and an FMI-specific application is available
to directly support co-simulation FMUs. Value federates
also support iterative loops (or ‘‘superdense time steps’’ in
the FMI nomenclature) to allow federates to converge their
models and reach consistency in any value connections.

2) MESSAGE FEDERATES
While the value federate is targeted at applications and
components interacting at a direct physical level, the message
federate is intended to interact with federates simulating
a telecommunications or computer networking exchange.
Common examples are sensor measurements and control
signals. Message federates capture and define interaction
through data packets called ‘‘messages’’ which send data
through HELICS ‘‘endpoints.’’ These endpoints send and
receive data in discrete messages that are generated by a
federate, pass through the federation, and then are received
and used by a specific HELICS federate. No history of the
packets is maintained by HELICS, and it is not persistent the
way that a value interface is. HELICS acts as a courier for
messages between endpoints and not an auditor or logger of
those messages. See Section II-D2 for additional discussion
on message interface characteristics.

3) COMBINATION FEDERATES
While interactions can be defined in terms of HELICS
value or message types, some federates may need to use
both. Combination federates merge the two types and allow
interactions to be defined for via either type.

4) CALLBACK FEDERATES
In some cases, the operations of a federate is very well
defined and compact, and many individual copies of that
federate may be needed for a particular analysis. Examples
of this could be thermostats or EV charge controllers where
the control logic is simple and the number of user-defined
parameters are limited. In these kinds of cases, HELICS
provides a means of implementing the federate entirely using
callbacks. The interactions of a federate are defined in terms
of callback operations and are executed by the core layer in a
continuous fashion, simplifying the interactions and allowing

24328 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

TABLE 1. HELICS value and message characteristics.

large numbers of federates to be handled in a compact and
efficient manner. (Note that all callback operations run in a
single thread.) Callback federates may be implemented as
value, message, or combination federates.

D. INTERFACE TYPES
The actual data transfer in HELICS occurs through ‘‘inter-
faces’’; interfaces are external communication ports on a
federate, allowing it to send messages and values to other
federates. Some represent the value-based interactions and
some represent the message-based interactions, as well as
some that enable the crossover interactions of the two types.
The core layer of HELICS defines the basic operations
of the interfaces, and the application layer gives further
meaning to the data transfer and tools to enable more
structured and simple interaction with them. Table 1 provides
a comparison of the key differences between value and
message characteristics.

1) PUBLICATIONS AND INPUTS
Value federates interact through a publish-and-subscribe
mechanism: ‘‘publications’’ emit values and send them to
‘‘inputs.’’ Inputs subscribe to publications, or publications
target inputs—the connection can be defined from either
the sender or receiver. The specific content of the values is
arbitrary and includes explicit support for both generic data
blocks (both as raw bytes as well as JSON strings) and many
common types, such as floating-point numbers, integers,
strings, complex numbers, and arrays. HELICS provides
strict type checking between a publication and substation and
will perform unit conversion where applicable. The federate
API also provides functions to query if the value on an
interface has been updated since the federate last read it value,
obtain the value, and note the time of the update. Classes
are also available that encapsulate the interactions of a single
input or publication.

2) ENDPOINTS
Unlike value publication (which generally has no specific
destinations when defined), a message has a specific
source, destination, and delivery time. These messages could
represent communication packets, events, or anything else
that two federates mutually understand. A message federate

defines ‘‘endpoints’’ that are the sources and destinations
for the message-based federate interaction. An endpoint may
also subscribe to a value-based publication, and HELICS
will generate and send a message every time the value
is updated. All messages must have a defined destination
when sent, although as a convenience for the user, a default
destinationmay be defined for a given endpoint. This is called
‘‘targeting,’’ and endpoints may be defined as ‘‘targeted’’ or
‘‘untargeted.’’ Targeted endpoints specify a target or targets
on a per-endpoint basis. Untargeted endpoints may also
specify a message destination on a per-message basis.

3) FILTERS
Filters arose from a requirement to support communication
simulations at various levels of fidelity without requiring that
message federates alter their configuration based on the need
(or not) to use a filter. This concept requires the ability of
a filtering federate to insert itself into the messaging path,
transparently performing some kind of operation on received
messages before sending them on to their original destination
(or not). HELICS defines the concept of a ‘‘message filters’’
(or often just ‘‘filters’’) to support this functionality.

Each message filter is associated with specific sources
and/or destinations. For example, consider modeling the
interaction of an automatic generation control (AGC) system
with a generator. In the simple model, control signals are
sent as messages from the AGC controller federate’s endpoint
directly to the generator federate’s endpoint. Amore complex
co-simulation may require that the full communication path
between the generator and controller be modeled. With
the message filter functionality, filters can be inserted to
convert the original message to a specific communication
packet format (e.g., TCP/IP), to send the packet through
a full communication network simulation, and to decode
the packet back to the raw signal the generator model
itself understands, all without changing anything in the
generator or controller federates. The HELICS message
object structure itself is such that it keeps a record of the
original source and destination endpoints as well as the most
recent intermediate end point. This structure allows for things
such as message delays, random loss, message translation,
or full-stack communication simulation to be included in
a co-simulation without requiring existing federates to be
aware of the individual filter manipulations.

Filter operations are automatic, and no user interaction is
required once the filter has been associated with endpoints
on federates. HELICS includes a few low-overhead filter
federates that provide functionality such as fixed delays,
random delays, random message drop, message rerouting,
and message cloning. The APIs also allow for the creation
of a user-defined filter as a stand-alone federate (such as a
communication system model) or via callbacks.

4) TRANSLATORS
While the distinct operations and definitions related to value
andmessage federates are valuable from a conceptual point of

VOLUME 12, 2024 24329



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

view, in practice there are times when message federates need
to interact with value federates, and defining new interfaces
may not be possible. For example:

• data acquisition device that converts measurements
(values) to a digital packet stream (messages)

• a control relay moves a physical control point (value)
based on information received over a network (message)

This conversion of HELICS interface types is simplified
through a HELICS ‘‘translator.’’ A translator has the role
of converting packet data to value data and vice versa.
A translator can be thought of as a combined endpoint,
input, and publication, and can be connected as such to all
other HELICS interfaces. Data sent to a translator through
an endpoint results in a publication on a value interface and
any publications to the input of a translator get sent out as
a message to one or more predefined destination endpoints.
Like a filter, all operations of a translator are automatic and
transparent to the other federates. Support is included for
binary and JSON based translators as well as custom user-
defined translators.

5) QUERIES AND COMMANDS
In addition to the synchronized data interfaces, HELICS
includes an asynchronous query mechanism (called
‘‘queries’’), allowing any HELICS component to ask
questions of another component. For example, a HELICS
component may query available publications or endpoints,
or query the entire federations structure from the root broker.
Queries are useful for programmatically determining the state
or configuration of the federation (monitoring) as well as
allowing federates to reconfigure themselves in response to
the state of the federation.

HELICS also provides an asynchronous interface allowing
federates and brokers to send instructions to other federates
and/or brokers; this is called the ‘‘command’’ interface. Built-
in commands supported directly by HELICS (and thus all
brokers and federates) include remote logging and debugging
interfaces. Aside from these built-in commands, arbitrary
commands can be define by those creating the federates
and federation to allow for customized command-and-control
across their federation.

E. PROGRAMMING LANGUAGE BINDINGS
HELICS provides language bindings in a variety of popular
languages and supports federations with heterogeneous
federates in this regard. The primary library is developed in
C++, and a C++ API is available making use of C++17
standards [21]. A C shared library can be built alongside the
c++ library to support applications requiring a simpler, C-
style interface and for alternate compiler support. APIs in
a number of programming languages are supported, namely
Python [23], Java [24], MATLAB and Octave [25], Julia [26],
and C#. Other language interfaces are straightforward to
develop because of the universality of the programming
languages’ support for the C interface. Due to the language’s
popularity, the Python API has a wrapper-based interface

which is very similar to the C API, and a more class-oriented
interface that provides the same API functionality as the C
API but operating in a more Pythonic way. A similar class-
oriented API is in development for Matlab.

F. LINKAGE TO OTHER CO-SIMULATION FRAMEWORKS
Although the underlying core does not interact directly with
existing co-simulation standards such as FMI and HLA,
the application layer exposes interfaces for these standards.
Since the designs and experience with these standards
had a significant influence on the structure and design of
HELICS, many functions and features from these standards
map directly to concepts and functions in the core and
application layers of HELICS. Many functions defined as a
part of the ‘‘FMUs for co-simulations’’ standard will map
to the concepts in the value federate through the FMU-
specific application, HELICS-FMI [27]. The ‘‘helics-fmi’’
application allows one or more FMUs to be loaded and run as
part of a bigger co-simulation in an easy-to-use fashion that
works like other federates. Future enhancements are planned
that will allow HELICS federates to be wrapped as FMUs.

A HELICS federate can interact with an HLA based co-
simulation through a bridge federate [28]. HLA and HELICS
have different notions of data management that needs to be
bridged, and though each implementation of HLA is unique,
this pattern is expected to hold for most implementations.

III. IMPLEMENTING A HELICS FEDERATION
A. INTEGRATING A SIMULATION TOOL WITH HELICS
For a given simulation tool to be able to participate in a
HELICS co-simulation, specific API calls in the HELICS
core library must be incorporated in some manner into the
operation of the simulation tool. There are generally two
techniques for performing this integration: direct integration
or wrapping the simulation tool. The specifics of the typical
HELICS API calls necessary to effectively integrate the
tool are discussed in Section III-B as it is their appropriate
integration that allows simulation tools to be used as a
HELICS federate in a co-simulation.

1) DIRECT SIMULATION INTEGRATION
Direct integration of HELICS by incorporating HELICS
API calls into a simulation tool’s codebase is only possible
if the source code of the simulation tool is available for
editing. In this case, it is possible to evaluate the operational
architecture of the simulation tool and identify the points
in operation where the appropriate HELICS API calls can
be inserted. For simulation tools with an existing model of
time (e.g., simulation tools that progress through time and
update their model state at each time step), identifying the
appropriate points to add the HELICS API calls is generally
possible and typically straightforward. This is also true
whether the tools march through simulated time with regular
timesteps or are more event-driven and simulate specific

24330 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

times based on events that trigger an update to the system
being simulated.

As an example, the part of the hypothetical source
code for a fictitious C++-based simulation tool called
‘‘GridSimulator’’ is shown in Listing 1. In this code
you can see the headers for the ‘‘helics_msg’’ library,
giving visibility to important HELICS API calls such
as CombinationFederate(), requestTime(), and
HelicsSubscriptionEndpoint.getMessage(),
among others. Alongside these are internal API calls that
GridSimulator has defined for itself such as model.
setLoad() and model.runPowerFlow().

LISTING 1. Direct integration of the HELICS APIs into the fictitious
C++-based simulation tool GridSimulator.

2) WRAPPER INTEGRATION
Wrapper integrations are typically required in two specific
cases: 1) the source code for the underlying tool is not
available, and control of the tool is only provided via an
API or 2) the underlying tool is more of a library of
relevant functionality rather than a full-fledged simulation
tool and needs supporting code to create actual simulation
functions (e.g., time advancement). In either case, the role
of the wrapper code is to act as a bridge between the core
simulation tool and the rest of the HELICS federation. This
bridge wrapper is realized in a language that has support
for both the simulation tool’s APIs and the HELICS APIs
and is responsible for controlling the simulation tool while
facilitating the synchronization and data exchange with the
rest of the federation.

