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~ ‘} Risk in the scale-up of complex systems
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Scale-up: Extending systems and processes
that were developed in the laboratory to
function in the real world

Device and process scale-up comes with
significant technical challenges and risk

Typical challenges:

 Data-driven models perform best when
interpolating, extrapolation is inherently
uncertain, and therefore risky

* Increasing ranges of scale (spatial, temporal)
often lead to new/enriched physics

* High-fidelity physics-based models may capture
new physics, but are typically too expensive for
design/optimization work

 Operational regimes of existing experiments are
limited, and new experiments are expensive

NREL 2
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Adaptive computing: A holistic modeling approach to address scale-up

challenges across NREL application domains

NREL LDRD FY23-25
PI: M. Day

Adaptive Computing

Orchestration of a multi-fidelity model hierarchy
and/or experiment campaign to arrive at the best
goal-based solution with well-characterized

uncertainty given finite resources
< /




Key algorithmic components of Adaptive Computing

Optimize the use of finite resources to
to achieve a specific science goal

Adaptive Computing

Orchestration of a multi-fidelity model hierarchy Goal-oriented
and/or experiment campaign to arrive at the best
goal-based solution with well-characterized

uncertainty given finite resources
< /

solutions

Multi-fidelity models

: Uncertaint
and real-time y

i management
experiment synergy
Connect models with experiments to drive Control of extrapolation uncertainty
experiment design and data acquisition needs through targeted active learning
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Key Capability: Multi-fidelity modeling

Most applications feature an assortment of models of
widely varying fidelities, developed for different
purposes:

* Experiment: “Truth”, but limited operational regime
* High-fidelity: Physics-based (PDE/ODE models), can
be extremely costly

* Low fidelity: reduced physics, coarser meshes,
cheaper

* Data-driven surrogates: Al/ML, PINNs, Gaussian
Processes (GPs). Typically, very cheap

GP for low fidelity model GP for high fidelity model

15.0 15.0
12.5 12.5
10.0 10.0
7.5 7.5
5.0 5.0 ,
2.5 2.5
0.0 0.0
=5 0 5 10 =5 0 5 10

GP for multi-fidelity model True surface

15.0
12.5
10.0

-5 0 5 10 -5 0 5 10

Exploiting information from multiple fidelity levels can increase
surrogate accuracy

NREL | 5



Black-box expensive optimization: high fidelity

min f(x) Objective function to minimize
s.t.g;(x)<0,i=1,..,1 Constraint functions
x € () Parameter domain

)

Local optimum:

Is the best in a small vicinity d
Global optimum:

Is the overall best NREL | 6

min f(x)



Objective function value

Objective function value

Surrogate model guided sampling
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Combining information from multiple

fidelities into one model

GP for low fidelity model
15.0

12,3
10.0
T8
5.0
2.3
0.0

GP for high fidelity model
15.0

12.5
10.0
7.5
5.0
2.5
0.0

Red = high-fidelity evaluations
Black = Lower fidelity evaluations

GP for multi-fidelity model
15.0

12.5
10.0

= /.5

=5 0 5 10

Python package surrogate
modeling toolbox (SMT)

True surface
15.0

125
10.0

-5 0 5 10

Combining high and lower fidelity information
can lead to better approximation surface
(compare to true contours) for similar cost
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Goal-oriented sampling methods

—
— —

?xpected improvement balances local and global search )

best __ m X
E()(x) = 5(x) (v®(v) + 6(v)), v =1 S(X)GP( ) |
. - , J

—

N N \

Probability of improvement — mostly local search Lower confidence bound
best
—m
P(I)(x) = ® (f - (X)) LCB(x) = mgp(x) — £8(x)
s(x) L . »
\_ . - U
mcp is the prediction from the surrogate (e.g., GP) Kk — adjustable parameter

s is the standard deviation of the GP predictions
fPest is the best function value found so far
¢, @ are the normal density and cumulative distribution el | o



Leveraging distributed heterogenous data sources

Goal #1

. . . . Distributed Edge C ti
Investigations may target a variety of design goals, e.g. iributed Bdge ~omputing

*  Maximize energy efficiency
*  Minimize down times

*  Minimize operating costs irs o Dt
S s >

*  Minimize pollutants principles driven
' ®

Each of these may lead to different requirements
*  Accuracy

*  Uncertainty

*  Reproducibility

@ Diameter ~ computational cost
100x Num of model evaluations

Centralized HPC

Goal #2

Distributed Edge Computing

...and thus a different campaign of data acquisition, including a mix of:
*  Experimental data gathering

