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GOAL OF UNIFI MULTI-VENDOR GFM 
INVERTER EVALUATION 
• There is a lack of standard testing protocols for grid-forming (GFM) 

inverters.
• Develop standard testing protocols to understand the performance of GFM 

inverters.

• Explore the interoperability and functionalities of GFM inverters.
• Test the key operation functions of GFM inverters (stand-alone, heterogenous 

operation, grid-connected, and transition operation)

• Use findings to drive GFM specifications.

• Provide findings and guidelines for industry and academia.
• How to configure and control the GFM inverter?
• What are the research gaps?
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HIGH-LEVEL VIEW OF TESTING SCENARIOS

• Steady state: 
Sourcing power, 

sinking power
• Transient state:

• Freq. and voltage steps

• Synchronization 
operation

• Islanding operation

• Steady state: Balanced load and
sinking power

• Transient state: Load steps, 
loss of generation, 

unequal power sharing, 
secondary control

• Steady state: Balanced load, 
unbalanced load, nonlinear 
load, sinking power

• Transient test: Load steps, 
inductive inrush, overload, 
DC dynamics, secondary 
control

Stand-alone 
operation

Heterogenous 
operation

(parallel with 
diesel)

Grid-
connected 
operation

Transition 
operation

• Steady state: 5%, 10%, 25%, 50%, 75%, 100%, PF=1, 0.8 lagging and leading, pure inductive and capacitive loads
• Transient state: 25%, 50%, 75%, and 100% PF=1, 0.8 lagging and leading
• Transition operation: 50% PF=1, 0.8 lagging and leading
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HARDWARE EXPERIMENT TEST SETUP 
• GFM inverter specs.:

• 250 kVA, need a delta:wye transformer
• GFM (VF), GFL (PQ), and grid-supporting control 

(VF/PQ) control.
• Testing circuit (microgrid):

• Grid simulator (540 kVA)
• PCC switch
• GFL inverter (125 kVA)
• Diesel (187.5 kVA)
• Load banks (500 kVA).

• Control and communication:
• Configure the GFM inverter to always operate in GFM 

control.
• Modbus TCP
• Heartbeat, voltage, and frequency droop intercept, 

and droop slope (Modbus register map). Photo credit: NREL
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TESTING CONFIGURATION
• Configure the droop settings:

• Frequency droop: 0.25%
• 60 Hz
• Disable the coupling with reactive 

current/power (default).
• Voltage droop: 5%

• 480 V (1 p.u.)
• Disable the coupling with active 

current/power.
• Verify the droop characteristics:

• Frequency droop matches the testing 
results.

• Voltage droop is off due to the 
transformer.

Voltage droop characterization 

𝒗𝒗∗ = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 ∗ 𝑸𝑸
(𝑸𝑸 ≤ 𝟎𝟎)

𝒗𝒗∗ = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 − 𝟎𝟎.𝟎𝟎𝟎𝟎 ∗ 𝑸𝑸
(𝑸𝑸 ≥ 𝟎𝟎)
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TESTING CONFIGURATION
• Stand-alone islanded operation:

• 𝑓𝑓0 = 60 + 𝑚𝑚 ∗ 60 ∗ 𝑃𝑃
• 𝑣𝑣0 = 480 + 𝑛𝑛 ∗ 480 ∗ 𝑃𝑃 + 1 − 0.9932 ∗ 480 (𝑄𝑄 ≥ 0)
    𝑣𝑣0 = 480 + 𝑛𝑛 ∗ 480 ∗ 𝑃𝑃 + 1 − 0.9955 ∗ 480 (𝑄𝑄 ≤ 0)

• Heterogeneous islanded operation:
• Diesel droop settings:

• Frequency: 0.6%, -0.36 Hz representing 60 Hz
• Voltage: 3.7%. 0% representing 1 p.u.

• Configure the GFM inverter and diesel with the same droop 
settings:

• Frequency: 0.6%, 
• Voltage: 6%.

• Equal power sharing (baseline)
• Unequal power sharing.

Secondary 
control

Sinking power 
from diesel 

Unequal power 
sharing
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TESTING CONFIGURATION
• Grid-connected operation

• For active power, it is a balance game between the grid frequency and the inverter voltage:
• 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼, no power flow
• 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 > 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼, active power flows from the grid to the inverter
• 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 < 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼, active power flows from the inverter to the grid

• The same for the reactive power output. 

