L iNREL

Transforming ENERGY

Photo from iStock-627281636

— el
— h—r-__:. o
X - —— —

Tk I - ..-'
T -;"i'.f o - -
" = QIR g -
g o,
71_-.-- =

-u;gga

i 4

o *" _- ; 7 x* *{:&‘ -‘.— s
TéWorUekeﬂ R

UM Workshop ‘r3£cjtabe{§£)23‘ =4,

'.,_p,‘ x -.< R
J;'t—-_'ﬁ

*

* TS

Polymer Recygmg 'ppori_f i
and Challenggs * x’* Rl
~National Ren&abf‘e Energy‘Laboratory

iy *
h-._ ‘x
ket . \,f

w-.!,:?b.,




T h e P I a St| C P ro b I em WITH AN EXPECTED SURGE IN CONSUMPTION, NEGATIVE
EXTERNALITIES RELATED TO PLASTICS WILL MULTIPLY
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Types of Polymers
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Types of Recycling

@?} MECHANICAL RECYCLING

Change the physical form of
plastic without changing its
chemical structure

Mechanical recycling
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Plastic Waste
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Plus energy recovery
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upcycling technologies!
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sodium sulfate

Break plastic into feedstock
chemicals or fuels
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Quantifying Opportunities & Challenges

« How do plastic recycling technologies stack up? Where are the key issues and gaps?

« Our approach: compare closed-loop (plastic-to-plastic) recycling technologies consistently and quantitatively
across cost, environmental impacts, and technical performance.

mechanical  dissolution Technical
performance

Environmental
impact

? chemical

Uekert, et al. ACS Sustain. Chem. Eng. 2023, 11, 965-978.



Opportunity 1: Lowering Environmental Impacts

Mechanical recycling &
glycolysis have lowest
greenhouse gas emissions
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Opportunity 2: Lowering Cost
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PET

Economic metric
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selling price
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() dissolution
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linked to
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Mechanical recycling always less expensive than virgin plastic

Glycolysis, methanolysis and dissolution also less expensive than
virgin plastic manufacturing

Plastic bale price is the biggest contributor to recycling costs and
is highly variable - Yield is again a major determining factor
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Challenge 1: Material Quality

« Material quality = melt flow rate (MFR) of recycled plastic divided by MRF of virgin plastic

« Mechanical recycling - heat + shearing during extrusion - chain scission, branching & cross-linking - must
supplement with virgin plastic to improve quality

* Quality is rarely characterized for chemical recycling techniques but tends to be higher than mechanical
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Challenge 2: Contamination Tolerance

0. o, @ dissolution * Robustness A = quantity of other plastic contamination tolerable
HDPE O e by process

' ' * Robustness B = quantity of other material (e.g., paper, metals)
contamination tolerable by process

. | ~ = Better sorting at collection and at material recovery facilities
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Mapping Challenges & Opportunities to Applications
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Uekert, et al. ACS Sustain. Chem. Eng. 2023, 11, 965-978.




Leveraging Opportunities to Combine Recycling Pathways

* No single technology can fix everything, so how can we
optimally combine technologies?

« Approach: Material flow model of all PET bottles in the U.S.
combined with brute force algorithm for end-of-life
optimization across multiple metrics

* Mechanical recycling + glycolysis + up-cycling - reduce
GHG emissions by 1.1 million metric tons CO,, increase
costs by 2.5x, improve circularity from 0 to 0.13, and
reduce virgin bottle demand by 16% relative to landfilling
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Summary

D= g

Quantitative analysis identifies clear trade-offs between technical performance and environmental and economic
impacts across plastic recycling technologies.

Mechanical recycling still outperforms its competitors across most metrics but cannot handle all materials.

Chemical recycling will be important for multi-material or contaminated plastic, but not all technologies are
created equal, and all require improvement.

Combining solutions could help achieve a more circular and sustainable plastic economy.
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Uekert, et al. ACS Sustain. Chem. Eng. 2023, 11, 965-978.
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