Listing 2 shows an example of the use of a Python script to
provide this wrapper integration under the assumption that the
fictitious simulation tool GridSimulator has an appropriate
API with a Python library/module. Though there are strong
similarities to the APIs used in the direct integration example
shown in Listing 1; this sample code uses the public APIs
made available by both GridSimulator and HELICS. The
API provided by GridSimulator must be sufficiently featured
to allow the wrapper to do things like update model state
based on data received from the co-simulation federation,
control the flow of simulated time in the model, and extract
information from the model to publish it to the federation.

As previously mentioned, if the underlying simulation
tool is more of a library than a fully formed tool, the
wrapper must also take on additional responsibility to
create the necessary functionality expected of this type of
simulation tool. MATPOWER [29] is a good example of this;

LISTING 2. Python-based wrapper integration of the HELICS APIs into the
fictitious simulation tool GridSimulator.

MATPOWER provides a library with API calls to formulate
and solve a variety of power system problems but itself has
no sense of time. To create a MATPOWER-based simulation
tool, the developermust add functionality to create and update
model state as a function of simulated time. (This has been
accomplished as a part of the HELICS project through the
creation of a MATPOWER wrapper [30].) When comparing
code in Listing 1 vs Listing 2, the former makes no mention
of time, implying that GridSimulator is managing this itself
while the latter includes an explicit while statement that
advances time and model state.

B. HELICS FEDERATE LIFECYCLE
Integration of a simulation tool with HELICS is necessary
to allow it to be used as a HELICS federate and is realized
through the process of calling the appropriate HELICS APIs
to move the federate through its lifecycle. The following
are the sequential progression of states that a federate is
required to step through, as shown in Figure 2 with each
stage marked by the use of one or more HELICS APIs. All
federates in a HELICS-based co-simulation go through this
same lifecycle, although the specific APIs used depend on the
functionality the federate provides. Sections III-B1, III-B2,
III-B3, and III-B4 discuss the details of each of these stages.

1) CREATION
Federate creation is the process of registering an exe-
cutable as part of a HELICS federation (co-simulation)
and configuring the simulation time synchronization process
and data exchange interfaces; this defines the HELICS
‘‘creation state.’’ The HELICS library provides APIs to
allows these configuration steps to be done programmatically.
For simulation tools where the user does not or should not
have access to the source code, it is also possible to access
the same configuration details via an externally defined
JSON file. Both techniques are demonstrated in Listing 3.
In cases where information from other federates is required
for defining the interfaces, the entry into ‘‘initializing mode’’
can be done iteratively, allowing a state where all federates
are registered and requested initializing mode but some may
be returned to the ‘‘creation’’ state to add additional interfaces
or connections.

2) INITIALIZATION
Once registered with the federation and configured, the feder-
atemakes theAPI call helicsFederateEnterInitializing

VOLUME 12, 2024 24331



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

FIGURE 2. Lifecycle of a HELICS federate.

Mode() to enter initialization mode. Initialization mode
exists to help a federation prepare to begin the advancement
through simulation time. This may involve iterative data
exchange with other federates to reach a collective consistent
state, loading in historical or state data to initialize its internal
model, or simply waiting for other federates to do any

of the above. Federates may also use initialization mode
to publish values that will be available to all federates in
initialization mode or, for those not involved in iteration,
at simulation time 0 in the main simulation step (execution
mode, see Section III-B3). It is not required that federates
enter initialization mode, and any that choose to skip it will

24332 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

LISTING 3. Two alternative methods of configuring a HELICS federate
during the creation stage of the federate lifecycle.

have no visibility to the activities taking place by federates
that are using it to initialize their models.

3) EXECUTION
Once the federate has been created, all subscriptions,
publications, and endpoints have been registered, and the
federation initial state has been appropriately set, federates
enter the main co-simulation mode by making a call to
helicsEnterExecutingMode() . The HELICS simulation
time is set to zero upon entering this mode, and any
values published or messages sent during initialization mode
will be available to the federation upon entering execution
mode. helicsEnterExecutingMode() can be considered a
barrier to the beginning of the co-simulation proper. After
making a call to helicsEnterExecutingMode() , the main
execution of a given federate is blocked until all other
federates on which it depends also make the same API
call. Typically the topology of the data exchange between
federates is such that all federates must make the call to
helicsEnterExecutingMode() before any of them begin
executing the co-simulation.

Though the exact structure of the HELICS API calls by a
federate is a function of both the software architecture of the
underlying simulator and the particular use case being run,
generally there is a four-step loop each federate runs as it
advances through simulated time. These steps are shown in
the ‘‘Execution’’ portion of Figure 2.

1) Synchronize with federation:
helicsFederateRequestTime() is used by federates
to request a specific time to which it will advance its
internal model, thereby bringing it into synchronization
with the rest of the federation. The requested time
is defined by the dynamics of the internal model
and/or the typical simulation execution pattern of the
underlying simulation tool. For example, a particular
tool may have a strict timestep of one second and
expects its model to be updated this frequently.
Alternatively, the model may be more stateless by
nature and only need to update when one of its inputs
changes.
Though a federate may request a given time, HELICS
may grant an earlier time if there is new data on any
of the input interfaces the federate has defined. It is the
responsibility of the federate to determine what it will
do with these inputs (e.g., update its internal model,
ignore them), and there are configuration options to

help manage these early time grants to allow for more
computationally efficient federate operation.

2) Receive data on inputsOnce granted a time, a federate
will typically check value inputs and message end-
points to collect any new data that defines the current
state of the rest of the federation using APIs such as
helicsIntGetDouble() , helicsInputGetJSON()

(value interfaces) and helicsEndpointGetMessage()

(message interfaces). These are effectively the bound-
ary conditions of the federate that intersect or overlap
with the rest of federation and contain the latest state
data sent by them.

3) Update internal model Given the federation state at
the federate’s interfaces, it is likely the federate now
has an inconsistent internal state with these boundary
conditions as defined by the information it just received
from the rest of the federation. To resolve this, the
federate will typically recalculate the state of its
internal model using these new boundary conditions.
This effectively brings the federates internal model up
to date with the rest of the federation as of the granted
simulation time. As these are processes internal to the
federate and its model, there are no relevant HELICS
APIs for this process; instead, tool-specific APIs and
functionality are typically used.
For example, a distribution system federate may have
an input that represents the substation voltage as
defined by a bulk power system federate. When the
bulk power system federate solves and publishes out
a new voltage for the substation, the distribution
system federate will see that change, update the
substation voltage in its internal model, and re-
solve the distribution system powerflow. This brings
the distribution system’s internal model (e.g., line
flows, nodal voltages) into a consistent state with the
substation voltage.

4) Send data on outputs Once the internal state
has been updated, the federate will send out a
subset of its internal state variables to the rest
of the federation using HELICS APIs such as
helicsPublicationPublishDouble() (value inter-
faces) or helicsEndpointSendMessage() (message
interfaces). The specific variables that are distributed
are those defined in by the configuration of the
federate and are generally boundary conditions for
other federates.

Given the necessarily circular nature of the dependencies
in the data exchange of the federates, it is typical for the
publication of values from one federate to trigger an update in
another, which in turn publishes new values back to the first.
Depending on the analysis requirements and the capabilities
of the federates involved, this circular dependency can be
resolved by the federates continuing to publish, get new
inputs, recalculate their internal model and publish again until
a sufficient degree of consistency has been reached between
the necessary federates. This process is called ‘‘reiteration’’

VOLUME 12, 2024 24333



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

or ‘‘co-iteration,’’ and HELICS provides APIs to help enable
this convergence.

It is also worth noting that depending on the data-
exchange topology between federates (e.g. which federates
are publishing and subscribing to which federates) it is
entirely possible that many federates will be executing their
models in parallel. For example, a co-simulation that couples
a distribution power system federate with many battery-and-
controller federates will likely have a data-exchange topology
that has all the battery-and-controller models executing in
parallel with each other and once they have all decided how
much they will charge or discharge at a given simulation time,
the distribution power system model will execute and update
its power flow. Prudent design of the federates themselves
also plays a part in this; if one federate is simulating
all the battery-and-controller models instead of one model
per federate, the co-simulation will likely execute much
more slowly as the federate solves one battery-and-controller
model at a time.

4) FINALIZATION
Once the federate has completed its contribution to the
co-simulation and simulated all necessary time, it needs
to close out its connection to the federation using the
API helicsFederateFree() , signaling to the core and
brokers that the federate is leaving the co-simulation.
Finally, once the federate has completed finalization,
helicsCloseLibrary() is called to cleanup and close the
HELICS library.

FIGURE 3. Single-broker federation.

C. FEDERATION TOPOLOGIES
HELICS supports a distributed architecture for co-simulation
that allows for HELICS federates to exist and run in distinct
computing environments on different computing hardware
(which may be in very different geographic locations) as
long as the communication protocol among the hardware is
supported by the HELICS core. This allows for the creation
of hierarchical co-simulation topologies linked together by
HELICS brokers.

FIGURE 4. Broker hierarchy with multi-broker to span HELICS core types.

In order to run a HELICS federation, there must exist at
least one HELICS broker that can communicate with all the
federates, at least indirectly; this is called the ‘‘root broker’’.
Figure 3 shows the most commonly used ‘‘1 broker’’ ⇐⇒

‘‘N federates’’ architecture. It is also possible to set up a
co-simulation that uses ‘‘1 broker’’ ⇐⇒ ‘‘M sub-brokers’’
⇐⇒ ‘‘N federates’’ as seen in Figure 4. Doing so places
a broker over a set of the federates, with federate groups
typically defined by a common computing environment.
This layered architecture can can be extended to support an
arbitrary number of layers in the hierarchy. For example, one
federate group may all be on a particular institution’s high-
performance computing cluster, while another is on a separate
server at the same institution, while a third is on the laptop of
an entirely separate institution, with the root broker running in
a cloud instance. Each local broker allows for low-overhead
communication between its federates while also supporting
communication to the federation as a whole as needed.
Ideally, federates under a single broker are most likely to
need to exchange data with each other and less likely to need
to exchange data with those under other brokers, because
the communication overhead is higher. Careful design of the
broker hierarchy can help mitigate slowdowns due to network
latency.

The segregation of federates under any number of brokers
also allows for explicit configuration of each sub-federation
to accommodate any particular networking or communication
challenges particular to a given computing environment.
For example, looking again at Figure 4, the portion of
the federation operating in a high-performance computing
environment may want to use that cluster’s available MPI
hardware and thus use the HELICS MPI core. Those that
are running in a single server may all be written using the
Boost library and thus are able to use memory-based sharing
in the IPC core, while those on the laptop may just use
the default ZMQ core. HELICS is able to bridge these sub-
federations through the use of a ‘‘multi-broker’’ at the root
broker, allowing for more optimal data exchange for each
computing environment.

D. HELICS SUPPORTED SIMULATION TOOLS
Though the immediate application of HELICS is in power
system applications, HELICS is a general co-simulation

24334 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

platform and can support data exchange between a variety
of simulation tools. Figure 5 shows many of the wide range
of tools with HELICS support (currently or planned), while
the following section highlights some of the most commonly
used tools that are known to have HELICS support and have
been used in one or more demonstrations or studies.

