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World Decarbonization Goals &

PV Deployment Rates

Current Capacity:
1.2 TWdc

Deployment 2022:
240+ GWdc
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Deployment | Deployment Rate | Scaling vs
Source Goals by 2030 2022
2019 IEA Net Zero 15 TW 630 GW/year X2.6
2021 US Solar Futures 16 TW 600 GW/year X2.5
2021 Zhang et al, Energy & Env. Sci. 70+ TW 3000 GW/year x12.5

Masson et al. Snapshot of Global PV Markets - 2023. IEA PVPS Task 1; 2023.
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Circular Economy for PV Sustainability
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How do we measure impact of circular choices for PV lifecycles?
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PV in Circular
Economy Tool
PV ICE

System-dynamics, geospatial,
open-source model that
evaluates the material, energy
and carbon viability of the PV
manufacturing, deployment,
reuse, and recycling industries
across the Energy Transition,
allowing exploration of supply
chains with varying degrees
and types of circularities.
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Includes pathways for circularity specific for PV

www.nrel.gov/pv/pv-ice-tool.html
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Explore 3 PV Module Design Aspects

Circular Design
R-Action Aspect

Scenario Names

Efficiency High Efficiency + Long Life

Lifetime

Remanufacture :
Material
& Circularity
Recycle
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What if...
we prioritized one

aspect at the expense
of the other two?

“Extreme” Scenarios
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What if...

2/3 design aspects
could be improved by
2050, to a less perfect
level?

“Ambitious” Scenarios
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Business As Usual .. Reduce
Lifetime

Currently —PV ICE & Reuse
. —PERC
commercialized —SH
on .
Technologies and their Low Quality
expected improvements
ReducEécf clency Circjlziity
Remanufacture
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“Business as Usual” Scenarios
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Full manuscript submitted to EPJ for peer-reviewed publication:

H. Mirletz et al. “More than Recycling: The importance of multiple metrics for a
Circular Economy for PV in the Energy Transition”



All Scenarios Require Replacements by 2100
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Annual Manufacturing and Deployment

with Replacements

Annual Installs with Replacements Decade Average Post 2050 Emf{r‘;g‘—.
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Cumulative Deployment 2000-2100 with Replacements

Cumulative Installs with Replacements i —
Baseline Extreme Ambitious Material Circularity
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Material Circularity: Great at Waste Minimization
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But no matter how Circular,

Virgin material demand is not eliminated

450

Annual Material Demands Decade Average Post 2050
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. Improves Net Energy
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Lifetime: Maximizes Energy Balance
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Takeaway Messages

1) Material Circularity (Remanufacture, Recycle)
 Minimizes waste (76%)
e (Can reduce cumulative virgin material demands (up to 29%)
2) No scenario eliminates virgin material demands

* Speed of energy transition

e Source materials sustainably
* Manufacturing yields and short circular pathways preferred

3) Efficiency and bifaciality (Reduce)
* alone improves net energy (9%) and reduces peak material demands (30%)
* need to combine with other design aspects to improving more metrics

4) Lifetime Extension (Reliability and Reuse)
* Minimizes material and Energy Demands, maximizes energy balance
* Plays well with others, minimizes harms, maximizes benefits

No matter what else you do, don’t forget to make it last. & firies | ,,
**NREL
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Full manuscript submitted to EPJ for peer-reviewed publication
H. Mirletz et al. “More than Recycling: The importance of multiple metrics -

for a Circular Economy for PV in the Energy Transition”
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PV ICE Tool: https://www.nrel.gov/pv/pv-ice-tool.html,
https://github.com/NREL/PV ICE
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