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INTRODUCTION

 Rapid electrochemical battery state diagnostics enable…
– Monitoring of battery state in active systems
– Additional data points to complement digital twins
– Rapid screening of batteries at end of ‘first life’

 DC measurements are easier than AC measurements (for now)

 For real-world implementation, the limitations rapid measurements needs to be 
better understood, and the impact of pulse magnitude/duration/design has not 
been clearly studied



CHALLENGE OF RAPID ELECTROCHEMICAL 
DIAGNOSTICS
 Rapid measurements are primarily sensitive to resistance

– For temperature prediction, this is good
• ionic charge transfer and diffusion resistances are highly sensitive to temperature

– For SOC and SOH prediction, resistance is not necessarily a good measure

 The evolution of resistance and capacity throughout cell lifetime is not always 
monotonic, leading to non-linear relationships between the two

 Resistance and capacity measures have different sensitivity to temperature and 
hysteresis

 Temperature, SOC, SOH, and hysteresis effects on resistance are not 
independent

Machine-learning is an ideal tool to study this challenge.



THE DATA SET
 6-day characterization test with…

– Charge/discharge rate capability test (C/10, C/5, C/3, P/3, C/2, 1C)
– 3-hour charge-depleting and charge-sustaining application cycles
– Pulses at rest and dynamic (overlaid on charge/discharge)

 68 total measurements:
– 24 batteries (16x 64 Ah NMC|Gr, 8x Nissan Leaf modules)
– 3 ambient temperatures per battery

 Pulses across SOC range during charge and discharge after rests (HPPC) and 
‘dynamic’ pulses overlaid on C/2 and 1C
– ~13,000 distinct pulse measurements



THE DATA SET

Rate capability

Charge-depleting 
drive cycle

Charge-sustaining 
drive cycle
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10s-40s-10s (USABC) and 4s-4s-4s-4s (rapid)
USABC pulses @ C/10, C/2, 1C, 2C

Pseudo-Random Pulses (PsRP)
Simple pulse sequence (PsRP 1)
4s steps, [-2, 0, 2] C current, 120s

Complex pulses sequence (PsRP 2)
[1:1:15]s steps, [-2:1:2] C current, 120s
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CAPACITY AND RESISTANCE ARE 
CORRELATED…
But the correlation is not strong, and both capacity and resistance may evolve non-
monotonically throughout a cell’s lifetime.

Gasper et al, Cell Reports Phys. Sci. 2022 3 12

Resistance is more temperature 
sensitive than capacity



PULSES ARE SENSITIVE
TO EVERYTHING…

…with varying magnitude. Effects of cell 
state of pulse response are not 
independent (SOH impacts SOC 
dependence, …)

For NMC and LMO positive electrode cells, 
pulses show the most sensitivity to cell 
state at very low SOC.

Slightly more sensitivity in aged cell than 
nominal cell to all variables.

Nominal cell Degraded cell



HEALTH IS MORE THAN JUST C/3 CAPACITY
Discharge capacities become 
less correlated as rate 
increases, i.e., rate-capability 
curves across a group of cells 
becomes more variable as 
they age.

Drive cycle performance not 
necessarily perfectly correlated 
to capacity measurements.

How to quantify ‘safety’ for a 
model to predict?



HEALTH IS MORE THAN JUST C/3 CAPACITY
Prediction at ‘high’ rates is probably artificially easy as cells had rested for 
several months following cycling.

Lewerenz et al, J. Energy Storage 21 (2019) 680-690



QUANTIFYING SAFETY FOR ML
Lithium plating has been shown experimentally and analytically to affect the 
curvature of the post-charge voltage relaxation.

https://doi.org/10.1016/j.jpowsour.2018.05.073

https://doi.org/10.1021/acsenergylett.0c00831

https://doi.org/10.1016/j.jpowsour.2018.05.073
https://doi.org/10.1021/acsenergylett.0c00831


QUANTIFYING SAFETY FOR ML
First half (15 minutes) of the voltage relaxation after charge is fit with an 
exponential relaxation curve; deviation from this curve from 15-30 minutes of rest 
is used as a simple method to quantify deviation from ‘ideal’ battery behavior.