FIGURE 5. A wide range of simulation tools with known HELICS
interfaces.

• Transmission
- - PowerWorld - Steady-state power flows and opti-

mal power flows in [31]
- - P/SSE - Transient studies in [17]. Steady-state and

electromechanical dynamics implemented through
PyPSSE [32]

- - MATPOWER/MOST - Steady-state power flows,
optimal power flows, multi-period optimiza-
tion [30]

- - Andes - Python-based power system simulation tool
with many built-in models [33] used in [34], [35],
and [36]

- - PYPOWER - Steady-state power flows and optimal
power flows is a supported tool in TESP [37]

- - SAInt (Electric Network) - Steady-state power flow
and optimal power flow [4]

• Distribution
- - GridLAB-D - Steady-state [38] and transient stud-

ies [17]. Examples of use include large-scale trans-
active energy studies [39], microgrid transactive
energy studies [38], smart grid communication
studies [40] and [41], microgrid DER integration
studies [42].

- - CYME - Steady-state and time series implemented
through CYMEpy [43]

- - OpenDSS - Steady-state and time series analysis
implemented through PyDSS [44]. Examples with
PowerWorld in steady-state [31] and transportation
in BEAM [45].

• Communication
- - HELICS built-in filters for delays, dropped packets,

etc. E.g. evaluating transmission impact of AGC
delays from DERs [34] and EV smart chargin [35]

- - ns-3 - Evaluates impacts on distribution system
operation due to communication effects [46]

- - Omnet++ - HELICS integration with supporting
examples [47]

• Natural Gas
- - SAINT - Dynamic and steady state hydraulic gas

simulations coupled with grid in [4] and [48]
- - NGTransient - Evaluates natural gas pipline

physics [49]
• Other

- - BEAM - Transportation simulator, used to explore
impacts on distribution in [45]

- - Caldera - Provides EV charging profiles for integra-
tion with power system simulators [50], [51]

- - OpalRT - Real-time power system simulator used
for hardware-in-the-loop in [52] and [53]

- - EnergyPlus - Multi-zone commercial is a supported
tool in TESP [37]

– Ochre - Residential model building simulator [54]

E. STANDARDIZED INTERFACES
To assist in the interchangeability of similar simulation tools
in a HELICS-based co-simulation, a few standardized use
cases and interface definitions have been developed. For
example, one use case that has been defined is a steady-
state transmission and distribution system powerflow. This
use case makes the following data-exchange requirements
between the two federates:

• Transmission Required Interfaces:
- - Inputs:

∗ Distribution system loads at all points of com-
mon coupling

- - Outputs:
∗ Transmission system bus voltages at all points of

common coupling
• Distribution Required Interfaces:

- - Inputs:
∗ Transmission system bus voltages at all points of

common coupling
- - Outputs:

∗ Distribution system loads at all points of com-
mon coupling

Although it may seem redundant for simply defined use
cases such as these, the mirrored definitions of the interfaces
allows the developer of the use case to confirm that every
input required by one federate has that met by an output from
another federate. Furthermore, each of the input and output
interfaces calls out a specific interface definition associated
with each federate type (not shown in the definition above).
For example, the distribution system federates load output
interface definition includes the following:

• HELICS interface type: value
• HELICS interface name: pcc.<GUID>.pq
• Units:MVA

VOLUME 12, 2024 24335



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

• HELICS data type: complex vector with a single
complex value for each phase (typically three phases).

• Tags (metadata): phases
The GUID in the interface name is intended to be related

to names from the model in question and thus allows the
definition to be applicable beyond any particular model file.
HELICS supports metadata tags that can be associated with
any interface; in this case, the ‘‘phases’’ tag is used to indicate
which phases are represented in the interface and allows the
receiving federate to comprehensively understand the data
that is being sent. For example, queries on the tags associated
with this interface will indicate how many elements are in
the complex vector that is being sent by the distribution
federate andwhich phases correspond to which elements. The
standardized definition of the phases tag for this purpose has
also been defined.

The standardization of the interfaces also makes it clear
when a federate may have to do some additional work
to support a given use case. For example, the distribution
system load interface at the point of common coupling
with the transmission system federate will produce a three-
phase unbalanced load as a vector of complex values. It is
common for transmission system simulation tools to only
use positive-sequence values in calculating their powerflows.
The standardized interface definition makes it clear that
there must be a conversion from three-phase unbalanced to
balanced power before applying this value internally in the
simulation tool.

F. MANAGING HELICS-BASED CO-SIMULATION
Depending on the number of federates in the co-simulation,
launching it may or may not be a challenge in and of itself.
Some tools can only be run from a GUI, and others only
on the command line. As the number of federates increases,
the chore of launching the co-simulation becomes more time
consuming, and simplymanaging its operation becomesmore
complex. The HELICS teams has developed a number of
tools to help with these challenges.

1) CO-SIMULATION LAUNCHING WITH ‘‘HELICS_CLI’’
‘‘helics_cli’’ is functionality distributed as a part of
PyHELICS (the Python language binding) that provides
several useful functions. The most popular of these is the
ability to launch a co-simulation, collect log messages, and
write them out to log files. ‘‘helics_cli’’ takes a JSON file as
an input, the contents of which define the federates to launch,
which command-line calls to execute when launching them,
and if it should generate a broker for the co-simulation or
let another process handle it. After writing this JSON file,
launching the co-simulation is handled with a simple single
command: helics run --path=<path to runner JSON> .
If any federate crashes during the co-simulation, ‘‘helics_cli’’
ensures all other federates close down cleanly as well.
Though only applicable for federates that can be launched
from the command line, it is the preferred method of
launching a co-simulation.

2) CO-SIMULATION DATA COLLECTION WITH ‘‘HELICS_CLI’’
In addition to the launching functionality, ‘‘helics_cli’’
provides the ability to attach an observer federate that collects
all the value and message outputs and writes them to a
sqlite database. By default, the observer collects all output
data from all federates, but this can be a useful artifact in
debugging as well as a means of sharing results with others
by simply sharing the database file. sqlite is not intended for
large amounts of data and will not be appropriate for all co-
simulations. Additionally, adding an observer to a federation
may produce some degree of co-simulation slowdown if the
observer must write large volumes of data to the database and
must contend with network and/or local disk delays.

3) CO-SIMULATION MANAGEMENT
HELICS provides two methods of interacting with a running
co-simulation, and both use web technologies. The first is
a REST API that the HELICS broker provides; it offers a
set of queries that can be made to understand the topology
and state of the co-simulation. The API includes access to
any queries allowed in the system, as well as commands for
debugging and federation control II-D5. Brokers can also be
created through the API as part of the Broker server, which
can generate brokers on demand.

The second method is through ‘‘helics_cli’’ . ‘‘helics_cli’’
provides a locally-served web-browser-based GUI with
additional functionality. When launched, the GUI allows the
user to see the composition of the federation, both in terms of
federates as well as their interfaces, launch the co-simulation,
pause the co-simulation, and evaluate the simulation state of
a nfederate as well as the most recent values and messages
being sent by the federation. Currently, the web GUI uses
the ‘‘helics_cli’’ observer capability allowing all these values
to be written out to an sqlite database; this database can be
re-loaded by the web GUI at a future time to inspect a co-
simulation that took place in the past. At this time, the web
GUI is best suited to smaller federates with more limited
federate and interface counts.

IV. APPLICATIONS OF HELICS-BASED CO-SIMULATION
A. OVERVIEW OF APPLICATIONS
Flexibility is one of the key requirements in the design of
HELICS [55] (see Section II-A), and it can support a wide
range of co-simulation use cases across many different fields.
This section highlights a number of past and ongoing efforts
using HELICS to demonstrate this breadth and provide a
starting point for readers who might be working on similar
project areas.

Given HELICS’s roots as a transmission-distribution-
communications-markets simulation framework for electric
power systems [12], many of the example applications
come from power grid use cases such as transmission-
distribution interactions, advanced grid control schemes, and
even hardware-in-the-loop testing. However, a wide range
of other applications that involve co-simulation beyond the

24336 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

power system can also readily be supported in HELICS.
These include multi-infrastructure applications and other
applications as highlighted below. In addition, a much wider
range of applications are possible, and future researchers are
encouraged to use HELICS in more diverse ways and apply
it to even more fields.

B. TRANSMISSION-DISTRIBUTION INTERACTIONS
The continued increase in deployment of distributed energy
resources (DERs), electrification of end uses—especially
transportation—and increased opportunities for demand-
side resources to participate in wholesale markets (e.g.
FERC-2222 [2]) have all created an unprecedented need to
better understand and simulate the interactions between the
transmission and distribution portions of the electric grid.
This includes everything from market-timescale interactions
to questions around higher-speed engineering phenomena
such as frequency response or electromechanical stability.

1) TSO-DSO INTERACTIONS
a: PRICE-RESPONSIVE DEMAND
A number of past co-simulation efforts have looked at
the interactions between wholesale electric power markets
and demand that responds to price signals. For example,
[56] compared simulations using transmission only (with
demand price elasticity) versus using a full transmission and
distribution co-simulation with individually price-responsive
loads. They found that the transmission-only simulation
failed to capture key oscillations and differences in load
profiles versus fixed demand. Moreover, the transmission-
only simulation introduced some erroneous price spikes that
were not present with the more detailed transmission and
distribution co-simulation.

In a separate and larger study, Hansen et al. [14] evaluated
integrated wholesale and retail markets with price-responsive
DERs for 15,000 distribution systems with over one million
DERs. In particular, the study found that at high levels of real-
time energy market participation by DERs, it is best for DERs
to bid their demand into wholesale energy market. If instead
DERs simply respond to real-time prices as they clear (so
called ‘‘prices-to-devices’’), oscillations in physical power
system and in market clearing price develop (see Figure 6).

b: TRANSMISSION-DISTRIBUTION-MARKET PLATFORMS
Given the interest in the interactions between wholesale
and retail markets, multiple testbeds that pre-couple a
fixed set of simulation tools have been developed, each
with a somewhat distinctive objective. Here we introduce
three such efforts. Rather than competing with HELICS,
these frameworks provide a higher level of abstraction.
Notably, two were originally developed with semi-custom
co-simulation frameworks and have since been adapted to
use HELICS for enhanced coordination and more modular
interfaces to component tools.

FIGURE 6. Results from [14] showing the impact of DER participation in
an integrated transactive wholesale-retail market when DERs do and do
not bid their demand into the market. Without bidding, oscillations
develop in the power system and market clearing price.

The Integrated Grid Modeling System (IGMS) [10]
represents an early example of this type of platform. It cap-
tures ISO-to-appliance scale simulation by bringing together
highly detailed wholesale market operations in FESTIV [57]
with transmission-scale power flow in MATPOWER [29]
and dozens to thousands of distribution system simulations
each running in a separate instance of GridLAB-D [58].
In this context, FESTIV provides multiple nested timescales
for wholesale markets including day-ahead and intra-daily
security-constrained unit commitment, real-time security-
constrained economic dispatch, and automatic generator
control (AGC) estimation to capture actual seconds-scale
commands and (imperfect) response of generators to meet
regulation and other reserve product demands. GridLAB-D
provides both distribution-scale 3-phase unbalanced power
flow and simplified models of buildings with end uses,
including thermal models for weather dependence, a wide-
range of individual appliances, and mechanisms for price-
responsive control.

