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• Blades are made in two composite blade 
halves

• The blade skins are glued together resulting in 
flashing at the leading-/trailing-edge

• The flashing is trimmed close to the blade to 
remove the majority of material

• The leftover “nose” material after trimming is 
grinded to produce the desired shape

• The leading and trailing edge areas are 
sanded to prepare for applying protective 
material

What Is The Finishing Process?
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• The Workforce Institute (2022) found 
that skilled labor shortages affected 
77% of manufacturers’ ability to meet 
production demands
– Improving worker safety and well-

being is a priority for strengthening 
the workforce

Why automate wind blade finishing?

Photo by Casey Nichols
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• The Workforce Institute (2022) found that 
skilled labor shortages affected 77% of 
manufacturers’ ability to meet production 
demands
– Improving worker safety and wellbeing is a 

priority for strengthening the workforce
• Shields et al. (2023) determined the United 

States will need 5 additional blade 
manufacturing facilities to meet offshore wind 
production goals
– Automation can change the cost 

differential between foreign and 
domestically manufactured blades
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• The Workforce Institute (2022) found that skilled labor 
shortages affected 77% of manufacturers’ ability to 
meet production demands
– Improving worker safety and wellbeing is a priority 

for strengthening the workforce
• Shields et al. (2023) determined the U.S. will need 5 

additional blade manufacturing facilities to meet 
Offshore Wind production goals
– Automation can change the cost differential 

between foreign and domestically manufactured 
blades

• Significantly reduce manufacturing cycle time 
– Laborers can focus on other process such as layup 

and infusion

Why automate wind blade finishing?

Photo by Casey Nichols



Robot Cell Overview

Image taken by Hunter Huth
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• KUKA KR300R2500 Ultra (2021) with 
linear track
– 2.5m Reach, 300 Kg payload, 6.6m 

track

Robot Hardware Overview

Photo from KUKA KR300R2500
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• Kuka KR300R2500 with linear track
– 2.5m Reach, 300 Kg payload, 6.6m 

track
• Zivid II Structured Light Camera

– 55 μm point Precision
• Pushcorp (2020) AFD 1240 active 

compliance device with STC1515 spindle
– 36 mm carriage travel, .8 lb force 

resolution

Robot Hardware Overview

Photo from Pushcorp (https://pushcorp.com/product/afd1240/)
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• Modular framework that separates 
functions into nodes

Software was built using the open-
source Robot Operating System (ROS 

2009)

Screen capture of Rviz by Hunter Huth

Photo from wiki.ros.org
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• Modular framework that separates 
functions into nodes

• Handles communication between 
nodes with publish/subscription to 
topics

Software was built using the open-
source Robot Operating System 
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• Modular framework that separates 
functions into nodes

• Handles communication between 
nodes with publish/subscription to 
topics

• Includes tools for development, 
debugging, and visualization
– RViz (2015) allows real time 

visualizing of robot processes

Software was built using the open-
source Robot Operating System 

(ROS, 2009)

Screen capture of Rviz by Hunter Huth

Photo from wiki.ros.org
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Process Overview

• Identifies position of bladeGlobal Scan

• Captures up-close data for toolpath 
generationLocal Scan

• Identifies important features for toolpath 
generation

Leading/Trailing Edge 
Detection

• Toolpath generators for trimming, 
grinding, and sandingToolpath Generation

• Executes spline trajectory received from 
toolpath generatorToolpath Execution
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• A global scan captures 3D 
point cloud data of the entire 
scene

• Blade position is determined 
by scene segmentation

• A local scan that scans the 
leading/trailing edge at the 
optimal distance for the Zivid II 
camera

Capturing blade geometry is a two-
step process

Screen record of Rviz by Hunter Huth

4x – speed 



Trimming Operation

Photo taken by Hunter Huth
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• A moving least squares (MLS) 
implemented through the point cloud 
library (PCL 2011) is used to fit a 
smooth surface to the blade. 

• The cloud is sliced in the span-wise 
direction.

