

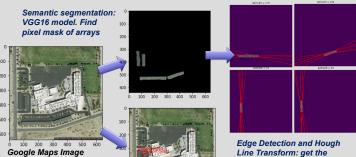
Al and ML Applications for PV Reliability & System Performance

K. Perry¹, C. Deline¹, D. Jordan¹, M. Deceglie¹, M. Muller¹, M. Springer¹, R. White¹, B. Meyers², D. Ragsdale², S. Miskovich², G. Ogut³

- (1) National Renewable Energy Laboratory, Golden, CO 80401, USA
- (2) SLAC National Acceleratory Laboratory, Menlo Park, CA 94025, USA
 - (3) Stanford University, Palo Alto, CA 94305, US

PV Fleets: Automated Data QA and Metadata Verification

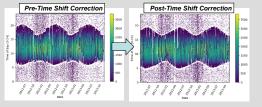
Automated Metadata Satellite Analysis using Deep Learning NREL Panel-Segmentation Package Uses deep learning models to automatically do the following: Locate solar installation in Google Maps satellite image

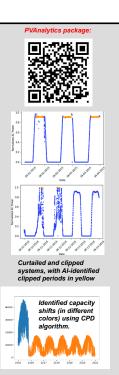

Extract solar azimuth

Mounting configuration detection: Resnet-50 model.

carport-fixed tilt

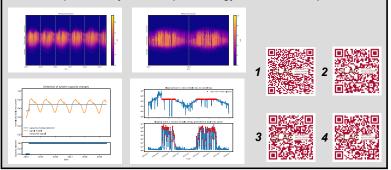
All arrays determined to be


- Determine the mounting configuration (rooftop, carport, ground; fixed or tracking)
- · Imagery analysis great use case for deep learning
- Useful for analyzing fleets where metadata is unknown or incorrect


Line Transform: get the azimuth associated with each array

Automated QA: Clipping Detection, Time Shift Estimation, Capacity Shift Detection

- Developed supervised and unsupervised ML algorithms for finding issues/features in measured PV data
 - Clipping/curtailment detection: Logic-based Al method and supervised ML method (XGBoost). Creates mask of clipped/non-clipped periods
 - Time shift detection: Unsupervised changepoint detection (CPD) to identify time shifts between modeled and measured solar noon
 - Capacity shift detection: Unsupervised CPD to detect abrupt capacity shifts in measured PV data
- All functions validated with "ground-truth" labeled data and results published
- Functions publicly available in Python PVAnalytics package and Rdtools package (clipping only)



Daily heatmap of AC power values before automated time shift correction and after, respectively, for a data stream with daylight savings time (DST).

Statistical Learning in PVInsight

- Developing white-box machine learning models based on statistical signal processing, convex optimization, and domain expertise
- · Deep neural networks are not part of our toolkit!
- Methods: we have a monograph¹ and a no-math, no-code tutorial²
- Applications: check out this report³ and this dissertation⁴
- · As opposed to neural networks, this flavor of machine learning is
 - interpretable (good for science and troubleshooting!)
 - highly data efficient (good models with 75% data loss!)
 - computationally efficient (less energy, water, cost, ...)

PV Validation Hub

- · Allow developers to submit PV analytics algorithms for validation.
 - · Degradation, soiling, tilt/azimuth estimation, etc.
- Well-curated validation data sets and procedures
- Consistent labeled data sets allow for side-by-side comparison of different algorithms
- Public leaderboards and documentation facilitate tech transfer
- Enables rapid development and benchmarking of solar algorithms