Originally, IGMS used a custom Python and MPI-based
set of scripts to orchestrate the co-simulation [18], and the
challenges with such an approach helped to inform the
design of the HELICS platform. Later, the IGMS platform
was ported over to use HELICS for co-simulation instead,
resulting in faster performance and significantly improved
modularity and scalability.

The Transactive Energy Simulation Platform (TESP) [59]
was developed to provide a means of evaluating transactive
energy mechanisms using a common suite of simulation
tools such as GridLAB-D, PYPOWER, and Energy+. Users
build their own custom transactive agents operate the system
performing tasks such as DER management (e.g. HVAC
systems or EV chargers), running retail markets, or operating
the distribution system. TESP has been used for several
studies and includes sample agents, models, and datasets
from these studies as starting points for new users of the
platform. Further details can be found in Section IV-D6.

VOLUME 12, 2024 24337



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

Recently, TESP was used to implement an integrated
wholesale-retail day-ahead and real-time energy market
controlling HVACs, electric water heaters, and batteries in a
study called ‘‘Distribution System Operator + Transactive’’
or ‘‘DSO+T’’. This study comprehensively evaluated the
impact of widespread adoption of a transactive energy system
in ERCOT, looking at both the technical and economic
impacts under the ERCOT power system as it exists today
and in a hypothetical high-renewable future. Full results
can be found in [39]. Figure 7 shows the flow of money
from consumer to generator; this perspective would only
be possible through the fully integrated bulk power system
and distribution system modeling with wholesale and retail
market operations enabled by co-simulation.

FIGURE 7. Based on the comprehensive bulk power system and
distribution system modeling, simulation, and analysis in [39], the flow of
money from customer to generator in today’s power system can be more
easily summarized.

Another recent platform [54] focused on high-fidelity
simulation of the distribution-level aspects of transactive
energy schemes, notably including those based on distributed
ledger approaches such as blockchain. Here, detailed home
models are included with a combination of operational,
controllable, high-resolution residential energy (OCHRE)
simulators for each home and the foresee™ home energy
management system (HEMS) to coordinate a home-level,
rather than individual appliance, participation in the trans-
active market. The HEMS also coordinates DERs including
solar and storage. OpenDSS provides a simulation of the
distribution power flow and utility equipment. A generic
distributed-ledger smart-contract mechanism then links these
to various market configurations for comparison.

A recent study with this framework compared a fairly tra-
ditional double-auction market clearing (similar to wholesale
electricity markets) to peer-to-peer approaches and found
that in nearly all cases, both markets provided customer
energy cost savings relative to net metering tariffs. For the
simulated utilities, both markets provided increased revenue
with highDERs, but lower revenuewith lowDERs, compared
to net metering. Of these, the double-blind market with
high DERs was noteworthy for providing a modest increase
in utility income while increasing cost savings for a large
fraction of customers. Moreover, every customer on the
feeder (including those without DERs) saw cost savings
in all cases relative to the self-consumption-favoring tariffs
being rolled out in some states. Additional results along with

detailed descriptions of the co-simulation implementation
including timing can be found in [54].

c: IMPROVING TSO-DSO CO-SIMULATIONS
Some past efforts have also looked into ways to enhance
TSO-DSO co-simulation performance or accuracy. For
example, [60] developed a simplified representation of price-
responsive DERs in an integrated wholesale-retail transactive
system. These analysis typically use co-simulation to bridge
the physical and market models in wholesale (transmission)
and retail (distribution) systems. The simplified model
reduced the data transfer over the co-simulation bus and
the computational load in modeling the physics and market
behavior in the distribution system.

FIGURE 8. Results from [60] showing difference between using
full-fidelity (dashed lines) and simplified (solid lines) distribution physics
models in an integrated wholesale-retail transactive system.

For improving accuracy and real-world applicability, it is
also important to expand the research-oriented co-simulations
above—which typically duplicate one or more test feeders
and connect them directly to the transmission bus—to use
full-scale, heterogeneous distribution system models that
capture (or mimic) the large diversity and full topology
seen in the grid. Ideally such underlying data would also
capture substations, sub-transmission, and other parts of
the grid often left out in the examples described above.
Reference [31] represents a start in this direction by using
HELICS to co-simulate hundreds of synthetic separate
distribution feeders, substation, and subtransmission systems
in OpenDSS connected to synthetic transmission systems
running in PowerWorld.

d: FUTURE TSO-DSO DIRECTIONS
In addition to further using such methods to explore future
grid scenarios and inform related decisions, there remain a
number of opportunities for future research extensions in this
application area, including:

• Working out challenges associated with convergence
at the transmission-distribution interface. In this area,

24338 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

past work has shown that for some applications, taking
advantage of co-iteration to ensure consistency of
boundary conditions can play an important part in simu-
lation accuracy. However, this additional back and forth
can not only can be slow, but also may never converge.
Ongoing work is looking at ways to speed convergence
through approaches such as gradient descent and heavy-
ball heuristics to overcome convergence challenges
particularly with electrically linked/looped distribution
systems connected to multiple transmission nodes

• Integrating co-simulation into industry practice. A par-
ticularly promising idea in this space would use HELICS
to enable operators of two parts of the grid to conduct
synchronized simulations without sharing proprietary
models. For example, an independent system operator
(ISO) could run time-series simulations of upcoming
market operations using their own tools and link with
HELICS through the Internet to distribution simulations
run by one ormore local utilities. ISONewEngland is an
early adopter of HELICS and has begun using HELICS
in an exploratory fashion to help understand the impact
of distribution load characteristics on bulk power system
transient response.

2) CO-SIMULATION WITH FASTER DYNAMICS
In addition to the typically quasi-steady-state timescales
of TSO-DSO interactions described above, the growth of
DERs in general, and in distribution-connected inverter-
based resources (IBRs) requires careful coordination at
electromechanical dynamics (and faster) timescales. Here
again, co-simulation can be useful for scaling, automation,
integrating the effects of communication latency on control-
schemes, and more.

GridLAB-D’s motor dynamic models and inverter models
support traditional transient analysis with a number such
studies. Reference [61] Coupled PSS/E with GridLAB-D to
evaluate the impacts of a bus-fault event, comparing the per-
formance of the high-inertia induction motors (transmission-
connected) and low-inertia induction motors (distribution
connected). A similar study in [62] looked at the performance
of IBRs when operating as grid-forming inverters, showing
dramatically improved response to a transmission-connected-
generator trip, particularly at very high penetrations (see
figure 9).

Recent work with the Cyber-Physical Dynamic Simulation
(CPDS) testbed highlights this potential with a focus on
frequency response by DERs. Reference [63] describes
this framework’s use of ANDES [33] as an open-source
transmission-scale dynamics simulation platform coupled
through HELICS to multiple instances of OpenDSS. This
work also validates the co-simulation vs. a combined,
single-tool model showing a very close match. It further
highlights how the co-simulation computation time is nearly
identical for the small test systems while also scaling well
(much less than linearly) to much larger-scale systems (e.g.,
2,000 transmission nodes and 1 million distribution nodes)

FIGURE 9. Results from [62] showing the impact of inverter-based
resources on transient response in a HELICS-based co-simulation.

through the parallelization enabled by the HELICS-based co-
simulation.

In addition, co-simulation has been used to automate
full-interconnect scale dynamic simulation in a real-time
context within an ISO-like energy management system
(EMS) framework. Specifically, in [64], HELICS was used
to automate the updates to a commercial eTerra EMS system
in conjunction with an online transient stability analysis tool
(TSAT) developed by PowerTech to evaluate the potential to
use the composite load model within WECC-wide on-line
stability analysis.

C. RESILIENT DISTRIBUTION SYSTEM MODELING
A resilient distribution system (RDS) uses local resources,
such as customer-owned solar or community-owned battery
storage, to prepare for disturbances and more rapidly recover
from system events—for example, by linking hospital back-
up generators and community solar to extend the operational
time of the hospital during a disaster. This requires new
control and communication systems, sometimes aggregated
into microgrids, that can either provide services to or operate
independently from the bulk system. This coordination, both
between the bulk system and RDS or within the RDS,
is being tested in simulation prior to deployment to maximize
performance and integration of DERs.

CleanStart DERMS uses HELICS to evaluate the potential
for achieving black start and restoration objectives through
ad-hoc microgrids powered by DERs [65]. The goal is
to implement a DER management system that can start a
microgrid after an outage, then slowly re-energize the rest of
the system by integrating additional DERs and nearby gen-
eration. Coupled models of distribution, sub-transmission,
and communication systems, along with multiple dispatch,
restoration, and control layers, are being tested to identify
issues and improve the effectiveness of the control systems.
Communication layers are implemented to understand the
robustness of the system to lost or limited data, assuming that
the system will need to operate during extreme conditions.

Co-simulation was used to evaluate the performance
of a resilience-based transactive system for coordinating
centralized control and distributed field devices in partnership

VOLUME 12, 2024 24339



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

with Duke Energy. Operations during ‘‘blue’’ sky and ‘‘gray’’
sky conditions were evaluated to determine the effectiveness
of the control design in conditions that are challenging to
replicate in the field. The Duke-RDS project was a proof of
concept that successfully demonstrated that coordination of
distributed assets, using existing commercially off-the-shelf
relays and open-source software, can produce a more flexible
system [66].

The National Renewable Energy Cooperative (NRECA)
is using HELICS to support machine learning for energy
theft detection [67]. To do so, NRECA built distribution
system models connected to agents that control loads in
the distribution system to simulate energy theft. These
simulations generate large-scale datasets that in turn are used
to train models using machine learning. Using HELICS to
link the power system models and the energy-theft agents
allows the location and behavior of the energy theft to be
easilymodified, allowing the creation of large, robust datasets
that provide a better training environment for machine
learning. This higher-quality training produces higher-quality
detection models.

D. ADVANCED COORDINATION AND CONTROL SCHEMES
It is expected that advanced control systems will continue to
be integral to the growth of the future power system, partic-
ularly in light of high penetrations of distributed resources.
These controls will often cross traditional boundaries from
behind-the-meter building controls to distribution systems
to transmission operators, and will include communication
systems operated by a variety of owners. It is important to
understand how all of these new controls will interact with
each at the system scale to ensure stability, cost effectiveness,
and the desired outcome. Here again, co-simulation can help.

1) CyDER
In one example, the increasing complexity of transmission
system interactions makes it helpful to automate the inte-
gration of data from multiple sources into Energy System
Management applications. The also applies at the distribution
level for management of DERs. The Cyder project [68] used
FMI modules to develop a plug-and-play co-simulation for
simulating operation and control in high-penetration DER
scenarios and was an early test case for FMI capabilities
within HELICS.

