

Estimating the value of worker training: a system reliability & LCOE perspective

Brittany Smith National Renewable Energy Laboratory

2023 DuraMAT Fall Workshop, Sept 26-27 Albuquerque, New Mexico

Motivation: Inflation Reduction Act (IRA)

To receive IRA tax credits, systems **1 MW**_{ac} **or larger** must:

- pay local prevailing wages
- use 10-15% apprentice labor

	ITC	РТС
Labor requirements met	30%	2.6 ¢/kWh
Requirements <u>not</u> met	6%	0.5 ¢/kWh

Projects may choose either:

- investment tax credit (ITC)
- production tax credit (PTC)

Installation cost comparisons

Utility system (>1MW_{ac})

Compare average wage price with 6% ITC to prevailing wage price with 30% ITC:

- Prevailing wage <u>premium</u> would need to outweigh 24% of total system price
- Labor costs typically <15% of total system price

Installation cost comparisons

Residential system (<<1MW_{ac})

6% ITC penalty doesn't apply to smaller systems

- Will commercial systems be strategically sized less than 1MW_{ac}?
- Could there be ancillary benefits associated with higher labor expenses?

)uraMAT

BERKELEY LAB

DuraMAT | 4

U.S. DEPARTMENT OF

Levelized Cost of Energy (LCOE)

LCOE (\$/kWh) = Total Energy Produced over Service Life (\$) Total Energy Produced over Service Life (kWh)

Approach: comparing equivalent LCOEs

How much additional energy generation would offset higher labor expenses?

What reduction in maintenance costs would offset higher install labor expenses?

- Higher Labor Expenses

- + ...improved energy yield?
- + ...lower degradation rate?
- + ...longer system life?
- + ...lower maintenance costs?

Estimating training costs

If each worker receives 1 week (40 hours) of training each year at full pay, and we distribute this expense across the projects they install per year:

	Utility	Commercial	Residential
Projects per year	5	20	80
% increase labor costs per project	1.9%	1.9%	1.9%

- PVLCOE calculator includes labor in "area-scaling BOS costs" per m²
- Estimate using NREL annual system cost benchmark reports:
 - labor hours per m²
 - hourly wage & legally-required benefits

Step 1: Select system type from top menu Step 2: Propose increased install labor cost

Baseline	Proposed COPY FROM BASELINE	
Cost Front layer cost (USD/m ²)	Cost Front layer cost (USD/m ²)	
▲1 3.50 Cell cost (USD/m ²)	أَدُّهُ 3.50 Cell cost (USD/m²)	
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>م</u> لاً 22.20	
Back layer cost (USD/m²)	Back layer cost (USD/m²)	
Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)	
Extra component cost (USD/m ²)	Extra component cost (USD/m ²)	Increase labor costs by 1.9%
0 0&M cost (USD/kW _{DC} /year)	o <u>0&M</u> cost (USD/kW _{DC} /year)	
ත්ව 17.46 BOS cost, power-scaling (USD/W)	م ^ا له 17.46 BOS cost, power-scaling (USD/W)	
	الم	
BOS cost, area-scaling (USD/m ⁺)	<u>BUS</u> cost, area-scaling (USD/m²)	
Baseline LCOE (USD/kWh) 0.0489	Proposed LCOE (USD/kWh) 0.0490	

Step 3: Compare results

Baseline	Proposed COPY FROM BASELINE
Cost Front layer cost (USD/m ²)	Cost Front layer cost (USD/m ²)
<u>δ¹δ</u> 3.50	<u>δ</u> ⁴ λ 3.50
Cell cost (USD/m ²)	Cell cost (USD/m ²)
<u>6</u> ¹ 22.20	δ ¹ 2 22.20
Back layer cost (USD/m ²)	Back layer cost (USD/m ²)
<u>δ¹δ</u> 2.40	δ ¹ λ 2.40
Non-cell module cost (USD/m ²)	Non-cell module cost (USD/m ²)
<u>دة</u> 13.60	لم ^ن گ 13.60
Extra component cost (USD/m ²)	Extra component cost (USD/m ²)
6 ¹ 0 1	δ ¹ Δ 0
<u>O&M</u> cost (USD/kW _{DC} /year)	<u>O&M</u> cost (USD/kW _{DC} /year)
<u>لام</u> 17.46	ه ^ن ه 17.46
BOS cost, power-scaling (USD/W)	BOS cost, power-scaling (USD/W)
<u>دم</u> ۵.2	δ ^μ δ 0.2
BOS cost, area-scaling (USD/m ²)	BOS cost, area-scaling (USD/m ²)
<u>ś</u> ¹ 66.67	<u>مْ</u> كُ 66.88
Baseline LCOE (USD/kWh) 0.0489	Proposed LCOE (USD/kWh) 0.0490

