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Clear and Present Danger

Modelled mitigation pathways that limit warming to 1.5°C, and 2°C, involve deep, rapid and

sustained emissions reductions.

b. Net global CO; emissions
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Requirements to stay below 2.0 deg. C warming:

* 27% reduction (-15 GTCO,_,/y) relative to 2019 levels by 2030
* 63% reduction (-35 GTCO,_,/y) relative to 2019 levels by 2050

2000 2020 2040 2060 2080 2100

Requirements to stay below 1.5 deg. C warming:

Year of net-zero CO, emissions

—EES =G * 43% reduction (-24 GTCOZ_eq/y) relative to 2019 levels by 2030
— i * 84% reduction (-46 GTCO, _../y) relative to 2019 levels by 2050
2000 2[!'2{] 2040 2060 2080 il GDI
GHG . . . o
omain  [mmediate and long-term decarbonization solutions needed
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Trends in Global H, Consumption

In 2020, global demand for H, reached an estimated 820
billion nm?3 (~74 million metric tonnes)

Source: S&P Global
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Emissions Reduction Potential of H,

Global H, PrOdUCt'(_)n Stat|§t|cs : Impact of H, Production on CO, Emissions
*  ~82% produced via reforming of methane / hydrocarbons

e ~15% produced via coal gasification 432.18 340.03

o ~3% from electrolysis/other Ammonia

H, Emission Statistics: 274.48 215.95

* 9.4 kg CO,e/kg H, (SMR)

Refining
* 16.8 kg CO,e/kg H, (Coal) 169.82 3361
*  ~0 kg CO,e/kg H, (electrolysis) JEEE!EEEEEEEEE
- Avg = 10.3 kg CO,e/kg H, Methanol
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Source:lAl-Qailvtqnl etal., 202_1 dot.org/10.1016/1.apenerqy{.20_20;1115958 :
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Carbon Emitters to Net Carbon Sinks

Product and technology pathways

Basellne carbon
Intensity

Carbon Intensity

Carbon Intensity using carbon

using green H,

negative Bl()-H2

BF-BOF steel production 2.20 1.78 113 to 1.65
(t-CO,/t-HM)
(H, replacing pulverized coal for hot air blast)
DRI-EAF gas steel production 135 0.29 (renewable | -0.61to 0.39
(t-CO,/t-HM) electricity)
(H, replacing all DRI gas consumption) 0.80 (grid
electricity)
NG SMR-based ammonia production 197 0.27 -4.04 to -0.6
(t-CO,/t-NH,)
(1.1 replacement of original H, consumption)
NG SMR-based methanol production 2.57 (including Q.77 -3.89to -017

(t-CO,/t-MeOH) feedstock (no feedstock (no feedstock
(1:1 replacement of original H, consumption) emission) emission when emission when
0.86 (energy using external using external
emission) captured CO, as | captured CO, as
feedstock) feedstock)
NG-based ethylene production 1.42 (including 0.58 -2.93to -0.43

(t-COz/t-Eth)
(1:1 replacement of original H, consumption)

feedstock
emission)

NE-H, provides opportunity to transform carbon
emitters to carbon sinks across multiple sectors

NE-H, can be used synergistically with other
renewables to dramatically drive down CI

Source: Columbia Center for Global Energy Policy: The Potential Role of Biohydrogen in Creating a Net-Zero World,
Tanzil et al., doi.org/10.1016/j.biombioe.2020.105942
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Sugar-to-Jet Cl: 2.03 kg CO,e/kg (GREET)

5.0 MT/hr Jet * 2.03 kg CO,/kg = 10.15 MT CO,/hr
1.5 MT H,/hr * -13 kg CO2/kg = -19.5 MT CO,/hr

Sugar-to-Jet Cl (NE-H,) = -1.8 CO,e/kg
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Pathways for NE-H,

Many feedstock / pathway combinations possible for NE-H, production

Is there a one-size-fits-
all solution to NE-H,?

Which areas would
benefit from additional
R&D and analysis?

Are the long-term

solutions different than
near-term?

Biomass*

Wastewater

Feedstocks | Direct H, Production

Conversion
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Electrolysis
4 44
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Plasma  Hydrothermal Hydrolysis
@ Liquefaction
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u y Storage
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Intermediate | A~ Biocude €O Oxygenates
Products Alcohols Bio-Oils Hydrocarbons Sugars WES - Water Gas Shift
ro Algal Qils ~ CH. Light Gases = Water Las ohi

*woody biomass, energy crops, agricultural residues
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Immediate Options for NE-H,

Immediate and longer-term decarbonization solutions needed to reach IPCC goals

Steamed (bio)methane
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RNG Reforming + CCS
Biomass Gasification + CCS
Dark Fermentation
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Anaerobic Digestion

Source: Columbia Center for Global Energy Policy: The Potential Role of Biohydrogen in Creating a Net-Zero World
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Challenges for Biomass-Derived NE-H, (Columbia)