2) CITADELS
The Citadels project is a US Department of Energy
(DOE) Grid Modernization Laboratory Consortium (GLMC)
project that was designed to increase operational flexibility
between multiple microgrids using peer-to-peer control over
an OpenFMB messaging bus through a consensus design
algorithm on commercial hardware. To test the algorithms
before deployment on the demonstration hardware, a power-
communication-control co-simulation was developed to eval-
uate the performance of the microgrid and device control

agents over a variety of scenarios (see Figure 10 for a
federation architecture diagram). HELICS linked GridLAB-
D, ns-3, and custom control agents developed in Python to test
variations on distributed optimal power flow and collabora-
tive autonomy algorithms to maximize DER utilization, both
under normal operations and with degraded communications.
By utilizing the co-simulation platform, issues such as false
convergence due to communication delays, synchronization
errors, and overall algorithm efficiency were addressed
before moving to a full hardware testbed emulator [69].

FIGURE 10. Federation architecture from [69] showing the connection
between GridLAB-D modeling the power system, Python load device
agents, the communication system modeling in ns-3, and Python
microgrid agents.

3) AUTONOMOUS ENERGY SYSTEMS
Autonomous energy systems (AES) use distributed hier-
archical controls to manage very large numbers of DERs
and other resources using nested cells to enable effective
local management and reduced data needs for larger-scale
coordination [70]. HELICS has been used extensively in
evaluating and refining the algorithms and architecture
for AES control schemes [71]. This includes both large-
scale simulation of the entire San Francisco Bay area
with millions of controllable DERs as well as detailed
algorithmic development such as evaluating communication
delay constraints for primal-dual control schemes [72].

4) GridAPPS-D
GridAPPS-D is an advanced distribution systemmanagement
platform largely developed and maintained by PNNL [73].
The platform allows the development and evaluation of
various distribution management applications and evaluation
of their impacts on locally managed simulation models.

24340 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

Co-simulation via HELICS is an essential tool in the
platform as it allows the various controllers and applications
to be dynamically deployed on the existing models. This
degree of modularity gives GridAPPS-D flexibility and
versatility to experiment and evaluate new distribution
system management techniques and technologies. Figure 11
provides a high-level look at how GridAPPS-D is envisioned
as a platform to facilitate an ecosystem of interoperable
distribution system management software applications for
utilities, solution providers, and researchers to support an
advanced multi-stakeholder, multi-objective grid.

FIGURE 11. High-level overview of the architecture of GridAPPS-D [73]
and its role as a platform to facilitate an ecosystem of interoperable
distribution system management software applications for utilities,
solution providers, and researchers.

5) GO-SOLAR
The Grid Optimization with Solar (GO-Solar) project [74]
developed a novel multi-part control approach that com-
bines predictive state estimation–through matrix comple-
tion and multi-kernel learning–and on-line multi-objective
optimization–using voltage-load sensitivity to guide a high-
speed single-step gradient with linearized power flow.
Together, these can efficiently manage extreme penetrations
of solar and other DERs using only a fewmeasurement points
and only a few control nodes. HELICS was used to test
this multi-part control scheme at scale as part of a large-
scale integrated transmission-distribution operational co-
simulation with more than 400 real-world feeders covering
the entire island of Oahu. HELICS was also used to test

the algorithms with more than 90 hardware devices through
power hardware in the loop to explore the impacts of actual
device behavior [52], [53].

6) TESP
The Transactive Energy Simulation Platform [59] was
developed as a means of allowing designers of transactive
energy systems to more readily evaluate their performance.
Such systems are generally multi-domain, frequently with
modeling of the transmission and distribution systems both
as power delivery networks but also as market operation
environments. Detailed modeling of customer loads is often
required to allow minute-by-minute control actions to be
taken. TESP provides an integration of suitable tools for
modeling transactive environments such as GridLAB-D for
distribution systems, including distributed generation and
residential thermodynamic modeling [75], PYPOWER [76]
and AMES [77] for transmission systems, Energy+ for large
commercial models [37], ns-3 for communication system
modeling of control and coordination signals [78], and a
collection of Python agents that manage transactive loads
and implement portions of the transactive markets. TESP
has been used to perform a number of analyses, including
an initial demonstration of TESP capabilities [79] (see
Figure 12 for an overview of the co-simulation data-exchange
topology), a consensus-based fully-decentralized transactive
mechanism [38], and the previously mentioned ERCOT-scale
evaluation of an integrated retail and wholesale real-time and
day-ahead energy market [39].

FIGURE 12. Overview of the co-simulation data-passing topology used in
one of the initial use cases (see [79]) for PNNL’s Transactive Energy
Simulation Platform [59].

E. CYBER-PHYSICAL: COMMUNICATIONS, SECURITY,
AND MORE
The ‘‘smart grid’’ is fundamentally defined by the expansion
of both communication and automation in the power system.
Systems and components that were locally autonomous or
completely disconnected from management systems of the
power system are and have been connected, allowing for new
power system management techniques. This newly expanded
and connected network introduces new complexities and
potential vulnerabilities; communication systems are not

VOLUME 12, 2024 24341



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

always reliable, distributed automation throughout the power
system can fail or behave in unanticipated ways, and
malicious actors have new avenues to compromise normal
power system operation. With the growth in the smart grid
over the past decade there has also come a need to perform
new analysis the bridge the cyber and physical domains,
and co-simulation is a primary tool for performing such
analysis.

A number of efforts are underway to develop structures
and systems to model cyber-physical interactions between
the power grid and communication networks. For example,
the Agile Co-simulation for Cyber Energy System Security
(ACCESS) [80] seeks to understand cyber-related system
impacts on infrastructure systems including gas and grid.

Other efforts take advantage of the various ways HELICS
supports introducing communications into co-simulations.
For example, the CPDS project [34], [63] described earlier
uses HELICS’ built-in filters to introduce delays into the
communication stream. In contrast, [81] and [82] integrates
a full packet-level communication simulation using ns-3
to evaluate the detailed trade-offs among various low-level
communication protocols as part of a hybrid home/grid
coordination control scheme.

1) MICROGRID CONTROL
Microgrids as a resilience strategy (and more generally
as a load and DER coordination strategy) have been
studied for over a decade, and the growth of inverter-based
resources (IBRs) has created both the possibility of viable
islanded operation as well as complexity in coordinating
local generation and load. Co-simulation provides a way of
evaluating complex control and coordination mechanisms
and strategies by linking high-fidelity power system models
with controllers defined in Python or MATLAB.

In [41], a test framework for microgrid control is
developed to demonstrate the adverse impact of non-ideal
communications on the dynamic stability of networked
microgrids connected to a centralized microgrid controller by
using physical grid, communication, and control models (see
Figure 10). Reference [13] extends this further and evaluates
the impact of different communication technologies, network
structures, and media on the operations on an islanded
microgrid using a battery energy storage system to offset
the loss of variable generation. Reference [38] implemented
a consensus-based transactive system that required high-
frequency communication between participants. To aid in the
development of a system robust to communication system
behavior, native HELICS filters were used to replicate the
effects of communication system delays and dropped packets
(see Figure 14).

2) WIDE AREA CONTROL
Reference [83] as a part of NAERM (see Section IV-F)
implemented a wide-area frequency controller with remote
frequency measurements passing through a communication

FIGURE 13. Results from [41] showing the impacts of frequency
management in a microgrid when communication system impacts are
considered.

system simulator prior to reaching the controller. The
analysis showed that as delays in the communication network
increased the ability of a standard frequency controller to
manage the system frequency failed, resulting in system
separation.

FIGURE 14. Results from [38] showing the difference in DER dispatch in a
transactive system with controllers that are susceptible to non-ideal
communications (dashed lines) and those that have been improved and
are not (solid lines).

24342 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

F. MULTI-INFRASTRUCTURE INTERACTIONS
The power system is steadily becoming more connected
and reliant on resources outside of the direct control of
utility operators, driven by consumer-owned DERs that
provide resources at the edge of the grid, hundreds of
generators that connect to a single interstate natural gas
pipeline, and intense transportation loads that are mobile and
less predictable. To continue to operate the power system
on leaner reserve margins while simultaneously reducing
costs and decarbonizing the system, holistic approaches to
model, simulate, and understand these inter-dependencies
are necessary. Co-simulation can help by bringing together
existing simulators from various domains to capture these and
other interactions.

The North American Energy Resilience Model (NAERM,
[84]) is a DOE-led example, using co-simulation via HELICS
to link simulators from different energy domains andmodular
data services to evaluate the resilience of the US energy
system to extreme, national-scale events (e.g., earthquakes,
massive wildfires, polar vortex, etc.). NAERM combines
commercial and open-source tools from power systems
(steady state and dynamic) with production cost models,
natural gas simulations, and communication system models
to develop an engineering-class planning tool, capable of
evaluating the interdependencies between these domains and
addressing key resilience challenges.

Other efforts have focused on the interaction between the
power grid and another specific infrastructure. For instance,
[4] looks at the joint operations of the natural gas and grid
systems, using both a small test system and a larger, more
realistic model of the Belgium gas and grid systems. This
work uniquely uses encoord’s SAInt tool for both transient
gas simulation and AC optimal power flow. This allows
illustrating the gas–grid couplings. The very close match
between the results of SAInt’s native, single matrix gas-
grid coupling and those where the gas and grid models are
separated and coordinated throughHELICS helps validate the
effectiveness of co-simulation.

In the GEMINI-XFC project, HELICS is used to co-
simulate grid and transportation systems [45]. Specifically,
OpenDSS is used to simulate hundreds to thousands of
distribution feeders representing the entire San Francicso Bay
Area in conjunction with the BEAM transportation simulator
that captures individual vehicle travel for the same footprint
(see Figure 15 for the federation architecture). This platform
then enables exploring various control schemes to manage
grid voltage and congestion with widespread EV and extreme
fast charger use.

G. REAL-TIME AND HARDWARE TESTING
While a majority of the effort has gone into software-
based co-simulation. HELICS has been used in a number
of circumstances to connect to real-time hardware devices.
HELICS has a real-time mode that controls the time granted
based on wall-clock timings. This can be used on one or

FIGURE 15. Federation architecture from [45] showing information
passing between the transportion modeling in BEAM and the power
system modeling in OpenDSS.

all federates to drive the simulation. This allows HELICS
to connect any software to a real-time hardware-in-the-loop
(HIL) lab set including real-time simulators such as Opal-RT
or RTDS, and other real-time systems including cybersecurity
test beds.

For example, the signal driver for the hardware in the Sky-
fall [85] lab runs HELICS to connect with other simulation
tools for power system simulation and communication.

HELICS also underpins the wide range of HIL testing
conducted through the Advanced Distribution Manage-
ment System (ADMS) Testbed [86]. This testbed uses
HELICS to orchistrate interactions among commercial
ADMS platform controls, large-scale distribution grid sim-
ulation in OpenDSS, and real-time controller and power
HIL simulation with Opal-RT to connect dozens of DER
hardware devices [87]. Hardware simulation with the
ADMS testbed has led to over a dozen published papers,
including evaluation of DERMS system performance [88],
advanced control schemes such as data-enhanced hierarchical
control (DEHC) [89], and next generation automation
schemes [90]

V. FUTURE WORK
The HELICS core library could be considered feature-
complete as of HELICS v3.4 because it provides flexibility in
defining the message-passing and timing interfaces necessary
for integration of a variety of simulation tools and their
corresponding software architectures. There are expected
to be further developments to improve the usability of
HELICS to allow new users an easier on-ramp into creating
HELICS-based federations, debug the operation of existing
federations, and more easily manage larger or more complex
federations. Prototype versions of some of these function-
alities are present in the existing web interface, but further
development effort is needed for them to reach a mature state.
This is a significant challenge, because it is desirable that
such a tool would be usable in all existing HELICS broker
topologies when running in complex deployment strategies
(e.g., single laptop, hybrid cloud, HPC, multi-institution) and
on all supported OSes.