• Normal vectors in the chord-wise 
direction are calculated and analyzed 
to find large changes in the normal at 
the leading edge/flashing boundary

First step is to identify the boundary 
between the flashing and the blade

Screen capture of Rviz by Hunter Huth
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Normal vectors are analyzed to find the flashing 
boundary

• Normal components in chord-
wise direction are calculated 
along the chord seen in top 
plot
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Normal vectors are analyzed to find the flashing 
boundary

• Normal components in chord-
wise direction are calculated 
along the chord seen in top 
plot

• Difference between adjacent 
normal vector magnitudes are 
calculated along the chord 
seen in bottom plot
– Analogous to 1st derivative
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Normal vectors are analyzed to find the flashing 
boundary

• Normal components in chord-
wise direction are calculated 
along the chord seen in top plot

• Difference between adjacent 
normal vector magnitudes are 
calculated along the chord seen 
in bottom plot
– Analogous to 1st derivative 

• The flashing begins at the 
horizontal line found through 
reducing high frequency noise 
and finding absolute maximum
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• An offset is added to prevent damage 
to the blade

Trimming toolpath calculated from 
the leading/trailing edge

Screen capture of Rviz by Hunter Huth
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• An offset is added to prevent damage 
to the blade

• Lead-ins and lead-outs are added 
every 2.5 m to separate hanging 
flashing

Trimming toolpath calculated from 
the leading/trailing edge

Screen capture of Rviz by Hunter Huth
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• An offset is added to prevent damage 
to the blade

• Lead-ins and lead-outs are added 
every 2.5m to separate hanging 
flashing

• This toolpath is passed as a spline 
trajectory to the robot controller

Trimming toolpath calculated from 
the leading/trailing edge

Screen capture of Rviz by Hunter Huth
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Trimming Execution 

Leading Edge – 4x speed Trailing Edge - 4x speed

Videos by Hunter Huth
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• Operation speed of .96 m/min and 1.09 
m/min for leading and trailing edge 
respectively

• Accuracy of -4.5/+0.7 mm and -3.1/+ 3.6 
mm for leading and trailing edge 
respectively

Trimming Results

Leading Edge
Process Step Time (minutes)
Global Scan 0.48
Global Blade 
Detection

0.32

Local Scan 0.60
Toolpath 
Generation

0.59

Toolpath 
Execution

3.19

Trailing Edge
Process Step Time (minutes)
Global Scan 0.61
Global Blade 
Detection

0.15

Local Scan 0.61
Toolpath 
Generation

0.38

Toolpath 
Execution

2.82

Photo by Hunter Huth



Grinding Operation

Photo by Hunter Huth



NREL    |    31

Identifying leftover nose material 
after trimming from point cloud
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• Slice leading edge area into 2D cross 
sections
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• Slice leading edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord.

Identifying leftover nose material 
after trimming from point cloud
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• Slice leading edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord.

• Use parabola minimum as leading 
edge

Identifying leftover nose material 
after trimming from point cloud
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-0.02 -0.01 0 0.01 0.02

Point Cloud of Chord with 
Nose

• Slice leading edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord.

• Use parabola minimum as leading 
edge

• Extract nose points below parabola 
minimum

Identifying leftover nose material 
after trimming from point cloud

Raw point cloud data

Identified nose

Parabolic fit
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-0.02 -0.01 0 0.01 0.02

Point Cloud of Chord with 
Nose

• Slice leading edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord.

• Use parabola minimum as leading edge
• Extract nose points below parabola 

minimum
• Nose thickness (Nt) is the average y-

distance to the leading edge
• Nose width (Nw) is the range of nose 

points in the x-direction

Identifying leftover nose material 
after trimming from point cloud

Nt

Nw
Raw point cloud data

Identified nose

Parabolic fit
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Nose Detection Visualized in RViz

• Outputs
– Path of the leading edge to follow
– Size of the nose to be removed

• Need to determine velocity to remove desired amount of material
Screen capture of Rviz by Hunter Huth
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Grinding model for calculating travel velocity

