

PHIL Interface Design for Use With a Voltage-Regulated Amplifier

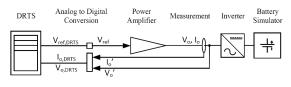
Toby Meyers¹, Kumaraguru Prabakar², Annabelle Pratt², Soumya Tiwari², John Fossum³ ¹EPC Power Corporation, ²National Renewable Energy Laboratory, ³Hyde Renewables, Inc.

BACKGROUND/INDUSTRY IMPACT

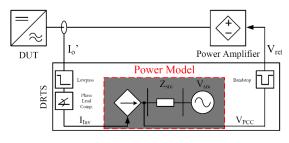
- · Power hardware-in-the-loop (PHIL) has emerged as a leading strategy to thoroughly assess the impact of proprietary inverter controls on a specific power system [1].
- A three-step approach of PHIL interface development for amplifiers with built-in voltage regulation is introduced and is validated in hardware with a 30-kW grid-following inverter.

PROJECT OVERVIEW/OBJECTIVES

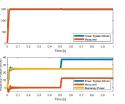
- · Unregulated power amplifiers have an inherent inaccuracy challenges due to delays.
- These delays create a phase lag between the outgoing amplifier reference and the incoming voltage (or current) measurements. The total phase lag will lead to a phenomenon known as illusionary reactive power [2].
- Recently, regulated power amplifiers are commercially
- This work proposes the use of phase-lead compensator which can be used as an alternative method to compensate for the delay.
- This effectively removes the illusionary reactive power.

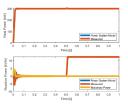

Key interface components

Three key components are used in the software interface:

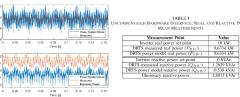

- · Low pass filter The first operation is passing the incoming current measurements through a low-pass filter to remove external measurement noise.
- Phase Lead Compensator The filtered current waveform is passed through a phase lead compensator to remove illusionary reactive power by injecting an equivalent amount of phase lead.
- Band-Stop Filter Finally, the PCC voltage, passes through a band-stop filter to remove possible frequency components that would excite a resonance point of the power test bed.

Voltage-regulated power amplifier impedance model Internal Voltage Feedback Controller Filter Load Impedance Impedanc Switching Module Voltage-Regulated Power Amplifier

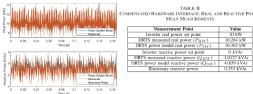

Laboratory hardware setup with signal labels


Proposed physical control model of PHIL setup

Software results

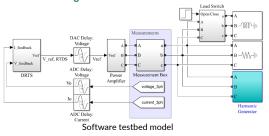


Software real and reactive power waveforms from uncompensated interface.



Software real and reactive power waveforms from compensated interface.

Hardware results



Uncompensated interface with the grid-following inverter injecting 10 kW of real power.

Compensated interface with the grid-following inverter injecting 10 kW of real power.

Software design

30-kW experimental hardware test bed.

References

68, no. 11, pp. 10938-10948, Nov. 2021

(NAPS), pp. 1-6, IEEE, 2016.

SUMMARY

This study introduced a three-step approach to develop PHIL interface for power amplifiers with built in voltage regulation:

- (1) Run the test bed with variable harmonics to determine the resonance regions.
- (2) Measure the amount of phase lead compensation required to avoid a reactive power error.
- (3) Validate the proper lead compensation operation and iterate if necessary.
- The software model interface reduced the illusionary reactive power from 24.75 kVAr to 0.0397 kVAr.
- The hardware model interface saw a reduction from 1.8 kVAr to 0.353 kVAr.
- The next logical extension of this work is for voltage source inverters operating in grid-forming mode.