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Hardware-in-the-Loop Evaluation for Potential High
Limit Estimation-Based PV Plant Active Control

Mengmeng Cai, Simon Julien, Jing Wang, Subhankar Ganguly, Weihang Yan, Zachary Jacobs, Tristan Liu, and
Vahan Gevorgian

Abstract—This paper validates the efficacy of an artificial
intelligence (AI)-based photovoltaic (PV) plant control and op-
timization approach in enabling PV plants as accountable grid
reliability service providers. The validation is performed in a
realistic laboratory controller-hardware-in-the-loop environment,
leveraging accurate PV plant modeling and standard industrial
communication protocols. Through simulations that account for
diverse weather conditions and active control scenarios, the re-
sults highlight the superior performance of the AI-based solution
in comparison to a state-of-the-art reference-control grouping-
based approach. Such a finding contributes to mitigating the risk
of overcurtailment and uninstructed deviations of active PV plant
controls, and offers practical guidance for its field deployment.
Furthermore, it establishes a standardized testing framework for
comparing various PV active control strategies.

Index Terms—PV active control, Hardware-in-the-loop, Poten-
tial high limit

I. INTRODUCTION

AS utilities strive to meet the 2050 net-zero greenhouse gas
emissions target, their solar capacities have substantially

increased in recent years and will continue to expand in the
coming decades [1]. This surge in renewable energy adoption
requires additional system flexibility to address the increasing
variability and uncertainty. Traditionally, system flexibility
has been provided by fossil-fueled generators; however, with
the evolving energy landscape, there is increasing interest
in alternative flexible resources, such as actively controlled
photovoltaic (PV) plants. Under active control, PV plants can
operate at curtailed operation levels and rapidly respond to
meet grid service demands at zero marginal cost, offering
advantages in enhancing the system efficiency and reducing
the strain on conventional generators [2]; however, unlike
traditional operating reserve providers, such as fossil-fueled
generators, whose operating characteristics (e.g., available
operation headroom) are well-defined, PV plants are inherently
variable and uncertain. To ensure feasible and efficient coor-
dination between PV plants and the system operator during
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an active control event, it is essential to accurately estimate
the maximum available power output, i.e., potential high limit
(PHL), of the plants even when they are being curtailed.

To address this need, the current state-of-the-art method
applies a reference-control grouping strategy that reserves part
of the inverters (reference group) to operate at their PHLs
and dispatches only the remaining inverters (control group) at
curtailed levels to fulfill the flexibility need [3]. Despite being
successfully demonstrated in the field [4][5], there exist two
gaps in the state of the art to fully unlock the flexibility of
PV plants: a. There is a trade-off between the PHL estimation
accuracy and the flexibility range. b. There lacks granularity
in the PHL estimation to capture the variation across inverters.

To tackle these challenges, Latimer Controls proposed an
integrated solution combining an artificial intelligence (AI)-
based, inverter-level PHL estimation model and a hierarchical
inverter control model [6]; however, its performance has been
tested only in a software environment, and it has not been
comprehensively compared to the state of the art under various
operating conditions. To mitigate risks and provide practical
guidance for its future field implementation, the National
Renewable Energy Laboratory, in collaboration with Latimer
Controls, proposed and developed a controller-hardware-in-
the-loop (CHIL) framework for PHL estimation-based PV
plant active control with following contributions being made:
1) We developed a 135-MW PV plant model with active

control interfaces incorporating detailed modeling of in-
dividual PV arrays and inverters. It provides the flexibility
to account for different levels of solar irradiance variations.

2) We established a CHIL platform tailored for testing and
demonstrating PHL estimation-based PV plant active con-
trol. It can be used by both plant and system operators to
understand the value of flexible PV plants and standardizes
the comparison among different technologies.

II. HARDWARE-IN-THE-LOOP SETUP

A. Overall framework

Fig. 1 illustrates the framework of the proposed CHIL
test bed and compares the implementations between the AI-
based and baseline (i.e., reference control grouping-based
method) solutions. It is built using RTDS and Opal-RT. While
RTDS handles the electromagnetic transients (EMT) PV plant
modeling at 50 micro-second intervals and acts as the system
operator, Opal-RT functions as the prototype plant controller.