Gw = grinder width
F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

• Determines linear travel speed to 
grind to a certain depth

• On first contact, pressure is high, so 
grinding depth increases

• Pressure decreases as grinder 
plunges into material until a steady-
state depth is reached
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Grinding model for calculating travel velocity

Gw = Grinder 
Width
F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

𝐿𝐿 =
Nt

tan(θ)
, 𝑡𝑡 =

𝐿𝐿
𝑉𝑉

=
Nt

𝑅𝑅
=

Nt

tan θ ∗ 𝑉𝑉
Time each slice is in 
contact with grinder
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Grinding model for calculating travel velocity

Gw = Grinder 
Width
F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

𝐿𝐿 =
Nt

tan(θ)
, 𝑡𝑡 =

𝐿𝐿
𝑉𝑉

=
Nt

𝑅𝑅
=

Nt

tan θ ∗ 𝑉𝑉

𝑉𝑉 =
𝑅𝑅

tan(θ)
, 𝑅𝑅 =

𝐹𝐹
𝐴𝐴
∗ μ, 𝐴𝐴 = Nw∗Nt∗sin(θ) 

Time each slice is in 
contact with grinder

Rate at which 
material is removed

Contact area of 
grinder and nose
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Grinding model for calculating travel velocity

Gw = Grinder 
Width
F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

𝐿𝐿 =
Nt

tan(θ)
, 𝑡𝑡 =

𝐿𝐿
𝑉𝑉

=
Nt

𝑅𝑅
=

Nt

tan θ ∗ 𝑉𝑉

𝑉𝑉 =
𝑅𝑅

tan(θ)
, 𝑅𝑅 =

𝐹𝐹
𝐴𝐴
∗ μ, 𝐴𝐴 = Nw∗Nt∗sin(θ) 

𝑉𝑉 =
𝐹𝐹 ∗ μ ∗ cos(θ)

Nw∗Nt

Time each slice is in 
contact with grinder

Rate at which 
material is removed

Linear velocity to 
remove nose given a 
grinding angle, force, 
nose size, and 
removal constant

Contact area of 
grinder and nose

μ characterizes 
relationship 
between pressure 
and removal rate 
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• Grinder plunged perpendicular into 
flashing sample panels at varying 
forces and composite sample 
thickness

• Measured the speed the grinder 
plunged into the surface

Collecting Data For Grinding Model

Photo by Hunter Huth
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Grinder plunge rates at 
varying pressure 
determine removal 
constant (μ)

• μ = 75.639 𝑚𝑚𝑚𝑚3

𝑙𝑙𝑙𝑙∗𝑠𝑠

• 𝑉𝑉 = 𝐹𝐹∗𝜇𝜇∗cos(𝜃𝜃)
𝑁𝑁𝑁𝑁∗𝑁𝑁𝑁𝑁

• 𝑉𝑉 = 𝐹𝐹∗75.639∗cos(𝜃𝜃)
𝑁𝑁𝑁𝑁∗𝑁𝑁𝑁𝑁

y = 75.639x + 0.0246
R² = 0.9022

0

2

4

6

8

10

12

14

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Gr
in

de
r P

lu
ng

e 
Ra

te
 (m

m
/s

)

Pressure (lbs/mm2)

Removal Rate Versus Pressure at 8,000 RPM



NREL    |    43

Validated model by 
performing five 2 
mm grinding passes
• Force: 10 lb
• Grind angle: 5°
• Travel Speed 67.28 mm/s
• RPM: 8,000
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Material Removed With Five 2-mm Grinding Passes

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5
Photo by Hunter Huth
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Grinding toolpath executed in 
multiple passes

• Maximum material removed per pass is 2 mm
• The pass length is optimized for longer passes to get a smooth 

finish

Nt 2 4 6 7 8 7 5 5 7 8 9
Pass 1 0 2 4 5 6 6 5 5 7 8 9
Pass 2

Pass 3

Grinding Pass

Small Nt has only 1 
mm removed 

End Grinding pass because Nt  is 
smaller than previous max Nt
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Grinding toolpath executed in 
multiple passes