Sinking/sourcing power 
from the grid 

Grid voltage and 
frequency steps
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TESTING CONFIGURATION
• Transition operation:

• Key for smooth microgrid transition operation: Minimize the PCC power flow and maintain 
the same operating point before and after the transition operation.

Loading (50%) Islanded Synchronization
Key strategy: PCC power flow is minimized and 
inverter maintains the same operating point 
(v, I, P, Q, f)

Grid-connected Islanding
(same strategy as 
synchronization 
operation)

PF=1 Inverter with 
load

Before CB is closed, shift the frequency droop up 
by Δf=0.006*0.5*60=0.18 Hz. 

Inverter supplies all the 
load

Inverter supplies all the 
load

PF=0.8 lagging Inverter with 
load

Before CB is closed, shift the frequency droop up 
by Δf=0.006*0.4*60=0.144≈0.14 Hz, 
shift the voltage droop up by 
(0.0841*0.5*0.6-0.0119)*480=6.4 V 

Inverter supplies all the 
load

Inverter supplies all the 
load

PF=0.8 leading Inverter with 
load

Before CB is closed, shift the frequency droop up 
by Δf=0.006*0.4*60=0.144≈0.14 Hz, 
shift the voltage droop down by 
(0.0679*0.5*0.6+0.008)*480 =13.6 V

Inverter supplies all the 
load

Inverter supplies all the 
load
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EXPERIMENTAL RESULTS—STAND-ALONE
• Balanced load:

• The inverter can operate within the full 
spectrum of its active and reactive power.

• THD of V and I are mostly below 5% except 
capacitive load (5% and 10%).

• Inverter voltage drops below 0.95 p.u. at 
100% loading.

• There is a strong coupling between voltage 
and active power.

• Unbalanced load:
• Inject negative sequence current.
• Capable of handling all the unbalanced 

loading test
• Voltage imbalance is below 0.25%.

• Sinking power:
• Able to absorb the excessive active and 

reactive power from the GFL inverter.

• Overloading:
• Can handle all the overloading except PF 0.8 

lagging and leading from 1.6 p.u.
• Duration: 5~9 seconds.

• Load step:
• Can handle all the load steps.



10

EXPERIMENTAL RESULTS—STAND-ALONE
Black start: Energize transformer → 50% load → 100% load.
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EXPERIMENTAL RESULTS—STAND-ALONE
Secondary control: 50% PF=1 load applied
• Frequency: smoothly regulated to the nominal value with 0.25 s
• Voltage: Exhibits oscillations and reaches steady state within 0.5 s.
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EXPERIMENTAL RESULTS—HETEROGENEOUS 
Unequal power sharing: Start from equal power sharing → take 90% of the load.

0.54 p.u. 

150
150 + 250

= 37.5%. 0.9 ∗ 150
250

=0.54
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EXPERIMENTAL RESULTS—GRID-CONNECTED 
• Sourcing active power:

• There is noisy current when the frequency droop is not shifted.
• Inverter outputs the target active power except the 100% (derating effect).
• Voltage THD is below 0.5% and current THD is high with low power (5% and 10%).
• No overshot in the output current.
• Inverter absorbs reactive power and increases when the loading is increased.

• Sourcing reactive power:
• Outputs the reactive power slightly lower than expected
• Voltage THD is below 0.5% and current THD are all above 5%
• Inverter output current shows overshoots and settles within 1 s .

• Sinking active power:
• Can complete all the testing
• Inverter absorbs the target active power
• No oscillations
• Inverter absorbs slightly higher power than expected
• Voltage THD is below 0.5% and current THD is above 5% from 5% to 50%.
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EXPERIMENTAL RESULTS—GRID-CONNECTED
Grid simulator step-down frequency Grid simulator step-up voltage
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EXPERIMENTAL RESULTS—TRANSITION 
OPERATION (PF=1 50% LOAD)
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CONCLUSION
• Develop a testing protocol to perform extensive lab testing of GFM inverter.

• Understand the control functionalities and interoperability.
• The frequency and voltage droop need to be characterized.
• Tuning the droop slope can easily cause stability issues.
• We can perform secondary control and dispatch GFM inverters like GFL 

inverters through adjusting the droop intercept.
• Reactive power sharing is a problem.
• More studies are needed for grid-connected operation, especially for 

reactive power dispatch.

KEY FINDING: Interoperability and dispatch of GFM inverters is all about 
droop!!!
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