21 Year Modeled |

- Spatiotemporal Low- Level Jet
-~ Climatology Along the U. S |\/|Id-
¢ Atlantic Coast -

e pr 4 PTGy, T e @m
2O Andrew Kumler“Julle K Lundqu1st B ey
Nicola Bodini,! Prakash Mohan,tand
Raghu Krlshnamurthy A

2023 NAWEA Conference -~
1 November 2023

e : h\ \

INational Renewable Energy Laboratory (NREL)
2University of Colorado Boulder
3pacific Northwest National Laboratory



. .
° . @
@ o
e -
® @
o ® [ ]
TR

e Pooes
[ 1]

00 90 DeP-
.

c@@eceo@o@ooBocBe® G0 00 Ged@ceod 0Beed

@ 000¢00009000020000000¢00 00 00e@O9D 20000

@ceP oPOPc sDes ceP ePoedesca oPoPes PP
e e@e ole@elo@el SDePBelevolosePBOeePPRoe

c@e@ccoe 9e9R0cecDe B0

o®
@de

eslofee 00 e00000000000000000000020 BDe@BD00

@ o 0 0@ 0oRD 000000 D 900002 0200020

{
s Be @
o

°
L
L]
°

L ]
@e
o

o

Northwest  WFIP-3 Multi-Lab-Univ Team

NATIONAL LABORATORY

FUNDING AGENCIES
Office of ENERGY EFFICIENCY National Oceanic and
ENERGY & RENEWABLE ENERGY Atmospheric Administration
US. Ceparment of Con
NON-FEDERAL TEAM DOE NATIONAL LABORATORIES
LEhD INSTITUTION LEAD LABORATORY

5 WOODS HOLE
OC EANOGRAPHIC
—h INSTITUTION

ﬁ NCAR

Tufts

Pacific Northwest

n »
nt —
DNV B o e

M Lawrence Livermore
National Laboratory

Unwersﬂy of Colorado w DALLAS Argon ne o
Boulder

NOAA LABORATORIES
Physical Sciences Laboratory
Global Monitoring Laboratory

Global Systems Laboratory

Atlantic Oceanographic and
Meteorological Laboratory

nnnnnnnnnnnnnnnnn

USER ADVISORY BOARD
v ) 4
')

VINEYARD SO noewengland .
AVANGRID WIND equinor

Mayflower 2=  Orsted @: OO Sittgons
RWSC... @ ROSA

Science Alkarce

Project Websites:

https://www?2.whoi.edu/site/wfip3

https://www.pnnl.gov/projects/wind-
forecast-improvement-project-3

https://a2e.energy.qgov/project/wfip3



https://www2.whoi.edu/site/wfip3
https://www.pnnl.gov/projects/wind-forecast-improvement-project-3
https://www.pnnl.gov/projects/wind-forecast-improvement-project-3
https://a2e.energy.gov/project/wfip3

I
°

G
De
e
."} >
Qe @

[ LN
e® ©-

eed DooesP

o8 eDe@@D

o@e’ @De@BeeealicoesPBBoePPice

cseed 9Dl @eesr DoPPede

@ 00000000002 2000002000 00

@0e
Qe ool oePel

o 89
ece
oo

o

Pacific
Northwest

NATIONAL LABORATORY

* 18-month-long publicly available
high-resolution offshore data
(starting January 2024)

» Improved wind forecasting skill of
the region

» Develop new boundary layer
and surface layer
parameterizations to be
implemented in NOAA's
RRFSv2 model

 Quantify which modeling
developments (coupled modeling,
improved PBL, improved surface
layer, etc.) yield the largest impact
on reducing the LCOE for offshore
wind in the U.S.