B. PV plant under test

To account for the varying cloud conditions and diverse
inverter dispatches, we have developed a 135-MW PV plant
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Fig. 1. Illustration of the CHIL framework (four inverters are plotted for illustrative purposes).

with detailed modeling of 27 individual PV modules using
RTDS. Each module is paired with a 5-MW/0.48-kV current-
regulated voltage source inverter, which is then aggregated to
connect with a 345-kV point of common coupling through
two step-up transformers, as shown in the upper part of Fig.
2. The details of the inverter control are illustrated in the
lower part of Fig. 2. We applied generic DC voltage control,
current reference generation and current control functions [7]
to form the outer voltage and inner current control loops. A
switching function has been added to enable the transition
between operating in maximum power point tracking (MPPT)
and being actively controlled.

Fig. 2. PV plant modeling. Notations: vabc-three phase voltage measure-
ments; iabc-three phase current measurements; vdq-dq reference frame volt-
age measurements; idq-dq reference frame current measurements; Vdc mppt-
DC link MPPT voltage reference; vdc-DC link voltage measurement; Pmppt-
active power reference under MPPT, Psetpoint- active dispatch set point;
Ptreshold-upper bound of the active dispatch set point; P ∗, Q∗- active
and reactive power references; i∗d, i∗q -dq reference frame current references;
Ea,ref , Eb,ref , Ec,ref -reference voltages of the inverter legs; ma, mb,
mc-modulation signals; θ-voltage angle.

C. Controller under test

The AI-based and baseline plant controllers are hosted in
Opal-RT, and both contain a PHL estimation and dispatch
functions. Whereas the AI-based solution estimates inverter-
level PHLs based on historical DC-side current and voltage
measurements from the previous 10 steps for all inverters
through neural networks, the baseline solution estimates plant-
level PHL based on current AC-side power measurements from
all reference inverters through a simple scaling function, as
illustrated in Fig. 3. With regard to the dispatch function,
whereas the AI-based solution disaggregates the plant-level
set point proportionally to the inverter-level PHL estimations,
the baseline solution distributes the remaining dispatch set
points (plant-level dispatch set point subtracts the sum of the
current outputs of reference inverters) among control inverters
proportionally to their rated powers, as depicted in Fig. 4.
More details about AI-based and baseline solutions can be
found in [6], [5].

Fig. 3. Comparison of the two PHL estimation approaches. Nota-
tions: n-inverter index; t-time index; P t+1

PHL,n-inverter-level PHL estimation;
It−10:t
n and V t−10:t

n -DC-side current and voltage measurements from pre-
vious 10 steps; P t+1

PHL -plant-level PHL estimation;P t
actual,n-AC-side power

measurement;Prated,n-rated power; Nreferece-the set of all reference inverters.

D. Communication setup

Communications between the system operator and the plant
controller, as well as between the PV inverters and the plant
controller, use Distributed Network Protocol 3 (DNP3) and
Modbus, as indicated by the dashed and double lines in Fig.
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Fig. 4. Comparison of the two dispatch approaches. Notations: P t
setpoint,plant-

plant-level dispatch set point; P t
setpoint,n-inverter-level dispatch set point of

inverter n; N -the set of all inverters; Ncontrol-the set of all control inverters.

Fig. 5. Solar irradiance profiles for a partially shaded day (left) and a sunny
day (right)

1. The PV inverters communicate their measurements and
dispatch set points with the plant controller at the second
resolution. Every 6 seconds, the plant controller sends an
updated plant-level PHL estimation to the system operator in
exchange for a plant-level dispatch set point.

