
IEEE PES Innovative Smart Grid Technologies LATAM 
San Juan, Puerto Rico, November 6-9, 2023

NREL/PO-5D00-87908 

Use of Grid-Forming Medium-Voltage Power 
Electronics Hub in a Microgrid Setting

Fuhong Xie 1, Vikram Roy Chowdhury 1, Kumaraguru Prabakar 1, Akanksha Singh 2, Jongchan Choi 3, Aswad Adib 3, Joao Onofre Pereira Pinto 3, and Madhu 
Sudhan Chinthavali 3
1 National Renewable Energy Laboratory, Golden, Colorado. 2 Power Conversion, DNV, USA. 3 Oak Ridge National Laboratory, Oak Ridge, TN. 

This work was authored in part by Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-
08GO28308. Funding provided by U.S. Department of Energy Grid Modernization Initiative and the Office of Electricity. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. 
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or 
reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. 

• Distribution power systems with microgrids face a 
variety of challenges related to feeder loading, 
reliability, efficiency, and power quality.

• This paper presents the development of advanced grid-
support control algorithms and coordination strategies 
for integrating the multiport, modular, medium-voltage 
power electronics hub (M3PE-HUB).

• The proposed M3PEHUB offers several advantages 
including the integration of multiple energy sources and 
loads, and efficient power flow management.

BACKGROUND/INDUSTRY IMPACT 

• The objective of this project focuses on the design and 
development of advanced grid-support control 
algorithms and coordination strategies for integrating 
the M3PE-HUB into the distribution system. 

• This paper aims to improve the understanding of the 
effectiveness and interconnection of the M3PE-HUB 
system, with an emphasis on system-level advanced 
controllers.

PROJECT OVERVIEW/OBJECTIVES 

References

• This paper demonstrated the concept of the M3PE-HUB in a 
test microgrid system. The architecture of M3PE-HUB and a 
preliminary evaluation in DRTS were presented. 

• The proposed M3PEHUB integrates numerous energy 
sources and loads and manages power flow efficiently, 
however its flexibility makes integration and scaling difficult. 

• A follow-up work will continuedly explore use cases using 
the CHIL interface and go beyond the basic demonstration 
by presenting several additional corner cases to further 
emphasize the benefits and challenges of integration.

• Development of advanced grid-support control algorithms and 
coordination strategies for integrating the multiport, modular, 
medium-voltage power electronics hub (M3PE-HUB).

• Proof-of-concept and evaluation of M3PE-HUB based grid 
support functions at feeder-level.

• The power converter models, and test system are developed in 
a commercially available digital real-time simulator (DRTS), 
enabling future controller-hardware-in-the-loop (CHIL) tests 
with commercial SEL controllers.

• The medium-voltage M3PE-HUB models are developed in 
a commercially available digital real-time simulator (DRTS).

• The Banshee microgrid is leveraged to act as test system 
for the evaluation M3PE-HUB’s dynamic transit in feeder 
level and multiple grid-supporting functions.

• Systems are modeled in a commercially available DRTS 
platform (Real Time Digital Simulator (RTDS) is used in this 
work) in an electromagnetic transient (EMT) domain with 
a time step of 50 microseconds.
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Figure. 3: Banshee microgrid model - one line diagram

ARCHITECTURE AND IMPLEMENTATION

Figure. 1: Expanded view of the M3PE-HUB architecture

SIMULATION RESULTS AND ANALYSIS

• The simplified overall circuit diagram of the M3PE-HUB architecture connected to 
the Banshee model Bus 23 is presented in Figure. 3.

• Three M3PE-HUBs are linked to the Banshee system where Hub 1 is connected to 
Bus 23 with extra battery source, Hub 2 connects Bus 204 and 203, and Hub 3 
connects Bus 201 and 203.
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• Islanding Transition
 This scenario uses a grid-forming (GFM) M3PE-HUB with 

dispatchable capabilities linked to Bus 23 with a controlled 
voltage source (external battery source) to deliver a 0.5MW 
load while the feeder supplies reactive power.

 M3PE-HUB (HUB 1) switches to GFM mode and supplies 
reactive loads when the circuit breaker between Bus 203 and 
Bus 23 is open. Figure. 4: Islanding Transitions (left: Powers; right: Voltages)

Figure. 5: Resynchronization Transitions (left: Voltage; right: Measurements)
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• Resynchronization Operations
 When HUB 1 tries to close the breaker for Bus 23, internal 

control logics increase the voltage magnitude at Bus 23 and 
maintain the frequency at 60Hz. When phase angle difference 
at the both ends of the breaker lower than 5 deg, the breaker 
controller closes the breaker for Bus 23.

 These results capture system transitions before and after the 
resynchronization which are crucial indicators of the system 
stability and adherence to grid requirements.  

• Multiple M3PE-HUBs for system reconfiguration
 In this case, three M3PE-HUBs are linked to the Banshee system where Hub 1 is connected to 

Bus 23 with extra battery source, Hub 2 connects Bus 204 and 203, and Hub 3 connects Bus 
201 and 203.

 When M3PE-HUB 3 experiences a specific problem around 0.6 s, its protective system trips the 
device. Then, M3PE-HUB 1 and M3PE-HUB 2 quickly redistribute electricity to 
0.47MW/0.27MW and 0.27MVar/0.27MVar.

 These results demonstrate that multiple M3PE-HUBs can dynamically manage power flow with 
droop controls, and system voltage and frequency can reach stable operations.

Figure. 6: M3PE-HUBs Transitions (left: Powers; middle: Voltage/Frequency; right: Active Loads)
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Figure. 2: M3PE-HUB control architecture