WFIP-3 Expected Outcomes

Observations - Modeling Improvements - Industry Products

Process Study
Sites

Lidar Buoys

. Sentinel Buoys

@  NDEC Stations

Shipboard
Transect Line

Remote Surface
Winds/Fluxes

@  Land Sites

Upper Air
Soundings

2

T Ttw

A " kohn
f
Wo f

6 land sites

10-element
mooring array

2 process study
Remote sensing

via high-frequency
radar and satellite

LCOE = levelized cost of energy; PBL = planetary boundary layer; NOAA = National Oceanic and Atmospheric Administration



Background/Motivation

Why do we care about modeled low-level jet
climatologies?



NANTUCKET

CURRENT

NEWS  SPORTS  REALESTATE CRIME PEOPLE  OPINION

The First Vineyard Wind Turbine Rises
Off Nantucket

Jason Graziader » Oct 12, 2023

A new dawn...

The first Vineyard Wind turbine 15 miles off Nantucket, Photo by Charity Grace Mofsen

https://nantucketcurrent.com/news/first-vineyard-wind-turbine-rises-
off-nantucket

https://www.vineyardwind.com/press-

releases/2023/10/18/avangrid-cip-announce-successful-
installation-of-the-first-turbine-for-vineyard-wind-1
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Why do we care about low-level jets?

* Low-level jets (LLJs) can have large impacts on power production (Kelley
et al. 2004).

— Ramps, ability to forecast, etc.

* Changes in wind speed and direction across the rotor layer impose
structural stress on the wind turbine (Kelley, Jonkman, and Scott 2006).

— Offshore turbines are taller and have longer rotor diameters, increasing
the likelihood of LLJ impacts.

* While impactful, there is no agreed-upon definition of what constitutes
an LLJ.

— Different definitions lead to different results.

NREL | 6



Regions of Interest

Focus on the Rhode Island/Massachusetts
wind energy areas






The NOW-23 Dataset

Next-generation offshore wind resource dataset
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Low-Level Jet Definition

How do we define an LLJ?



Long History of LLJ Study and Definition
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CLIMATOLOGY OF THE LOW LEVEL JET
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LLJ Definition

e Criteria used: RI-MA Average Vertical Profiles
ini i 001 — Includi i
— Minimum wind speed at 150 m ° iy shear flto
>3 m/s.
— LLJ cannot be at the 4001

lowest/highest NOW-23
altitudes (20 and 500 m,
respectively).

— Drop in wind speed above the * ;4.
nose > 1.5 m/s and > 10%.

— Criterion 2 from Debnath et al.
(2021) dropped (wind shear
gradient minimum in the rotor

w
o
(=]

Height (m)

100 A

Iaye r) . °3 8 9 10 11 12 13

Wind speed (m/s)
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LLJ Characteristics

* Four characteristics used in this study:

— Percent of jet occurrence: percentage of time that an LLJ is
said to be occurring.

— Nose height: height of the LLJ nose, where wind speeds are
at their highest.

— Nose top: height of where the LLJ has its lowest wind speeds
above the nose height.

— Nose speed: wind speed of the LLJ nose.

NREL | 14



Spatial LLJ Climatology

How do LLJs vary in the Rhode Island/Massachusetts
wind energy areas?
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Temporal LLJ Climatology

Diurnal, monthly, and interannual behavior



LLJ Characteristics Have Large Monthly Variability

* June has the highest LLJ 0 00
activity while December £ £
has the lowest. N Sl T
* LLJ nose heights are 2 20 /\ £ 100
highest in September, " i3iierasnne P 133 iiirsshnn
1 Month of year Month of year
lowest in December. s .

* LLJ nose tops are highestin s S~ | =]

December, lowest in June.

* Nose speeds of LLJs peak in ;
May and are slowest in ' 5

Nose top (m)
I
2%
w
Nose speed (m/s)
© =

December 123 456 7 8 9101112 123 456 7 8 9101112

Month of year Month of year
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Monthly LLJs by Stability Tell Different Stories

Stable conditions exhibit 80
higher jet occurrence year-
round.

Nose heights appear
bimodal, but peak at
different times of the year.

