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H2@Scale is a U.S. Department of Energy (DOE) initiative that includes hydrogen production, transport, storage, and utilization in

an effort to decarbonize multiple sectors. CCUS stands for carbon capture, utilization, and storage
Image from https://www.energy.gov/eere/fuelcells/h2scale
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In this project we are focused primarily on designing a wind turbine specifically for hydrogen production. This effort fits in with
H2@Scale through the renewables to hydrogen pathway.

Image from https://www.energy.gov/eere/fuelcells/h2scale
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Wind turbine modeling

RotorSE-CCBlade

DrivetrainSE

WISDEM® D\ RotorSE-preComp, pBeam ‘ WISDEM: Wind Plant
\ ’ and Engineering Model
‘ SE: System Engineering
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LandBOSSE - ' -..__p__. . ' B Installation Tool
MAP: Mooring Analysis
Program

Integrated Systems Design
' ORBIT: Offshore Renewables
- ‘ BOS: Balance of System

' FloatingSE

Plant_FinanceSE
FloatingSE-pyMAP

Overview of the WISDEM framework [5]
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Wind turbine modeling — only onshore modules
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Overview of the WISDEM framework [5]
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Electrolyzer Model: Overview

——

Calculate current: I = f(P;,, T, p)

U

Calculate voltage: V= f(I,T)

. U

Update temperature: T = f(I,V)

U

Calculate mass flow rate: mfr = f (I, Neejis)
Hydrogen
(kilograms [kg])

Electrical power going into the
electrolyzer stack

—_—
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Optimization Configuration

Wind Profile

/ Configuration / LCOE: levelized cost of

/ Configuration /
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x": optimal design
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V: wind velocity

P(V): power as a function
of wind velocity

t: time

P(t): power as a function
of time

Mpyacenie: Nacelle mass

ComputePower

Electrolyzer

Simplified extended design structure matrix (XDSM) diagram of the simplified optimization framework.

NREL | 8



Three-Part Optimization Process

Subsystem(s)

A Design Variables
(Objective(s))

\

Tower: Section thickness, section diameter
J
\

Swept: rotor diameter, electrolyzer rating

Tower: Section thickness

IYWEIEMEIERE Blade: Chord, twist, spar cap
(LCOE, LCOH) y

Drivetrain: Shaft length between Main Bearing 1 and Main Bearing 2, shaft length
from hub flange to main bearing, high-speed-shaft length, hub diameter, low-speed-
shaft diameter, low-speed-shaft wall thickness, high-speed-shaft diameter, high-
Drivetrain speed-shaft wall thickness, bedplate web thickness, bedplate flange thickness,

(Nace”e Mass) bedplate flange width
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Tower Optimization Specification

Design Variables Constraints

Tower
94— Thickness (11 locations) — Stress

— Global buckling
— Shell buckling
— Slope

Diameter (11 locations) — First natural frequency
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New International Energy Agency (IEA) Baseline

Tower
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IEA 3.37 MW wind turbine tower design and redesigned tower diameter and thickness

m = meters
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Rotor/Tower Optimization

Specification

Electrolyzer
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Design Variables Constraints
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Spar cap thickness (8 locations)

Root circle diameter
Spar cap strains

Tip deflection

Design Variables
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Global buckling
Shell buckling

Frequency
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Drivetrain Optimization

Design Variables

Constraints

Geared drivetrain diagram for WISDEM

*Shaft length from Main Bearing 1 to 2

Shaft length from hub flange to main bearing
High-speed-shaft length

Hub diameter

Low-speed-shaft diameter

Low-speed-shaft wall thickness
High-speed-shaft diameter

High-speed-shaft wall thickness

Bedplate web thickness

Bedplate flange thickness

Bedplate flange width

Low-speed-shaft stress

High-speed-shaft stress

Bedplate stress

Main Bearing 1 deflection

Main Bearing 2 deflection

Hub diameter

Drivetrain length (tower top to hub overhang)
Drivetrain height (tower top to hub height)
Shaft deflection

Shaft angle

Stator angle

Low-speed-shaft length

*Bold variables are also shown in the figure
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Drivetrain Optimization