1. Energy is required for harvesting, gathering, transporting, storage, and conversion of feedstocks. If biomass
feedstocks are not carefully selected and the energy consumed during processing is not closely monitored and
controlled, the carbon footprint can exceed that of fossil hydrogen

2. Carbon-negativity of bio-H, is maximized through use of agricultural and municipal wastes, manures, sewages,
etc. which are a constrained resource presenting obstacle to wide-scale deployment. Some feedstocks like RNG
may benefit more from direct substitution of NG than H, formation

3. Cost and general feasibility tied to co-location of low-cost waste feedstocks and opportunities for geological
storage of CO,. Sites meeting both criteria not equally dispersed globally

4. Improving technical performance, including catalyst fouling, feedstock heterogeneity issues (inorganics), gas
cleaning, low partial pressures, low volumetric yields in metabolic pathways

Will these challenges be showstoppers for widespread deployment?
What would a long-term, de-risked, NE-H, portfolio look like?

Source: Columbia Center for Global Energy Policy: The Potential Role of Biohydrogen in Creating a Net-Zero World NREL | 8



Lower TRL Technologies for NE-H,

Microbial Electrochemical Cell

Reference

=l

electrode

Note:

@ Bacteria

I Electrode

E Potentiostat

Anode: C,H40, + 2H,0 — 2C0O, + 8e~ + 8H*
Cathode: 8H" +8e™ — 4H,
* Lower voltage req. than green H,
* Pure CO, stream produced

* ~360 billion m3/y wastewater available

globally

Non-Thermal Plasma Reforming

Plasma Reforming of CO, + H,O Mixtures

H.O = H, +0.50,
CO, > CO+0.50,
CO,+H, 2> C+H,0
2CO0->CO,+C

CH, > C+ 2H,

Single-step process capable of
sequestering carbon and producing
CO + 3H, 2 CH, + H,0 H, simultaneously

Source: https://uwaterloo.ca/scholar/h95lee/research/mecs, https://www.frontiersin.org/research-topics/41852/non-thermal-atmospheric-pressure-plasma-and-its-biological-applications

NREL
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Lower TRL Technologies for NE-H,

Saline Water Electrolysis

MgSiO,(s)

Fuel cell

Cly + Hy, —V,_ +2HCI—=5MgCl, + SIO, + H,0

NaCl + H,0
or seawater

Non-fossil
vd,t:

Electrolysis
cell(s)

o,

b

040, H,

0.5Mg,Si0,(s)

NaCl or conserved
salt + H,0, or —
seawater

Non-fossil
I"'ﬂ.c:.

Electrolysis
cellis)

[— 20H — SW 2HCO -

2C0,

— O
l— T
5

SwW

Water —]

Non-fossil
I"i‘] c.

Electrolysis
cell(s)

> OH- r—_, SW HCO,-
C02

— NaOH SW NaHCO,

— 2H"—% SW Mg* + H,0 + 0.5Si0,

HCO, CaCOy(s)

|+ H*—H" + HCO,— SW Ca™ + 2HCO,-

1,000
Total NE H,

,T': Solg
y/ > 7x higher CO,
5 Geothermal H
i — removal potential per
E Ocean unit energy generated
g 0 b peces for SWE than BECCS
§ Hydro
1

Global energy generation potential (EJ yr™)

Utilize renewable electricity to drive H,O electrolysis
and leverage OH- formation/alkalinity to
spontaneously capture CO, in mineral bicarbonates /
carbonates
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Low TRL Challenges & R&D Needs

\_
/_

/| R&D Needs in MEC ™\
e Low synthesis rates * Enhancing microbe/anode electron
* High internal resistances / ohmic losses transport
* Low durability; biofouling * Scalable designs )
R&D Needs in NTP ™\
* Poor S?|§CtiVitV _  Development of tandem catalysts
* Unoptimized reactor designs  Commercially scalable designs
* Degradation of heterogenous catalysts
/
R&D Needs in SWE N\

-~

N

Land use/energy req. for minerals harvesting * Minimize wastes (Cl,)
Optimization of electrolysis performance * Mitigate environmental upsets
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Conclusions and Way Forward

1. Avariety of feedstock — pathway combinations exist to produce NE-H, spanning a
wide TRL range, each with unique tradeoffs and opportunities. There may not be a
one-size-fit-all solution

2. Carbon negative hydrogen can enable deep decarbonization of some of the worst
polluting processes as well as synergize with other sustainable practices

High TRL pathways relatively well characterized,

need additional cross-cutting analysis to inform Kg of CO2 per kg | Credit Value

value proposition of emerging technologies; what of H2 (S)

are the optimal use cases? Are the near-term 4 25 kg CO2 $0.60 / kg of H2
i i i 5

technologies also best suited for long-term use? $0.75 / kg of H2

How does the ever-evolving policy landscape 31.00 / kg of H2
impact the value proposition for NE-H, (e.g., 45Q vs. $3.00 / kg of H2
45V)?
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