• Maximum material removed per pass is 2mm
• The pass length is optimized for longer passes to get a smooth 

finish

Nt 2 4 6 7 8 7 5 5 7 8 9
Pass 1 0 2 4 5 6 6 5 5 7 8 9
Pass 2 0 0 2 3 4 4 4 4 5 6 7
Pass 3

Grinding Pass

Small Nt has only 1 
mm removed 
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Grinding toolpath executed in 
multiple passes

• Maximum material removed per pass is 2mm
• The pass length is optimized for longer passes to get a smooth 

finish

Nt 2 4 6 7 8 7 5 5 7 8 9
Pass 1 0 2 4 5 6 6 5 5 7 8 9
Pass 2 0 0 2 3 4 4 4 4 5 6 7
Pass 3 0 0 0 1 2 2 2 2 3 4 5

Grinding Pass
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• Overall process speed of .63 m/min

• Leading edge shape did not meet 
manufacturing tolerances

Grinding Execution

Process Step Time (minutes)
Global Scan 0.5
Global Blade 
Detection

0.2

Local Scan 0.96
Toolpath 
Generation

0.64

Toolpath 
Execution

5.61

Video by Hunter Huth

2x – speed 
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Grinding Results

• Results showed areas of over-grinding and under-grinding due to variables 
unaccounted for in the grinding model
– Glue thickness versus composite thickness
– Abrasive degradation

• Future research focus is collecting nose size data after each grinding pass to 
update grinding model parameters

Photo by Hunter Huth

Exposed fabric layers 
from overgrinding

Leftover nose from 
undergrinding



Sanding Operation

Photo taken by Hunter Huth
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• Leading edge is detected through 
same algorithm as the grinding 
process

Leading- and trailing-edge detection 
for Sanding Toolpath

0

0.01

0.02

0.03

0.04

0.05

0.06

-0.1 -0.05 0 0.05 0.1

Chord for Leading Edge 
Detection
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• Leading edge is detected through 
same algorithm as the grinding 
process

• Trailing edge for sanding is detected 
with same algorithm as trailing edge 
trimming
– Needs scans above and below 

trailing edge
– Large change in normal at trailing 

edge

Leading and trailing edge detection 
for sanding toolpath
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• Separate leading-edge chords into 
sections that match width of sanding 
drum

Leading-Edge Sanding Toolpath 
Generation

Drawing created by Hunter Huth
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• Separate leading-edge chords into 
sections that match width of sanding 
drum

• Toolpath position follows the middle 
of the chord

Leading-Edge Sanding Toolpath 
Generation

Drawing created by Hunter Huth
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• Separate leading-edge chords into 
sections that match width of sanding 
drum

• Toolpath position follows the middle 
of the chord

• Toolpath orientation is the average 
orientation along the chords 

Leading-Edge Sanding Toolpath 
Generation

Drawing created by Hunter Huth
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• Separate leading-edge chords into 
sections that match width of sanding 
drum

• Toolpath position follows the middle 
of the chord

• Toolpath orientation is the average 
orientation along the chords 

• Add lead-in/lead-outs for a soft touch 
with the sander

Leading Edge Sanding Toolpath 
Generation

Screen capture of Rviz by Hunter Huth
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• Trailing-Edge Sanding Toolpath follows 
the span-wise direction

• The sander angle compared to the 
trailing edge is calculated to sand the 
desired chord depth and optimize 
abrasive usage

Trailing Edge Sanding Toolpath 
Generation

Photo by Hunter Huth
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• Trailing Edge Sanding Toolpath follows 
the span-wise direction

• The sander angle compared to trailing 
edge is calculated to sand the desired 
chord depth and optimize abrasive 
usage

• The sander orientation is determined 
by the average normal orientation 
under the sanding drum

Trailing Edge Sanding Toolpath 
Generation

Screen capture of Rviz by Hunter Huth
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Sanding Execution 

Leading Edge – 4x speed Trailing Edge – 4x speed

Videos by Hunter Huth
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• The overall speed was .79 m/min 
for leading edge and .81 m/min 
for trailing edge respectively