Design Variables

Constraints

Geared drivetrain diagram for WISDEM

*Shaft length from Main Bearing 1 to 2

Shaft length from hub flange to main bearing
High-speed-shaft length

Hub diameter
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*Bold variables are also shown in the figure
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Optimal Rotor Diameter: LCOE vs LCOH

IEA-F1 3.37-MW turbine
Ground clearance: 45.0 m
Blade root diameter approach: variable

Merit figure: LCOE Merit figure: LCOH
45.0 5.0
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) . .
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Results showing that the optimal rotor diameter for hydrogen is about 20 m larger than for electricity. Constant
wind turbine rating was set at 3.37 megawatts (MW). Constant electrolyzer rating was set at 3.4 MW. MWh =

megawatt-hour.
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LCOE and LCOH power curves match at optimal

rotor diameters
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Simplified power curves from WISDEM for each of the optimal rotor diameters. These
power curves were not used for loads analysis. W = watts. m/s = meters per second.
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Wind Resource

25 ~
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Hourly wind resource over a single year used to estimate hydrogen
production for the wind turbines.
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LCOH Design Gets to Rated Power Earlier and Stays

at Rated Power Longer

3.5 1
—
3.0 A
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Detail of hourly power from the initial and optimal wind turbines
show that the LCOH design hits rated power earlier and ramps down

later than the initial and LCOE designs NREL | 18



Power 2-Week Running Average for 1 Year
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This two-week averaged plot of power for each turbine design shows
that the LCOH design produces more electricity
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LCOH Design Raises Mean and Median Power

3 -
= A
= A
T 27
(7] A
g

1- J

04 l

Initial IIDesign LCOE IlDesign LCOH iDesign
Capacity factor 0.39 0.44 0.48

Wind turbine capacity factors (CF) and power distributions for the
initial, LCOE, and LCOH optimal designs. Green triangles represent the
mean and colored horizontal lines indicate the median.
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LCOH Design Leads to Higher Energy Cost

but Lower Overall Cost

LCOH Contributions

LCOE Design LCOH Design Difference

Electrolyzer Capital Expenditures (USD/kg) 0.88 0.81 -0.07
Energy Cost (USD/kg) 2.13 2.19 0.06
Other Costs (USD/kg) 0.52 0.49 -0.03

The energy cost for the LCOH design is higher on a per-kg basis than
the LCOE design, but the other costs reduce sufficiently to offset the
increased energy costs.
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Equal Turbine-Electrolyzer Ratings Are Best for a

Grid-Disconnected System Without Storage

IEA-F1 3.37 MW turbine
Optimized for LCOH at set rotor diameters
Ground clearance: 45.0 m
Blade root diameter approach: variable

Merit figure: LCOH
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Optimal electrolyzer rating appears to be near the wind turbine rating
when part of a grid-disconnected system without storage capacity NREL | 22



Conclusions

Wind turbines designed for LCOH may benefit from larger rotor diameters

Electrolysis equipment should be sized to match the wind turbine rating (for a grid-
disconnected system with no storage available).
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Future Work

Evaluate and optimize a full hybrid energy park including wind, solar, and battery
with the optimized turbine designs.

Examine designs with higher-fidelity tools (e.g., OpenFAST, ROSCOE)
Update electrolyzer cost analysis
Improve electrolyzer sizing approach

Explore different wind turbine design approaches (e.g., materials, jointed blades)
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Induction
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Axial induction for both the LCOE and LCOH designs follow a similar
shape to the initial design.
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The tower designs for the LCOE and LCOH designs are nearly identical
at a given rotor diameter. However, as expected, the larger rotor
diameter requires a thicker tower with locally larger diameters.



CP Aero
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As rotor diameter increases, rated power is reached at lower wind speeds, which results in
a more consistent power output. m/s = meters per second.
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LCOE LCOH
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Twist along the blade for LCOE, LCOH, and initial designs. deg =
degrees.
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Lift Coefficient [-]
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Unit mass along the blade for LCOE, LCOH, and initial designs. kg = kilograms
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