III. CASE STUDY

A. Solar irradiance inputs

This study uses the Oahu Solar Measurement Grid data
set [8] for the solar irradiance inputs. It offers 1-second
resolution measurements of global horizontal irradiance (GHI)
from 17 stations in the southwestern region of Oahu. These
measurements span 1 year, covering the time from 5 AM to
8 PM daily. Specifically, we chose a partially shaded day and
a sunny day from the data set, representing distinct levels of
solar irradiance variation. Fig. 5 visualizes the solar irradiance
profiles of the two days. Within each day, we selected three 15-
min time windows—covering the morning ramp, noon peak,
and evening drop—for the simulation.

B. Testing scenarios

To provide a comprehensive evaluation of the performance
of the actively controlled PV plant in satisfying different
flexibility needs, we implemented four testing scenarios:
(a) Constant generation: Test the capability of maintaining

the generation at a fixed value (Pconstant).
(b) Absolute headroom: Test the capability of maintaining an

absolute headroom (P abs
headroom).

(c) Percentage headroom: Test the capability of maintaining
a percentage headroom (P%

headroom).
(d) Hot-restarting: Stress test the capability of fast ramping

down (from t1 to t2) and up (from t2 to t3) between zero
generation and full capacity.

Equations (1)–(4) describe how the P t
setpoint, plant is deter-

mined based on the plant-level PHL estimation, P t
PHL, under

each testing scenario:

P t
setpoint, plant = min(Pconstant, P

t
PHL) (1)

Fig. 6. Distributions of PHL estimation percentage errors

P t
setpoint, plant = P t

PHL − P abs
headroom (2)

P t
setpoint, plant = P t

PHL(1− P%
headroom) (3)

P t1
setpoint, plant = P t1

PHL;P
t2
setpoint, plant = 0;P t3

setpoint, plant = P t3
PHL

(4)

C. Performance metrics

We compared the performance of the AI-based and baseline
solutions from the perspectives of PHL estimation accuracy,
dispatch precision, overcurtailment, and headroom mainte-
nance by leveraging the following metrics:

PEEt = |P t
PHL − P t

PHL,actual|/P t
PHL,actual (5)

DEt = |P t
setpoint, plant − P t

actual| (6)

OCt = max(0,P t
PHL,actual − P t

actual)

−max(0, P t
PHL,actual − P t

setpoint, plant) (7)

For testing scenario (b):

HDt = min(0, P t
actual − (P t

PHL,actual − P abs
headroom)) (8)

For testing scenario (c):

HDt = min(0, P t
actual − P t

PHL,actual × (1− P%
headroom)) (9)

where P t
PHL,actual and P t

actual represent the actual potential high
limit and the actual generation at time t. PEE, DE, OC and
HD are short for percentage estimation error, dispatch error,
overcurtailment, and headroom deviation.

D. Performance evaluation

Fig.6 compares the distributions of the PHL percentage
estimation errors, PEEt, obtained using the neural-network-
based and baseline PHL estimation approaches. Compared
with the reference control grouping-based method, the neural-
network-based method reduces the mean and standard devia-
tion of PEEt by 70% (from 9.7% to 2.9%) and 63% (from
12.5% to 4.6%).

Table I and Table II compare the averaged DEt, OCt, and
HDt obtained using two approaches in two simulation days.
Of the 24 runs, 75%, 79%, and 50% of the time, the AI-
based solution outperforms the baseline solution in terms of
maintaining the dispatch precision, avoiding overcurtailment,
and satisfying the headroom requirement. (Cases where the
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TABLE I
PERFORMANCE COMPARISON FOR THE SUNNY DAY

Constant
generation

Absolute
headroom

Percentage
headroom

Hot
restarting

AI-based Baseline AI-based Baseline AI-based Baseline AI-based Baseline

Morning ramp 0.29 4.29 0.19 3.43 0.24 4.39 0.35 6.14
Noon peak 0.01 0.03 0.52 0.36 0.21 0.45 1.29 3.48Dispatch error (DEt)
Evening drop 0.21 0.39 0.13 0.12 0.17 0.19 0.73 0.56
Morning ramp 0.29 3.38 0.19 3.43 0.24 4.39 0.35 6.14
Noon peak 0.00 0.00 0.52 0.36 0.21 0.45 1.29 3.48Overcurtailment (OCt)
Evening drop 0.19 0.38 0.13 0.12 0.17 0.19 0.73 0.56
Morning ramp - - 0.00 1.99 0.00 0.48 - -
Noon peak - - 1.71 1.91 0.85 1.97 - -Headroom deficiency (HDt)
Evening drop - - 0.11 0.00 0.03 0.00 - -