Surrogate/ROM evaluations (including any required training)
High-fidelity simulations @ Diameter ~ computational cost

lb 100xNum of model evaluations

Centralized HPC

First
principles

Data
driven

NREL | 10



Experiment

Leveraging diverse compute resources '

Edge Cloud Datacenter
&
Z RS
\- )

how much and what kind of
resources do | have available?

optimization problem

Optimal computing strategy driven by specific output quantity of interest NREL | 11



Compute resource optimization

problem

 What resources are available when?
* Formulate as optimization problems with

stochasticity

* Implement solutions as constraints for multi-

fidelity sampling

computations

* Enumerate the user-defined simulation types

(fidelity levels)

* Possible hardware configurations (# of CPUs, GPUs)

* Corresponding calculation duration

* Measurement noise estimate (aleatoric uncertainty)

Current Modeling Paradigm

FirSt [ | [ | [ [ | |.| [ [ Data
principles oo rE

¥

@ Single model evaluation

|

Eventually must exploit asynchronous parallel

Adaptive Modeling Paradigm

Distributed Edge Computing

A
10%x
T ®
10%
L
100 i N
@
FirST ] ] ] ] ] T 1 ] ] ] ] } Data
principles LN L driven
10 1 @ Diameter ~ computational cost
13‘. . 100z Text shows # of model evaluations

T in a multi-fidelity approach
v

Centralized HPC

NR
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Compute resource allocation with

stochasticity

1. Select sample points (e.g., maximize El with multi-start; candidate point approach)

{x1,%5, ..., x5} € argmax a(x)
XEX

2. Get total resource limit T and per level resource limit T; and allocate compute resources

J . 0 :
1; the benefit of evaluating x; at fidelity level j, e.g.,
max 1i(x;) * by;
b::€{0,1}K £ 1; captures accuracy or other Qol
ji =
b — 1if x; evaluated with fidelity level j | ] * N binaries
J N Jt 0 else to optimize
bji *t;j(x;, ;i) < T Total resource restriction
j=1i=1 t; resource consumption at level j {ij ~ 7

N : .
i=1bji * tj(xi»(ji) < T; V]  Resource restriction on fidelity level j NREL | 13



Leverage ML models across system hierarchy
 Small data: Gaussian processes

* Large data: Bayesian NNs

* |Incorporating data across fidelities

Adaptive learning and data

acquisition for Qol and model
uncertainty

Sample evaluation: Experiments/high-
fidelity evaluations and surrogates

NREL | 14



Adaptive Computing Software

Application-specific
simulation code

Adaptive computing driver l
Multi-fidelity Query acquisition Hardware scheduler
simulation data function
Edge
s Lowfdelity samples Decides which case’s to Cloud HPC devices
,. @ High-fidelity samples run next :: - YT X
o reontemede » Which fidelity level = 0 E

LARAAJ

uonsinboy ejeq

simulation? 1 1
» Where in the sample
space? Centralized database

E
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Application: virtual engineering of biofuels

* Process lignocellulose-rich biomass into
biofuel
* Inputs: ~10 chemical and processing design
parameters

 Large design space to search for optimal
chemical process

t=10s t=30s t= 5[](]

NREL | 16



Framing the optimization problem:
Single fidelity models

* Quantity of interest
* E.g., S cost of generating one unit of biofuel

* Desigh parameter
* E.g., temperature of the reactants

 Constraints

* Fixed computational budget
e Acceptable ranges for design parameters

e Samples require expensive simulations

* Adaptive computing

* Given the results of previous simulations, which
point in the design space should we simulate
next?

Quantity of interest

Desigﬁ parameter

NREL | 17



Gaussian processes for surrogate modeling

* A way to do interpolation
* Spline interpolation is a special case of GP
models
* Provide an estimate of uncertainty

e Estimated variance is related to the number of
samples and the smoothness of these
observations

* Analytical representation can be
differentiated for optimization

NREL | 18



Bayesian optimization

* Avoiding brute force parameter sweep

e Algorithm

1.

4.
5.