VOLUME 12, 2024 24343



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

Relatedly, we anticipate that as HELICS gains wider
adoption, there will be a need to provide or support some form
of workflow and/or deployment tool. These tools provide
ways of chaining together multiple existing tools to perform
more complex analysis. For example, a workflow tool may
make it possible to simulate the solar generation for a given
geography and take that output and provide it as an input to a
bulk power system tool. Sensitivity analysis and uncertainty
quantification are also common analyses that greatly benefit
from a workflow tool. Generally, we would like to see users
be easily able to use a HELICS federation in these kinds
of tools in the same way a single simulation tools would
be used.

As of this writing, there has been somewhat limited
testing to evaluate the performance of HELICS to handle
large numbers of interfaces and/or interfaces that send large
amounts of data, either as many small messages or individual
large messages. Testing to date has not shown any problems,
but more extensive evaluation would be helpful in validating
the expected performance.

The new analysis needs that motivated the development
of HELICS are migrating from academic concerns to real-
world planning and operations concerns, motivating the
development of co-simulation as part of industry practice.
A key part of enabling these analysis is the integration
of commercial industry software tools into the HELICS
platform. As shown in Section III-D, some of these tools
have been integrated, but many more are in common use
throughout industry. Integration for some of these tools may
require additional effort from the vendor to support one of the
two integration methods discussed in Section III-A.

DISCLAIMER
The views expressed in the article do not necessarily represent
the views of the DOE or the U.S. Government. The U.S.
Government retains and the publisher, by accepting the article
for publication, acknowledges that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this
work, or allow others to do so, for U.S. Government purposes.

REFERENCES
[1] Gridwise Architecture Council. (Jul. 2019). GridWise Transactive Energy

Framework Version 1.1. [Online]. Available: https://www.gridwiseac.
org/pdfs/pnnl_22946_gwac_te_framework_july_2019_v1_1.pdf

[2] FERC. (Sep. 2020). FERC Order 2222: Participation of Distributed
Energy Resource Aggregations in Markets Operated By Regional Trans-
mission Organizations and Independent System Operators. [Online].
Available: https://www.ferc.gov/sites/default/files/2020-09/E-1_0.pdf

[3] Electric Power Annual 2018, Energy Inf. Administration, United States
Dept. Energy, Washington, DC, USA, Oct. 2019. [Online]. Available:
https://www.eia.gov/electricity/annual/pdf/epa.pdf

[4] B. Sergi and K. Pambour, ‘‘An evaluation of co-simulation for modeling
coupled natural gas and electricity networks,’’ Energies, vol. 15, no. 14,
p. 5277, Jan. 2022. [Online]. Available: https://www.mdpi.com/1996-
1073/15/14/5277

[5] NASPI Control Room Solutions Task Team, ‘‘Using synchrophasor data
for voltage stability assessment,’’ North American Synchrophase Initiative,
Richland, WA, Tech. Rep. NASPI-2015-TR-016, Oct. 2015. [Online].
Available: https://www.naspi.org/node/358

[6] D.Kosterev, J. Burns, N. Leitschuh, J. Anasis, A. Donahoo, D. Trudnowski,
M. Donnelly, and J. Pierre, ‘‘Implementation and operating experience
with oscillation detection application at Bonneville power administration,’’
in Proc. Grid Future Symp., 2016, pp. 1–12. [Online]. Available:
http://cigre-usnc.org/wp-content/uploads/2016/10/Kosterev.pdf

[7] (Aug. 2010). IEEE Std 1516Ů-2010, IEEE Standard for Modeling and
Simulation (M and S) High Level Architecture (HLA) Framework and
Rules. [Online]. Available: https://ieeexplore.ieee.org/document/5553440

[8] Modelica Association Project. (Jul. 2014). FMI, Functional
Mockup Interface for Model Exchange and Co-Simulation, Version
2.0. [Online]. Available: https://fmi-standard.org/assets/releases/
FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf

[9] S. Schütte and M. Sonnenschein, ‘‘Mosaik—Scalable smart grid scenario
specification,’’ in Proc. Winter Simul. Conf. (WSC), Dec. 2012, pp. 1–12.
[Online]. Available: https://ieeexplore.ieee.org/document/6464986

[10] B. Palmintier, E. Hale, T. M. Hansen, W. Jones, D. Biagioni,
H. Sorensen, H. Wu, and B.-M. Hodge, ‘‘IGMS: An integrated
ISO-to-appliance scale grid modeling system,’’ IEEE Trans. Smart
Grid, vol. 8, no. 3, pp. 1525–1534, May 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7558187

[11] S. Ciraci, J. Daily, J. Fuller, A. Fisher, L. Marinovici, and K. Agarwal,
‘‘FNCS: A framework for power system and communication networks co-
simulation,’’ in Proc. DEVS Symp. Theory Model. Simul., Apr. 2014, p. 36.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2665008.2665044

[12] B. Palmintier, D. Krishnamurthy, P. Top, S. Smith, J. Daily, and J. Fuller,
‘‘Design of the HELICS high-performance transmission-distribution-
communication-market co-simulation framework,’’ in Proc. Workshop
Model. Simul. Cyber-Physical Energy Syst. (MSCPES), Apr. 2017, pp. 1–6.
[Online]. Available: http://ieeexplore.ieee.org/document/8064542/

[13] P. T. Mana, K. P. Schneider, W. Du, M. Mukherjee, T. Hardy, and
F. K. Tuffner, ‘‘Study of microgrid resilience through co-simulation of
power system dynamics and communication systems,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 3, pp. 1905–1915, Mar. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9072554

[14] J. Hansen, T. Hardy, and L. Marinovici, ‘‘Transactive energy:
Stabilizing oscillations in integrated wholesale-retail energy
markets,’’ in Proc. IEEE Power Energy Soc. Innov. Smart Grid
Technol. Conf. (ISGT), Feb. 2019, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/8791658

[15] M. Mukherjee, L. Marinovicic, T. Hardy, and J. Hansen, ‘‘Framework
for large-scale implementation of wholesale-retail transactive control
mechanism,’’ Int. J. Electr. Power Energy Syst., vol. 115, Feb. 2020,
Art. no. 105464. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0142061519306258/pdfft?md5=27f399fbeaf28c
0df870a2972b139a3b&pid=1-s2.0-S0142061519306258-main.pdf

[16] D. Rimorov, J. Huang, C. F. Mugombozi, T. Roudier, and I. Kamwa,
‘‘Power coupling for transient stability and electromagnetic tran-
sient collaborative simulation of power grids,’’ IEEE Trans. Power
Syst., vol. 36, no. 6, pp. 5175–5184, Nov. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9416881

[17] A. K. Bharati and V. Ajjarapu, ‘‘A scalable multi-timescale T&D
co-simulation framework using HELICS,’’ in Proc. IEEE Texas
Power Energy Conf. (TPEC), Feb. 2021, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/9384985

[18] B. Palmintier, E. Hale, T. Hansen, W. Jones, D. Biagioni, K. Baker, H. Wu,
J. Giraldez, H. Sorensen, M. Lunacek, N. Merket, J. Jorgenson, and B.-
M. Hodge, ‘‘Integrated distribution-transmission analysis for very high
penetration solar PV (final technical report),’’ Nat. Renew. Energy Lab.,
Golden, CO, USA, Tech. Tech. Rep. NREL/TP-5D00-65550, Jan. 2016.
[Online]. Available: http://www.nrel.gov/docs/fy16osti/65550.pdf

[19] M. M. Rezvani, S. Mehraeen, J. R. Ramamurthy, and T. Field, ‘‘Interaction
of transmission-distribution system in the presence of DER units—Co-
simulation approach,’’ IEEE Open J. Ind. Appl., vol. 1, pp. 23–32, 2020.
[Online]. Available: https://ieeexplore.ieee.org/document/9039629

[20] N. Kang, R. Singh, J. T. Reilly, and N. Segal, ‘‘Impact of distributed
energy resources on the bulk electric system,’’ Argonne Nat. Lab.,
Chicago, IL, USA, Tech. Rep. ANL/ESD-17/26, Nov. 2017, doi: 10.2172/
1433502.

[21] Battelle Memorial Institute, Lawrence Livermore National Security LLC,
and Alliance for Sustainable EnergyLLC. (2023). HELICS. [Online].
Available: https://github.com/GMLC-TDC/HELICS

24344 VOLUME 12, 2024

http://dx.doi.org/10.2172/1433502
http://dx.doi.org/10.2172/1433502


T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

[22] L. Barbierato, P. Rando Mazzarino, M. Montarolo, A. Macii, E. Patti,
and L. Bottacioli, ‘‘A comparison study of co-simulation frameworks for
multi-energy systems: The scalability problem,’’ in Proc. Energy Informat-
ics.Academy Conf., vol. 5, Dec. 2022, pp. 1–12, doi: 10.1186/s42162-022-
00231-6.

[23] Battelle Memorial Institute, Lawrence Livermore National Security LLC,
and Alliance for Sustainable EnergyLLC. (2023). PyHELICS. [Online].
Available: https://python.helics.org/

[24] (2023). JELICS. [Online]. Available: https://github.com/GMLC-
TDC/jHELICS

[25] (2023). MatHELICS. [Online]. Available: https://github.com/GMLC-
TDC/matHELICS

[26] (2023). HELICS.jl. [Online]. Available: https://github.com/GMLC-
TDC/HELICS.jl

[27] (2023). HELICS-FMI. [Online]. Available: https://github.com/GMLC-
TDC/HELICS-FMI

[28] (2019). HELICS-HLA. [Online]. Available: https://github.com/GMLC-
TDC/HELICS-HLA

[29] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, ‘‘MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,’’ IEEE Trans. Power Syst., vol. 26,
no. 1, pp. 12–19, Feb. 2011. [Online]. Available: https://ieeexplore.
ieee.org/document/5491276

[30] Pacific Northwest National Laboratory. (2023). MATPOWER-Wrapper.
[Online]. Available: https://github.com/GMLC-TDC/MATPOWER-
wrapper

[31] N. Panossian, T. Elgindy, B. Palmintier, and D. Wallison, ‘‘Syn-
thetic, realistic transmission and distribution co-simulation for voltage
control benchmarking,’’ in Proc. IEEE Texas Power Energy Conf.
(TPEC), Feb. 2021, pp. 1–5. [Online]. Available: https://ieeexplore.
ieee.org/abstract/document/9384935

[32] A. Latif and K. Duwadi. (Aug. 2021). PyPSSE. [Online]. Available:
https://github.com/NREL/PyPSSE

[33] H. Cui and F. Li, ‘‘ANDES: A Python-based cyber-physical
power system simulation tool,’’ in Proc. North Amer. Power
Symp. (NAPS), Sep. 2018, pp. 1–6. [Online]. Available: https://ieeexplore.
ieee.org/document/8600596