% jet occurrence
I
o

Nose tops are highest in 500
the winter, lowest in early 490
summer. < 480
Nose speeds are slowest in  § 7
winter for unstable, but 460
highest for stable. 450

123 456 7 8 9101112
Month of year

1 2 3 45 6 7 8 9101112
Month of year

220

200
180 ~

Nose height (m)
= =
£ =3}
o o

=
N
o

100

14

Nose speed (m/s)

— All
——— Stable
—— Unstable

123 456 7 8 9101112
Month of year

12 A

10 A

1 2 3 45 6 7 8 9101112
Month of year
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Weak Mean Diurnal Cycle Variability
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with a muted diurnal g N R
response over water (e.g., £ 3 °
wind direction). ST — e
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Hour of day (UTC) Hour of day (UTC)
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Large Differences in the Diurnal Cycle w.r.t. Stability

Higher jet occurrence in

50
stable conditions. 2 ]
Larger nose height 330
fluctuations in stable £

e, e 10
conditions than unstable
conditions.

. . 500
Higher nose tops in -
unstable conditions. o

. 2 460
Faster nose speeds in 2

stable conditions.

Hour of day (LT)
19 22 1 4 7 10 13 16

W
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Intra-annual Variability Overshadows Interannual

% jet occurrence: Average yearly LLJ activity

80
— Highest: 2005 (28.9%). 2 60 ]
— Lowest: 2014 (23.5%). : w0
LLJ nose heights: %zo- I
— Highest: 2020 (183 m). By grarngrgrangeargrngn
— Lowest: 2011 (172 m). AT A AT
LLJ nose tops: Average yearly LLJ nose top
— Highest: 2012 (475 m). 3 e
— Lowest: 2011 (467 m). £ 450-
LLJ nose speed: ‘3133
— Highest: 2006 (10.5 m/s). N
— Lowest: 2015 (9.38 m/s). ST SIS

Nose height (m AMSL)

Nose speed (m/s)

175

75

Average yearly LLJ nose height

Average yearly LL] nose speed
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Interannual Stability Differences More Nuanced

° % Jet occurrence: . Average yearly LL) activity ~ 190 Average yearly LL) nose height
— Downward trend? 2 a0 N A | Tis0 WW
Significance TBD. 3 304 £ 0] NV
. 3 %W‘\ k=g —
* LLJ nose heights: 8200 | feoy T sebe
R b —— Unstable
- ngh |nterannua| Varlablllty, 10 '0'""; 'b' I‘bl '0'"";'@: '%' '0 3150 I(bllllb-l "0' '%' '0'"""' I(ol lq; 'Q
but confined to 15-20 m. B I A A S S S
Year Year
¢ LLJ nose tOpS: 490 Average yearly LL] nose top 14 Average yearly LL] nose speed
— Low interannual variability. 3 g |
* LU nose speeds: SIS AGIE HeeAT oS
— Nose speeds are much 2 470 W 2 gl
. g Zo W
slower in unstable Lol L LY T~
Condﬂlons. f@ﬁ%ﬁﬁ%ﬁ@%ﬁ@%ﬁ@%& é§§%§§%§$%ﬁ@%§@%§
Year Year
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Wrap Up

Final thoughts, conclusions, and next steps



LLJs in the Rhode Island-Mass. Region Are Dynamic

LLJs tend to have greater temporal

variability than spatial variability.

Stability makes a drastic difference in LLJ

activity.

— LLJs are over twice as likely to occur in
stable conditions.

— LLJs are spatially more variable in
unstable conditions.

LLJs are most variable temporally over
the intra-annual cycle.

— High seasonality, lower
diurnal/interannual variability.

Other variables such as wind direction
and boundary layer height will be
investigated next.

40.9°N

40.8°N

40.7°N

40.6°N

71.4°W 71.2°W 71°W 70.8°W 70.6°W 70.4°W 70.2°W 70°W

o
Mean jet occurrence (%)
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