Run some trial simulations (initial
random samples)

Train a GP model using simulation data

Minimize acquisition function to find
next sample point

Run a simulation at this sample point
Repeat steps 2-5

Animation ->

addional famples




Acquisition function (AF)

* Key ingredient for automatic model
training
* AF minimum is the optimal place to sample
next (not necessarily obj func minimum)

* If goal is to develop a globally accurate
surrogate,

e AF could be the variance

* If the goal is to find the global minimum, G NG

* AF could be Expected Improvement, an Shahriari et al. Proc. IEEE 2016
algorithm that balances exploitation and

exploration [1] AcqFunc(x) = E[max(¥ (x) ~ fimax 0)]

[1] Jones et al., Journal of Global Optimization 1998 NREL | 20



Expected improvement and global
minimization

Expected improvement —EI(x) = E[max(f;,;, — Y (x),0)]

NREL | 21



Virtual engineering of biofuels

* Maximize O2 uptake rate
* 8 design parameters:

Parameter name
default

Fraction of solids that is xylan

Fraction of solids that is
glucan

Porous fraction of the
biomass particles

Initial concentration of acid

Steam temperature (C)

Fraction of insoluble solids

Enzymatic load

FIS_O target

0.263

0.4

0.8

le-4

150
0.745

30
0.05

0.005
(0)

le-3
(1)
250.3

0.99
(1)
1000
1

0.29

0.64

le-3

170
0.99

57
0.005

Objective function

—0.030

—0.0354

—0.040

—0.045

—0.050

—0.055 -

—0.060

—0.065

x
.

4

Initial DOE
Added points
Optimum found

0.0

05

1.0
”R _)?crptHQ

15

2.0

Iteration

NREL
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Multi-fidelity Gaussian Process

* Multi-fidelity model assumes: 15 7 Brectfuncion
* Correlation of low- and high-fidelity T, undersampled oPr
models 101 —.- Multi-fidelity GPR
* Ymur = Yirplx] + 6|x] |
* p|x] and 6|x] are low-order ~
polynomials called bridge functions N -
* Algorithm
* Given high-fidelity yyr and low- N
fidelity y;r samples N .
* Solve the least squares problem yyr = 0.0 02 o4 00 08 Lo

yieplx] + 6]x] for the polynomial
coefficients

NREL | 23



Multi-fidelity optimization

* Acquisition function written for bi- 15 7 Brectfuncion
fidelity GP determines which x to = HE undersampled Ger
* OW-TIaellty samples
Samp|e next 10 1 —.- multi-fidelity GPR
* How to decide from which fidelity level .|
to sample from? - )
* Multi-fidelity acquisition function is 01
weighted by computational cost
.li'lfll .lz'lffi- =1
max(—, ) eer) .
CL CH 10 OIO - OI2 OI4 Olﬁ OIB lIG
* Janelle Domantay is working on more "

sophisticated criteria

NREL | 24



Why adaptive computing for buildings?

.5, electricity overview (demand, forecast demand, net generation, and total interchange) CIE\'
1112019 = 12731/2019, Eastarn Time
11;:1.“. Hourly data
* The total load seen by utilities is the aggregate of | e
individual loads ‘\J‘M)‘M\\W M winter
— Buildings: residential, commercial, and industrial = T e~
7 500 0 T I
* To decarbonize, we weekly panem  seasonal pattern
, A Daily data 1 24
— Electrify energy consumption: demand goes up etV aa Vol \ \/\, summer
. . . pHe 1 seasonal patterns
— Replace generation with clean sources: fluctuating weekdays weekends Jan  Jul Dec \/\
generat|0n . — L1548 deemand o . t 1 24
: o . .
¢ The I.DU.”.dOUt Of d 1001) decarboanEd grld IS A'n:relrage_ hourly U.S. electricity load during typical week, selected months E‘I_E_i‘
prOthItlvely eXpenSIVe milien klmjz::zl:;s April July October
. 700
— NREL research shows that the last ~10% is - -

economically infeasible

500 MMMMpq
— Alternate solutions, particularly controlling loads 400 NWVW

will play a major role 300
200
100

0

||||||||||||||||||||||||
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Application to energy use of buildings

* Two fidelity models for building HVAC HOME VENTILATION
* Low fidelity model inaccurate at high SYSTEM

latitudes, but captures the trends CUU/\\?&J

—— Indoor Temp: latitude = 10 Heat
—— Indoor Temp: latitude = 20 - oy
—— Indoor Temp: latitude = 30 EXChanger All' Pun.flel'
— Ind i =40
—— Ind =50 1] . ] 5
—— Indoor Temp: latitude = 60 - O\ .
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\‘ 3 =27 - 1 -. \ e e e
\,
iy )
N
]
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1 . Marm
03:00 06:00 09:00 15:00 18:00 21:00 :

Temp [C]

High fidelity

Tempered
Purified Air

Date/Time

Indoor Temp: latitude = 10

ndoor Temp: latitude = 20
Indoor Temp: latitude = 30
door Tes ide = 40

- =,
r Temp: latitude = 70
= or Te
Low fideli
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Adaptive computing serves the various scales needed

