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Introduction

• Objective: Develop modular data repository and computing 
architecture with open-source datasets and baseline DER 
management algorithms

• Data: Open-source datasets including realistic sensor data 
streams from SCADA, AMI, inverters

How is AI/ML Used

 Distribution System State Estimation Problem

 High Impedance Fault Identification Problem  Synthetic Solar Irradiance Sequence Generation
• Tractable piecewise approximation of the voltage-current (V-I) 

trajectory during HIF events.

• An explainable and efficient support vector machine approach for 
the identification of HIF locations.

Piecewise linear/quadratic regression for V-I trajectory:

Linear approximation Quadratic approximation

Support vector machine approach:

HIF circuit model Voltage-current trajectory

• The approximated function features (e.g., slope rates) are used as 
SVM inputs for HIF identification.

Linear model:
Quadratic model:

• Support vector machine formulation:

 Numerical Results

 IEEE 123 node test feeder

 Varying operating conditions

 Samples collected at 20 kHz

 Data posted open-source [1]

• Identification performance under different dimensional spaces:

Challenges and Best Practices

Key Takeaways and Future Work
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Generalized state estimation formulation:

• A data-driven model that combines the analytical and artificial 
intelligence-based methods

• Physics-informed model that offers real-time state estimation 

Physics-informed autoencoders:

 Numerical Results

Design of two-part loss function

• WLS-based objective:

• Violation of voltage magnitude limits:

• The encoder provides a deterministic and approximated mapping 
from the measurements to the true states

• LSTM-based GAN [2] to generate high-resolution solar irradiance 
sequences from lower-resolution measurements.

• Multi-loss functions to accurately capture various temporal 
patterns of realistic solar irradiance data

GAN-based sequence-to-sequence generation:

Neural network architecture

 Numerical Results

• When machine learning models are utilized to handle different 
applications. It is important yet challenging to find the balance 
among accuracy, scalability and interpretability. This normally 
requires prior knowledge on the specific problem for constructing 
the most efficient learning architecture.

• Future work includes developing novel and physics-informed 
machine learning algorithms for selected topics using the OEDI 
datasets.
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