	Prop	posed		COPY FROM BASELINE
	Cost Front	t layer cos	st (USD/m²)	
	δЪ	3.50	1	
	Cell	cost (USD	/m²)	
	52	22.20		
	Back	layer cos	st (USD/m ²)	
	δÅ	2.40		
	Non-	cell modu	ule cost (USD/m ²)	
	27	13.60		
	Extra	compon	ent cost (USD/m²)	
Automa	tically ad	just this		
input to the b	make LCO aseline L	OE match .COE.	D/kW _{DC} /year)	
	<u>5</u> 2	17.3733		
	BOS	cost, pow	ver-scaling (USD/V	0
	δЪ	0.2		
	BOS	cost, area	a-scaling (USD/m ²))
	δÅ	66.88		
	Prop	osed LCO	E (USD/kWh)	0.0489

Find break-even points (equivalent LCOE) for:

- Energy yield
- Degradation rate
- O&M costs
- Service life

Residential Systems

Residential rooftop system: 14.82 ¢/kWh

% change	40-hour training	1.5x Labor Costs
Energy yield	0.1%	2.3%
Degradation rate	-1.4%	-32.9%
Service life	0.4%	8.0%
O&M costs	-0.7%	-17.2%

Modest changes for:

- Energy yield
- Service life
- O&M costs

Degradation rate is challenging, but could play a role when effects are combined

Utility Systems

Utility 1-axis tracker system: 4.67 ¢/kWh

% change	40-hour training	1.5x Labor Costs
Energy yield	0.1%	2.7%
Degradation rate	-1.4%	-34.3%
Service life	0.3%	13.3%
O&M costs	-0.5%	-12.0%

Modest changes for:

- Energy yield
- Service life
- O&M costs

Degradation rate is challenging, but could play a role when effects are combined

Commercial Flat-Roof Systems

Commercial rooftop system: 9.96 ¢/kWh

% change	40-hour training	1.5x Labor Costs
Energy yield	0.1%	4.1%
Degradation rate	-2.9%	-58.6%
Service life	0.4%	16.0%
O&M costs	-1.1%	-29.5%

- Modest change for energy yield, service life
- Degradation rate and O&M costs are challenging, but could play a role when effects are combined

Similarly, if O&M labor costs increase \$1-\$2 per kW/yr, service life needs to increase by 1 year to achieve same LCOE

Detailed Cost Analysis Model (DCAM): dcam.openei.org

- Free, public, user-friendly online tool
- Enables bottom-up modeling of PV costs:
 - Manufacturing of ingots, wafers, cells
 - Assembly of modules
 - Installation of PV systems
- Leverages NREL component and system cost benchmark research
- Can be used to analyze cost impacts of technology or installation choices

Detailed Cost Analysis Model (DCAM): <u>dcam.openei.org</u>

urch	Inputs Advanced Inputs Output			
PUTS			× OUTPUT	
tem Description +add note			Utility-PV MSP Results (\$/V	Vdc)
	2022	0	MSP - Minimum Sustainable Price	
t Location	United States	~	Project Size (MWDC)	5
ype	One-Axis	~	Axis Type	One-Axis
ect Size	5	S MWDC	EPC/Developer Net Profit	0.0893
NDC	1500	Y VDC	Contingency	0.0292
		miles	Developer Overhead	0.111
hission Line	2.1	miles	Transmission Line	0
al to Real USD Factor	0.952	0	Permitting Fee	0.0419
			Interconnection Fee	0.0217
			Sales Tax	0.0419
			EPC Overhead	0.0898
ules + add note			Installation Labor & Equipment	0.133
ule Efficiency	20.3	0 %	Electrical BOS	0.143
le Width	40.32	0 inches	Structural BOS	0.151
ule Length	76.68	0 inches	Inverter	0.0397
e Power	405	W	Module	0.314
le Weight	47.84	0 lbs	Total Utility + PV System Cost	1.21
ula Price	0.33	\$ \$he		

Laboratories

Funding Disclaimer

NREL/PR-7A40-87623

www.duramat.org

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Background Slides

Simplified PV-LCOE Calculator: pvlcoe.nrel.gov

- PV technology-specific
- Editable preset fields, targeting research applications
- Instant comparison of proposed changes to a baseline system
- Distinct from:

System Advisor Model (SAM): sam.nrel.gov

- Different financial models +
- Detailed options for module and + system designs
- + Can model solar + storage

- May be more challenging for new users to navigate
- Difficult to quickly evaluate ____ research directions without introducing confounding factors

0.72

0.72

Total installed system cost (USD/W)

ura**MAT**

\square NRF