TABLE II
PERFORMANCE COMPARISON FOR THE PARTIALLY SHADED DAY

Constant
generation

Absolute
headroom

Percentage
headroom

Hot
restarting

AI-based Baseline AI-based Baseline AI-based Baseline AI-based Baseline

Morning ramp 0.25 5.41 0.32 1.79 0.20 3.56 0.32 5.92
Noon peak 1.63 4.55 0.84 2.05 1.32 3.61 2.94 7.24Dispatch error (DEt)
Evening drop 0.26 0.15 0.12 0.06 0.22 0.07 0.30 0.33
Morning ramp 0.20 2.16 0.32 1.79 0.20 3.56 0.32 5.92
Noon peak 1.24 3.76 0.84 2.05 1.32 3.61 2.94 7.24Overcurtailment (OCt)
Evening drop 0.09 0.14 0.12 0.06 0.22 0.07 0.30 0.33
Morning ramp - - 0.14 2.12 0.00 0.45 - -
Noon peak - - 1.70 1.64 0.88 0.72 - -Headroom deficiency (HDt)
Evening drop - - 1.62 0.01 0.36 0.00 - -

(a) AI-based

(b) Baseline

Fig. 7. Simulation results for the constant generation testing scenario.

AI-based solution underperforms the baseline solution are
indicated in blue.)

Figs. 7, 8, 9, 10 further visualize the comparison for the
noon peak time window in the partially shaded day under

(a) AI-based

(b) Baseline

Fig. 8. Simulation results for the absolute headroom testing scenario.

four testing scenarios. It compares the actual PHL, estimated
PHL, reference generation, and actual generation time series,
with the dispatch error and requested headroom highlighted
by the purple and gray areas. A comparison of the subfigures
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(a) AI-based

(b) Baseline

Fig. 9. Simulation results for the percentage headroom testing scenario.

(a) AI-based

(b) Baseline

Fig. 10. Simulation results for the hot-restarting testing scenario.

in Figs. 7, 8, 9, 10 shows that the shapes of the gray dashed
and solid lines are more aligned and the gaps between the
two are smaller in Fig. 7a,8a,9a,10a than in Fig. 7b,8b,9b,10b,
indicating better PHL estimation performance of the AI-based
solution. Moreover, although the reference generations (purple
dashed lines) are lower than the actual PHLs (gray solid lines)
most of the time in all figures, the purple areas are larger
in Figs. 7b,8b,9b,10b than Figs. 7a,8a,9a,10a, indicating that
the knowledge of inverter-level PHLs is critical to ensure the
dispatch precision. Note that there is a huge dispatch error
during the shutoff window (between 30 s and 50 s) of the
hot-restarting testing scenario in Fig. 10b, which indicates the
restricted flexibility of the reference control grouping-based
method given that half of the inverters are reserved to operate
at MPPT. This issue can be overcome by the AI-based solution,
as shown in Fig. 10a by the actual power rapidly changing
between zero and full capacity.

IV. CONCLUSIONS AND FUTURE WORK

This paper introduced a CHIL framework to validate an
AI-based PV plant control solution. The simulation results
exhibit the AI-based solution’s potential in bolstering PV
plant reliability as a flexibility provider compared to existing
methods. The proposed CHIL framework can be extended to
standardize the validation and comparison for various PHL
estimation-based PV plant active control strategies. Note this
work represents only a preliminary comparison of the two
approaches, given the limited time windows that are simulated.
In future work, we will: 1. Conduct long-duration simulations
to provide more generalized observations. 2. Refine the AI-
based PHL estimation using transfer learning. 3. Conduct
closed-loop tests. 4. Extend the application to reactive power
PHL estimation and voltage support.
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