Sanding Results

Leading Edge                 Trailing Edge 

Trailing Edge
Process Step Time (minutes)
Global Scan 0.85
Global Blade 
Detection

0.88

Local Scan 1.05
Toolpath 
Generation

1.30

Toolpath 
Execution

2.05

Leading Edge
Process Step Time (minutes)
Global Scan 0.68
Global Blade 
Detection 0.83

Local Scan 0.59
Toolpath 
Generation 0.2

Toolpath 
Execution 4.1

Photos by Hunter Huth
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• The overall speed was .79 m/min 
for leading edge and .81 m/min 
for trailing edge respectively

Sanding Results

Trailing Edge
Process Step Time (minutes)
Global Scan 0.85
Global Blade 
Detection

0.88

Local Scan 1.05
Toolpath 
Generation

1.30

Toolpath 
Execution

2.05

Leading Edge
Process Step Time (minutes)
Global Scan 0.68
Global Blade 
Detection 0.83

Local Scan 0.59
Toolpath 
Generation 0.2

Toolpath 
Execution 4.1

Leading Edge                 Trailing Edge 
Photos by Hunter Huth
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• The overall speed was .79 m/min 
for leading edge and .81 m/min 
for trailing edge respectively

• Both operations achieved full 
coverage of the surface

Sanding Results

Trailing Edge
Process Step Time (minutes)
Global Scan 0.85
Global Blade 
Detection

0.88

Local Scan 1.05
Toolpath 
Generation

1.30

Toolpath 
Execution

2.05

Leading Edge
Process Step Time (minutes)
Global Scan 0.68
Global Blade 
Detection 0.83

Local Scan 0.59
Toolpath 
Generation 0.2

Toolpath 
Execution 4.1

Leading Edge                 Trailing Edge 
Photos by Hunter Huth
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• Increase operational speed through real-time trajectory 
planning
– Operation time limited only by max operation speed of tool

Future Work
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• Increase operational speed through real time trajectory 
planning
– Operation time limited by only max operation speed of tool

• Real-time quality feedback to ensure high performance
– Inspect operation quality immediately to improve results, 

such as the leading-edge shape for grinding
– Tool condition monitoring

Future Work
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• Increase operational speed through real time trajectory 
planning
– Operation time limited by only max operation speed of tool

• Real time quality feedback to ensure high performance
– Inspect operation quality immediately to improve results, 

such as the leading-edge shape for grinding
– Tool condition monitoring

• Focus testing on the root and tip areas of wind blades

Future Work
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• Implemented automated wind blade 
finishing processes for trimming 
grinding, and sanding

Conclusions

Operational Speed (m/min)

Leading Edge Trailing Edge

Trim 0.96 1.09

Grind 0.63 N/A
Sand 0.79 0.81
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• Implemented automated  wind blade 
finishing processes for trimming 
grinding, and sanding

• Successful results in trimming and 
sanding
– Grinding requires real-time 

feedback for remaining material 
after each pass

Conclusions

Operational Speed (m/min)

Leading Edge Trailing Edge

Trim 0.96 1.09

Grind 0.63 N/A
Sand 0.79 0.81
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• Implemented automated  wind blade 
finishing processes for trimming grinding, 
and sanding

• Successful results in trimming and 
sanding
– Grinding requires real time feedback 

for remaining material after each pass
• Future work will focus on speeding up 

operations and improving finish quality 

Conclusions

Operational Speed (m/min)

Leading Edge Trailing Edge

Trim 0.96 1.09

Grind 0.63 N/A
Sand 0.79 0.81
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• Automated wind blade finishing team at NREL
– David Snowberg, Casey Nichols, Derek Berry, Scott Lambert, 

Petr Sindler, Ryan Beach, and David Barnes
• Department of Energy’s Advanced Materials & Manufacturing 

Technology Office
• Radhika Kadam and Ivan Mosegaard from LM Wind Power at 

GE Vernova, for guidance throughout the design process
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project
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