* For monthly, weekly, and day-ahead projections

A\
— Tools like EnergyPlus help evaluate large scale scenarios factoring in large ﬁﬁ
uncertainties of weather, social events, and DER behavior (ﬂj\
— Explc?re/o.ptimize.pat.thays of or(':hestr'c-ltir\g contrpl and coordination
— Provide highest fidelity in modeling building physics

— Optimization can become computationally expensive
* For hourly and time of day projections

— Tools like OCHRE can ‘simplify’ assumptions while still within bounds defined
by EnergyPlus

— Be more responsive to grid conditions
* For immediate, local control of equipment

— Reduced order surrogates can be very responsive, use little compute while
living at the edge, and deliver targeted control within buildings

— Can be responsive to larger ‘supervisory’ guidance/commands from OCHRE or
EnergyPlus to relax or tighten control execution to meet the larger community
scale energy goals

NREL | 27



Connection to ARIES

* The adaptive computing framework supports the buildout of the
ARIES Virtual Emulation Environment

— There is a need to represent local to regional scale energy systems and
buildings contribute an oversized share to the total picture

— Communities that use ARIES have questions that require an adequate
representation of their buildings stock

— Many of these questions require the evaluation of technology choices
involving DERs and controllability of these devices, individually and at scale

— Multi-fidelity capabilities are needed to emulate and validate the solutions



Application to material synthesis for solar PV

* Objective- optimal atomic structure to
maximize PV performance

* Design parameters- synthesis gas
composition, temperature, and pressure

* Fidelity levels
* LF- Molecular dynamics (interatomic potentials

are uncertain)
 HF- Automated experiment

NREL | 29




Adaptive Computing Project Staffing

1. AC infrastructure, surrogate model management (AC Leads: Kevin Griffin, Ryan King)
2. Optimization, active learning, UQ (AC Lead: Juli Mueller)

3. Engagement of applications that guide development of AC infrastructure
« Power grid stability with renewable energy sources (AC Leads: Jibo Sanyal, Deepthi Vaidhynathan)
SME: Jen King, Rob Hovsapian

 Biofuels Virtual Engineering (AC Leads: Marc Day, Kevin Griffin)
SME: Nicholas Carlson (TEA), Andrew Glaws (Surrogate models), Hari Sitaraman (High-fidelity simulation),
Ethan Young + Olga Doronina (Optimization + Workflow)

« Multiscale Biomass Modeling (AC Lead: Hilary Egan)
SME: Peter Ciecielski

 Virtual Material Synthesis (AC Lead: Hilary Egan)
SME: Garritt Tucker (Mines), Andriy Zakutayev

» Vapor Deposition for Halide Perovskites (AC Lead: Marc Henry de Frahan)
SME: Dave Moore

« Catalyzed polymer upcycling (AC Lead: Bruce Perry)
SME: Matt Carbone (BNL), Mike Crowley

NREL | 30



IDENTIFY
NEED

DEVELOP
CAPABILITY

IMPLEMENT
SANDBOX

DEMONSTRATE
APPLICATION

Full project scope (FY23-FY25)

Understand the needs and challenges of scale up across applications
e Data and model inventory

Develop resource management tools and base capability
 Model (re-)design, cross-fidelity model management, feedback loop
Application integration and testing on readily available models and data

Demonstration across diverse applications, results publication
e Further tuning and feature expansion
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— Exact high fidelity H F on Iy

(O High-fidelity training data (4 points)

° ° ° °
i T Single-fidelity GP prediction
u I = I e I y O ‘ I n g I Two standard deviations band
Multi-fidelity models and
real-time experiment \
—

Most applications feature an assortment of models of widely varying fidelities,
developed for different purposes:

Experiment: “Truth”, but limited operational regime

* High-fidelity: Physics-based (PDE/ODE), costly %0z oa  os 08 1
) —Exact high fidelity '
Sttty OF prodict LR+HF
. o . === Multi-idelity prediction
 Low fidelity surrogates: data-driven Al/ML, PINNS, ... % Mo standard devintions band

() High-fidelity training data (4 points)
) 15 O Low-fidelity training data (5 points)

1. Can we orchestrate levels, leveraging the appropriate hardware,

to maximize bang for our computational buck?
2. How do domain-specific models and goals impact this?