[34] W. Wang, X. Fang, and A. Florita, ‘‘Impact of DER communi-
cation delay in AGC: Cyber-physical dynamic co-simulation,’’ in
Proc. IEEE 48th Photovoltaic Specialists Conf. (PVSC), Jun. 2021,
pp. 2616–2620. [Online]. Available: https://ieeexplore.ieee.org/document/
9518779

[35] W. Wang, M. Cai, X. Fang, and C. Irwin, ‘‘Impact of open communication
networks on load frequency control with plug-in electric vehicles by cyber-
physical dynamic co-simulation,’’ in Proc. IEEE Power Energy Soc. Innov.
Smart Grid Technol. Conf. (ISGT), Jan. 2023, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/10066380

[36] W. Wang, X. Fang, and A. Florita, ‘‘Impact of DER communication
delay in AGC: Cyber-physical dynamic co-simulation,’’ in Proc. IEEE
48th Photovoltaic Specialists Conf. (PVSC), Jun. 2021, pp. 2616–2620.
[Online]. Available: https://ieeexplore.ieee.org/document/9518779

[37] TESP Examples and Demonstrations—Energy+. Accessed: Feb. 1, 2024.
[Online]. Available: https://tesp.readthedocs.io/en/latest/demonstrations/
energyplus.html

[38] M. Mukherjee, T. Hardy, J. C. Fuller, and A. Bose, ‘‘Implementing
multi-settlement decentralized electricity market design for
transactive communities with imperfect communication,’’ Appl.
Energy, vol. 306, Jan. 2022, Art. no. 117979. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261921012824

[39] H. M. Reeve, A. Singhal, A. Tbaileh, R. G. Pratt, T. D. Hardy, J. D. Doty,
L. D. Marinovici, S. R. Bender, M. A. Pelton, and M. R. Oster, ‘‘DSO+T:
Integrated system simulation DSO+T study: Volume 2,’’ Pacific Northwest
National Lab., Richland, WA, USA, Rep. PNNL-32170-2, 2022. [Online].
Available: https://www.osti.gov/biblio/1842488

[40] G. Kandaperumal, K. P. Schneider, and A. K. Srivastava, ‘‘A data-
driven algorithm for enabling delay tolerance in resilient microgrid
controls using dynamic mode decomposition,’’ IEEE Trans. Smart
Grid, vol. 13, no. 4, pp. 2500–2510, Jul. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9758683

[41] B. Bhattarai, L. Marinovici, M. Touhiduzzaman, F. K. Tuffner,
K. P. Schneider, J. Xie, P. Thekkumparambath Mana, W. Du, and
A. Fisher, ‘‘Studying impacts of communication system performance on
dynamic stability of networked microgrid,’’ IET Smart Grid, vol. 3, no. 5,
pp. 667–676, 2020, doi: 10.1049/iet-stg.2019.0303.

[42] B. Bhattarai, L. Marinovici, P. S. Sarker, and A. Orrell, ‘‘MIRACL
co-simulation platform for control and operation of distributed wind
in microgrid,’’ IET Smart Grid, vol. 5, no. 2, pp. 90–100, 2022, doi:
10.1049/stg2.12054.

[43] A. Latif. (Aug. 2021). CYMEpy. [Online]. Available: https://github.
com/GMLC-TDC/cymepy

[44] A. Latif, D. Thomas, and K. Duwadi. (Aug. 2021). PyDSS. [Online].
Available: https://github.com/NREL/PyDSS

[45] N. V. Panossian, H. Laarabi, K.Moffat, H. Chang, B. Palmintier, A.Meintz,
T. E. Lipman, and R. A. Waraich, ‘‘Architecture for co-simulation of
transportation and distribution systems with electric vehicle charging
at scale in the San Francisco bay area,’’ Energies, vol. 16, no. 5,
p. 2189, Jan. 2023. [Online]. Available: https://www.mdpi.com/1996-
1073/16/5/2189

[46] N. Gray, R. Sadnan, A. Bose, and A. Dubey, ‘‘Effects of communication
network topology on distributed optimal power flow for radial distribution
networks,’’ in Proc. North Amer. Power Symp. (NAPS), Nov. 2021,
pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/
9654692

[47] W. Lardier, ‘‘ASGARDS-H: Enabling advanced smart grid cyber-physical
attacks, risk and data studies with HELICS,’’ Master’s thesis, Concordia
Inst. Inf. Syst. Eng. (CIISE), Concordia Univ., Montreal, QC,
Canada, Nov. 2020. [Online]. Available: https://spectrum.library.
concordia.ca/id/eprint/987690/1/Lardier_MASc_S2021.pdf

[48] (2022). SAInt | Case Study: HELICS+ Natural Gas and Grid
Validation and Optimization. [Online]. Available: https://encoord.
com/CaseStudyHELICS.html

[49] E. Tatara, ‘‘NGTransient: A hydraulic pipeline and optimal control
model for simulating pipeline disruptions and impacts on electric power
generation,’’ in Proc. Resilience Week, Oct. 2020.

[50] T. Haines, B. M. Garcia, W. Vining, and M. Lave, ‘‘A co-simulation
approach to modeling electric vehicle impacts on distribution feeders dur-
ing resilience events,’’ in Proc. Resilience Week (RWS), Oct. 2021, pp. 1–5.
[Online]. Available: https://ieeexplore.ieee.org/document/9611803

[51] F. K. Tuffner, J. Undrill, D. Schoffield, J. Eto, D. Kosterev, and R. Quint,
‘‘Distribution-level impacts of plug-in electric vehicle charging on the
transmission system during fault conditions,’’ Pacific Northwest Nat.
Lab., Richland, WA, USA, Tech. Rep. PNNL-31558, Oct. 2021. [Online].
Available: https://www.osti.gov/servlets/purl/1832905

[52] J. Wang, J. Simpson, R. Yang, B. Palmintier, S. Tiwari, and Y. Zhang,
‘‘Hardware-in-the-loop evaluation of an advanced distributed energy
resource management algorithm,’’ in Proc. IEEE Power Energy Soc. Innov.
Smart Grid Technol. Conf. (ISGT), Feb. 2021, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9372182

[53] J. Wang, J. Simpson, R. Yang, B. Palmintier, S. Tiwari, and Y. Zhang,
‘‘Performance evaluation of an advanced distributed energy resource
management algorithm,’’ in Proc. IEEE Int. Conf. Commun., Con-
trol, Comput. Technol. Smart Grids (SmartGridComm), Oct. 2021,
pp. 378–384.

[54] D. Cutler, T. Kwasnik, S. Balamurugan, T. Elgindy, S. Swaminathan,
J. Maguire, and D. Christensen, ‘‘Co-simulation of transactive energy
markets: A framework for market testing and evaluation,’’ Int. J. Electr.
Power Energy Syst., vol. 128, Jun. 2021, Art. no. 106664. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S014206
1520342095

[55] B. Palmintier. (Mar. 2018). How Use Cases Drove the Design
of the HELICS Co-Simulation Framework. [Online]. Available:
https://www.osti.gov/biblio/1669395-how-use-cases-drove-design-
helics-co-simulation-framework

[56] H. Jain, B. Palmintier, D. Krishnamurthy, I. Krad, and E. Hale, ‘‘Evaluating
the impact of price-responsive load on power systems using integrated
T&D simulation,’’ in Proc. IEEE Power Energy Soc. Innov. Smart
Grid Technol. Conf. (ISGT), Feb. 2019, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/8791634/

[57] E. Ela and M. O’Malley, ‘‘Studying the variability and uncertainty
impacts of variable generation at multiple timescales,’’ IEEE Trans. Power
Syst., vol. 27, no. 3, pp. 1324–1333, Aug. 2012. [Online]. Available:
https://ieeexplore.ieee.org/document/6166377

[58] D. P. Chassin, J. C. Fuller, and N. Djilali, ‘‘GridLAB-D: An agent-
based simulation framework for smart grids,’’ J. Appl. Math.,
vol. 2014, pp. 1–12, 2014. [Online]. Available: http://www.hindawi.com/
journals/jam/2014/492320/

VOLUME 12, 2024 24345

http://dx.doi.org/10.1186/s42162-022-00231-6
http://dx.doi.org/10.1186/s42162-022-00231-6
http://dx.doi.org/10.1049/iet-stg.2019.0303
http://dx.doi.org/10.1049/stg2.12054


T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

[59] Q. Huang, T. E. McDermott, Y. Tang, A. Makhmalbaf, D. J. Ham-
merstrom, A. R. Fisher, L. D. Marinovici, and T. Hardy, ‘‘Simulation-
based valuation of transactive energy systems,’’ IEEE Trans. Power
Syst., vol. 34, no. 5, pp. 4138–4147, Sep. 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8360969/

[60] S. Hanif, L. Marinovici, M. Pelton, T. Hardy, and T. E. McDermott,
‘‘Simplified transactive distribution grids for bulk power system
mechanism development,’’ in Proc. IEEE Power Energy Soc.
Gen. Meeting (PESGM), Jul. 2021, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9638030

[61] A. K. Bharati and V. Ajjarapu, ‘‘SMTD co-simulation framework
with HELICS for future-grid analysis and synthetic measurement-data
generation,’’ IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 131–141, Jan. 2022.
[Online]. Available: https://ieeexplore.ieee.org/document/9594447

[62] A. K. Bharati, V. Ajjarapu, W. Du, and Y. Liu, ‘‘Role of distributed
inverter-based-resources in bulk grid primary frequency response
through HELICS based SMTD co-simulation,’’ IEEE Syst. J.,
vol. 17, no. 1, pp. 1071–1082, Mar. 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/9966492

[63] W. Wang, X. Fang, H. Cui, F. Li, Y. Liu, and T. J. Overbye,
‘‘Transmission-and-distribution dynamic co-simulation framework for
distributed energy resource frequency response,’’ IEEE Trans. Smart
Grid, vol. 13, no. 1, pp. 482–495, Jan. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9569771

[64] S. Choi, H. Zhang, W. Tootle, Z. Flores, and F. Howell.
(Nov. 2021). Real-Time SE Export Cases based WI Dynamic
Simulation Update. [Online]. Available: https://www.
wecc.org/_layouts/15/WopiFrame.aspx?sourcedoc=/Administrative/11b
_Choi_Real-Time%20SE%20Export%20Cases%20based%20WI%20
Dynamic%20Simulation%20Update_JSIS%202021.pdf&action=
default&DefaultItemOpen=1

[65] B. Bhattarai, P. T. Mana, and J. Fuller, ‘‘CleanStart DERMS: Mod-
eling effort update,’’ Pacific Northwest Nat. Lab., Richland, WA,
USA, Tech. Rep. PNNL-27644, Jun. 2018. [Online]. Available: https://
www.osti.gov/biblio/1768022-cleanstart-derms-modeling-effort-update

[66] K. P. Schneider et al., ‘‘Duke-RDS final report,’’ Pacific Northwest Nat.
Lab. (PNNL), Richland, WA, USA, Tech. Rep. PNNL-32075, Sep. 2021.
[Online]. Available: https://www.osti.gov/biblio/1834057

[67] A. Narayanan and T. Hardy, ‘‘Synthetic data generation for
machine learning model training for energy theft scenarios using
cosimulation,’’ IET Gener., Transmiss. Distribution, vol. 17, no. 5,
pp. 1035–1046, Mar. 2023. [Online]. Available: https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/gtd2.12619