Nominal cell Degraded cell w/ suspected Li plating
 (~15% capacity loss, ~35% DCIR growth)

Fitted Predict



QUANTIFYING SAFETY FOR ML
NMC|Gr cells exhibit error 
consistent with lithium plating:
 Error increases with 

decreasing temperature, 
increasing rate
 Positive error after fit region

Nissan Leaf cells show deviation 
at high temperature, 
independent of rate, suggesting 
another physical root cause. 
Gas generation suspected.

64 Ah NMC|Gr Nissan Leaf

45 °C
30 °C
15 °C

Fitted

Predicted



HEALTH IS MORE THAN JUST C/3 CAPACITY



MACHINE-LEARNING APPROACH
 Features: Raw voltage and current measurements from pulse sequences

– Includes rests in between pulses
– Feature dimensionality reduced using PCA (slightly better performance than raw data)

 Targets: SOH variables

 Model architecture: XGBoost

 Hyperparameter optimization via 50-iteration randomized grid search for 
XGBoost parameters and PCA components

 Data splitting: 80:20 train:test, grouped by measurement to avoid data leakage
– Hyperparameter optimization via 5-fold grouped cross-validation

 Average results over 50 train:test splits



RESULTS - SOH
Average prediction error of 
~4-6% (70-80% correlation) 
for all capacity values.

Pulse ‘design’ seems not to 
matter, but static (after rest) 
or dynamic (during 
dis/charge) does; dynamic 
pulses better on all targets.

1C rate predicted most 
accurately by 1C dynamic 
pulses, perhaps due to the 
incorporation of the charge 
segment into the pulse.



RESULTS - SOH
Charge-depleting drive cycle 
is ‘easy’, with the best result 
of any target.

Charge-sustaining coulombic 
efficiency target predicted 
with near the same accuracy 
as the capacity metrics; 
dynamic pulses perform 
slightly better, on average.

‘Safety’ prediction is 
relatively poor, despite 
reasonable correlation with 
capacity.



RESULTS - SOH
Models are biased to 
overpredict capacity at 
low SOH, underpredict 
at high SOH.

C/10 rate pulses have 
more error than higher 
rate pulses, but C/2 no 
different than 2C. Max 
error not a function of 
pulse current.

Dynamic PsRP model 
has lower max errors.

HPPC pulses → 1C capacity

PsRP 2 1C pulses → 1C capacity



RESULTS - SOC
State-of-charge is predicted 
with good accuracy despite 
variation due to temperature, 
health, and hysteresis.

Unlike health prediction, 
dynamic pulses perform no 
better than static pulses.

‘Complex’ PsRP pulses 
perform better than simple 
pulses for SOC prediction.

SOC prediction is ‘easier’ 
than SOH prediction (higher 
R2).



CONCLUDING REMARKS

 Battery state can be predicted with useful accuracy from short pulse sequences 
despite competing influences of temperature, SOC, SOH, and hysteresis on 
pulse response
– Prediction of the ‘safety’ metric devised here is poor, more modeling effort and better 

‘safety’ target variables may improve results. Quantifying safety is a critical challenge 
for battery system operation and recertification of cells for second-life applications

 Pulse design and implementation have small but clear impacts on prediction 
accuracy, suggesting more complex pulses contain more useful data for 
monitoring battery state than simple pulses



FY 24 PLANNED WORK

22

 Ford Fusion NMC111-Gr cells (BOL and field aged) characterization
– BOL characterization complete, cells cycling for more data

 Cycling of healthy Leaf cells for more data

 Automotive grade LFP-Gr cells – extraction of CATL 160 Ah prismatic cells 
from Model 3 module
– BOL characterization and then cycling

 Collaborating with CMU to receive field aged 21700 LFP-Gr A123 cells from 
hybrid bus pack 

 Improvements to ML approach and fitting of physics-based models to data
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