Typical MF control variate estimator: w0 (0 (1 - %;;2)
+ T @ B"
B LF models can reduce
Idea: introduce and train new ML model such that  in  var (@HF) [1 _ IM—%‘J(% 3)2] ' ' uncertainty with
. . e 7.0 + r(7, ! . .
the variance of the new MF model is minimized st O = CHENHE | GSaML 11 4 (. )] NHF 4 CtreinSeidiE () minimal extra cost
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Black-box optimization

Long runtime

No derivatives
available

Wy C JO0% Boeng AR rgpity rowerved

>2 TByte

Large memory
requirement

Software
might fail

. W\U

Local
optima

Non-smooth,
noisy



Gaussian process model

* Wang (2020) “An Intuitive Tutorial to Gaussian Processes
Regression.”
* Two random (normally distributed) uncorrelated processes:

o
;-
1
0-

X

0.0 0.2 0.4 0.6 0.8 1.0
Y

Figure 3: Two independent uni-variate Gaussian vector points were plotted vertically in NREL -
the Y, x coordinates space. |



Adding more

uncorrelated processes

* E.g., cost of a unit of biofuel versus a butterfly’s wing position

OjD 012 0j4 016 D.IB le UjD DTZ 0?4 0?6 0?8 1?0
Y Y
(a) Two Gaussian vectors (b) Twenty Gaussian vectors

Figure 4: Connecting points of independent Gaussian vectors by lines: (a) Ten random
selected points in two vector 27 and x5 , (b) Ten random selected points in twenty vectors
L1y L2y, L0 .
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Assume the samples are

correlated

* E.g., cost of a unit of biofuel versus reactant temperature

S PRI S S St i o o

1.5 1
1.0 1
0.5 1

0.0 1

—0.5 1

—1.0 1

—=1.5 1

0.0 0.2 0.4 0.6 0.8 1.0

(a) 3-d bell curve (a) Ten samples of the 20-VN prior with (b) Ten samples of the 20-VN prior with a
an identity kernel RBF kernel
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Different fidelity regimes for building mod, sim, & control

Ritnder by Boundary

Render by Class 4 i ) o

_ EnergyPlus OCHRE Reduced order model

Applications Modeling building for residential and commercial Building to grid integration for residential Building to grid integration for
buildings single zone buildings commercial and residential single

zone buildings control applications

Fidelity High/Ground truth Medium Low / grey box model

Computational High Medium Low / dependent on data used to

Resources-need train the model.

Inputs Detailed building geometry, weather files, detailed Building geometry, weather files, Time series data of indoor air
equipment information, schedules, occupancy equipment information, occupant profile temperature, cooling/heating effort,
information and models. and schedules. loads, outdoor air weather

conditions.

Outputs Building energy consumption, sensors and building Building energy consumption, sensors and Room air temperature,
physics data. building physics data Cooling/Heating Power

Adaptive Develop multi-fidelity and goal-oriented building energy models that spans across spatial and temporal scales to support clean energy
computing transition of communities at scale.




Application-flexible interface

Application-specific code

Online model training
List of Surrogate

Simulation model model Hard
: : ardware
implementations :
SEICIEETS queries scheduler

y :

Edge HPC
devices resources

Simulation

Surrogate
modeling
toolbox

AC common software stack

NREL | 39



Adaptive computing framework

AC software

Simulation data
sample space

Simulation hardware

' |
' |
' |
: |
| xZA . I
| | oo l | g Hardware :
: : : scheduler :
I - - . | '
: . S Ty : | ' ! :
| X1 | ! loud HPC :
: A l | : resources’ | f=slelligel=s |

|
| w !
| Query acquisition : : J J |
| function : | :
|

: : l |

! Decides which case to run : | AWS database |
: *  Which fidelity level simulation? 1 I — |
I  Where in the sample space? : L _‘ ______ |
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Adaptive computing framework
simulation code

Adaptive computing driver
11
Simulation data Train surrogate Query acquisition 1 1, BEGEICIVEIE
sample space model function : : scheduler
x A . . I I
2 Y. Decides which casetorun | | ' .
' «  Which fidelity level - loud HPC
simulation? : : resources’ | {=sell foak
11
11
11
I
I
I
I

: * Where in the sample
4 X1 space?

JuswaSeuew ysel uoile|nwis

AWS database
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Model and “experiment” (physical or hi-fidelity) synergy

. How many new samples?

Distributed E:’fe computing What fidelity level of new samples?
1 o Experiment/high-fidelity or surrogate?
100x .m‘k . . . .
®T Constrained muti-fidelity
T S D L o "
principles € H—H——H——+—— > oen optimization: Maximize a utility
100 1 @ Diameter ~ computational cost funCtlon SUCh that CompUte
1K. @ 1 100x :rext shm?rsﬂﬂ.fmﬂdel evaluations Constraints satisﬂed
in a multi-fidelity approach
v
Centralized HPC *  Return list of experiments / simulations to be carried out
. . e . .
Edge Cloud Datacenter Experiment nghgr fidelity results can also to inform / improve lower
1 T fidelity surrogates
PO & e
£ RS G

UQ developments

NREL | 42
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