[68] J. Coignard, T. Nouidui, C. Gehbauer, M. Wetter, J.-Y. Joo, P. Top,
R. R. Soto, B. Kelley, and E. Stewart, ‘‘CyDER—A co-simulation
platform for grid analysis and planning for high penetration of
distributed energy resources,’’ in Proc. IEEE Power Energy Soc.
Gen. Meeting (PESGM), Aug. 2018, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/8586006

[69] K. P. Schneider et al., ‘‘Citadels final report (GMLC 2.2.1:
Citadels),’’ Pacific Northwest Nat. Lab., Richland, VA, USA,
Tech. Rep. PNNL-33889, Aug. 2023. [Online]. Available:
https://www.osti.gov/biblio/1995452

[70] B. Kroposki, A. Bernstein, J. King, D. Vaidhynathan, X. Zhou,
C.-Y. Chang, and E. Dall’Anese, ‘‘Autonomous energy grids: Controlling
the future grid with large amounts of distributed energy resources,’’ IEEE
Power Energy Mag., vol. 18, no. 6, pp. 37–46, Nov. 2020. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9229208

[71] D. Vaidhynathan and J. King, ‘‘Autonomous energy system simula-
tion capabilities—Ultra-large scale DER deployment,’’ National Renew.
Energy Lab., Golden, CO, USA, Tech. Rep., Aug. 2020. [Online].
Available: https://www.nrel.gov/grid/assets/pdfs/aes-king.pdf

[72] J. Comden, J. Wang, and A. Bernstein, ‘‘Study of communication
boundaries of primal-dual-based distributed energy resource management
systems (DERMS),’’ in Proc. IEEE Power Energy Soc. Innov. Smart
Grid Technol. Conf. (ISGT), Jan. 2023, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/10066440

[73] R. B. Melton, K. P. Schneider, E. Lightner, T. E. Mcdermott,
P. Sharma, Y. Zhang, F. Ding, S. Vadari, R. Podmore, A. Dubey,
R. W. Wies, and E. G. Stephan, ‘‘Leveraging standards to create an
open platform for the development of advanced distribution applications,’’
IEEE Access, vol. 6, pp. 37361–37370, 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8397161

[74] R. Yang, Y. Zhang, B. Palmintier, X. Zhu, Y. Liu, A. Bernstein,
J. Simpson, W. Wang, I. Krad, M. Martin, M. Emmanuel, J. Wang,
M. Asano, A. Hirayama, and W.-H. Chen, ‘‘Grid optimization with
solar (GO-Solar),’’ National Renew. Energy Lab., Golden, CO,
USA, Tech. Rep. NREL/PR-5D00-82026, 2022. [Online]. Available:
https://www.nrel.gov/docs/fy22osti/82026.pdf

[75] D. P. Chassin, K. Schneider, and C. Gerkensmeyer, ‘‘GridLAB-
D: An open-source power systems modeling and simulation
environment,’’ in Proc. IEEE/PES Transmiss. Distribution Conf.
Exposit., Apr. 2008, pp. 1–5. [Online]. Available: http://ieeexplore.
ieee.org/document/4517260/

[76] PYPOWER Github Repository. Accessed: Feb. 1, 2024. [Online]. Avail-
able: https://github.com/rwl/PYPOWER

[77] H. Li and L. Tesfatsion, ‘‘The Ames wholesale power market test bed: A
computational laboratory for research, teaching, and training,’’ in Proc.
IEEE Power Energy Soc. Gen. Meeting, Jul. 2009, pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/document/5275969

[78] NS-3 Network Simulator. Accessed: Feb. 1, 2024. [Online]. Available:
https://www.nsnam.org/

[79] S. E. Widergren, D. J. Hammerstrom, Q. Huang, K. Kalsi, J. Lian,
A. Makhmalbaf, T. E. McDermott, D. Sivaraman, Y. Tang, A. Veeramany,
and J. C. Woodward, ‘‘Transactive systems simulation and valuation
platform trial analysis,’’ Pacific Northwest Nat. Lab. (PNNL), Richland,
WA, USA, Tech. Rep. PNNL-26409, Apr. 2017. [Online]. Available:
http://www.osti.gov/servlets/purl/1379448/

[80] B. M. Kelley, H. Scott, C. C. Sun, and N. Venethongkham. (Aug. 2022).
Energy Resilience for Mission Assurance: Agile Co-simulation for Cyber
Energy System Security (ACCESS), Model Advancements for Resilience
Analysis. [Online]. Available: https://www.osti.gov/biblio/1883445

[81] J. Zhang, S. M. S. Alam, A. R. Florita, A. Hasandka, J. Wei-Kocsis,
D. Wang, L. Yang, and B. S. Hodge, ‘‘Opportunistic hybrid communi-
cations systems for distributed PV coordination,’’ Nat. Renew. Energy
Lab. (NREL), Golden, CO, USA, Tech. Rep. NREL/TP-5D00-73716,
Mar. 2020. [Online]. Available: https://www.osti.gov/biblio/1606149

[82] J. Zhang, J. Daily, R. A. Mast, B. Palmintier, D. Krishnamurthy,
T. Elgindy, A. Florita, and B.-M. Hodge, ‘‘Development of
HELICS-based high-performance cyber-physical co-simulation
framework for distributed energy resources applications,’’ in Proc.
IEEE Int. Conf. Commun., Control, Comput. Technol. Smart
Grids (SmartGridComm), Nov. 2020, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9518779

[83] Pacific Northwest National Laboratory. (2019). Wide Area Control
HELICS Co-simulation. [Online]. Available: https://github.com/GMLC-
TDC/HELICS-Use-Cases/tree/master/PNNL-Wide-Area-Control

[84] U.S. Department of Energy Office of Electricity. (2019). North
American Energy Resilience Model. [Online]. Available: https://
www.energy.gov/sites/prod/files/2019/07/f65/NAERM_Report_public
_version_072219_508.pdf

[85] J. Helms. (Dec. 2018). Defending the Vulnerable Power Grid. [Online].
Available: https://str.llnl.gov/2018-12/helms

[86] A. Pratt, M. Baggu, F. Ding, S. Veda, I. Mendoza, and E. Light-
ner, ‘‘A test bed to evaluate advanced distribution management sys-
tems for modern power systems,’’ in Proc. IEEE EUROCON 18th
Int. Conf. Smart Technol., Jul. 2019, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/8861563

[87] J. Wang, H. Padullaparti, F. Ding, M. Baggu, and M. Symko-Davies,
‘‘Voltage regulation performance evaluation of distributed energy
resource management via advanced hardware-in-the-loop simulation,’’
Energies, vol. 14, no. 20, p. 6734, Oct. 2021. [Online]. Available:
https://www.mdpi.com/1996-1073/14/20/6734

[88] J. Wang, M. Blonsky, F. Ding, S. C. Drew, H. Padullaparti, S. Ghosh,
I. Mendoza, S. Tiwari, J. E. Martinez, J. J. D. Dahdah, F. A. M. Bazzani,
M. Baggu, M. Symko-Davies, C. Bilby, and B. Hannegan, ‘‘Performance
evaluation of distributed energy resource management via advanced
hardware-in-the-loop simulation,’’ inProc. IEEEPower Energy Soc. Innov.
Smart Grid Technol. Conf. (ISGT), Feb. 2020, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9087667

[89] H. Padullaparti, J. Wang, S. Veda, M. Baggu, and A. Golnas, ‘‘Evaluation
of data-enhanced hierarchical control for distribution feeders with high
PV penetration,’’ IEEE Access, vol. 10, pp. 42860–42872, 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9758815

[90] J. Wang, H. Padullaparti, S. Veda, I. Mendoza, S. Tiwari, and M. Baggu,
‘‘Performance evaluation of next-generation grid automation and controls
with high PV penetration,’’ in Proc. IEEE Power Energy Soc. Innov.
Smart Grid Technol. Conf. (ISGT), Jan. 2023, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9632298

24346 VOLUME 12, 2024



T. D. Hardy et al.: HELICS: A Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis

TREVOR D. HARDY (Senior Member, IEEE)
received the B.S. degree in engineering from
LeTourneau University, Longview, TX, USA, and
the Ph.D. degree in electrical engineering from
Wichita State University, Wichita, KS, USA.
He was with Micron Technology, Boise, ID,
USA, as a Product Engineer, doing DRAM testing
for new process technologies, and an Embedded
Systems Designer with Cessna Aircraft Company,
Wichita. Since joining the Pacific Northwest

National Laboratory, he has focused his research efforts on distribution
system power analysis, co-simulation using HELICS, and transactive energy
system design and analysis.

BRYAN PALMINTIER (Senior Member, IEEE)
received the B.S. degree in aerospace engineer-
ing from the Georgia Institute of Technology,
Atlanta, GA, USA, the M.S. degree in aero/astro
engineering and the Degree of Engineering in
mechanical engineering from Stanford University,
Stanford, CA, USA, and the Ph.D. degree in
engineering systems from Massachusetts Institute
of Technology, Cambridge, MA, USA. He is
currently the Group Manager of the Transmission

and Distribution Interactions (T&D) Group and a Principal Research
Engineer with the Grid Planning and Analysis Center, National Renewable
Energy Laboratory (NREL). Prior to NREL, he was with RMI, Energy
Solutions, Santa Clara University, NOLS, and the Naval Center for Space
Technology. His current research interests include co-optimized T&D design
and effective integration of distributed energy resources into low-carbon
multi-energy systems across technical, social, economic, regulatory, and
equity dimensions.

PHILIP L. TOP (Member, IEEE) received the
B.S. degree in engineering from Dordt Uni-
versity, Sioux Center, IA, USA, and the M.S.
degree in engineering and the Ph.D. degree in
electrical engineering from Purdue University.
He is currently the Group Leader and a Research
Engineer with the Lawrence Livermore National
Laboratory. His research interests include work on
different remote sensing technologies, including
ultrawideband radar, X-ray, acoustics, LIDAR, and

satellite imagery. Recent work has focused more on the power grid including
the development of open-source tools for power systems (includingGridDyn,
a power system simulator, and HELICS), grid sensors and data analytics, and
hardware-in-the-loop testing.

DHEEPAK KRISHNAMURTHY (Member, IEEE)
received the B.E. degree in electrical and elec-
tronics engineering from SSN University and the
M.S. degree in electric engineering from Iowa
State University. He is currently a Senior Policy
Advisor with Environment and Climate Change
Canada. He has worked on the development
of several energy system modeling and simula-
tion software, such as HELICS, PowerSimula-
tions.jl, OpenDSSDirect.py, and AMES. He is also

involved in developing Canada’s long-term supply and demand energy and
greenhouse gas emissions projections model.

JASON C. FULLER (Senior Member, IEEE)
received the B.S. degree in physics from the
University of Washington, Seattle, WA, USA,
and the M.S. degree in electrical engineering
from Washington State University, Pullman, WA,
USA. He is currently the Technical Group
Leader and a Research Engineer with the Pacific
Northwest National Laboratory. His project high-
lights include the development and application of
GridLAB-D and related co-simulation tools, such

as FNCS and HELICS. He is also the Infrastructure Modeling Lead for
DOE’s NAERM efforts. He is acting as the past Chair of the Distribution
System Analysis Subcommittee and the Chair of the Test Feeder Working
Group.

VOLUME 12, 2024 24347


