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Risk in the scale-up of complex systems

Scale-up: Extending systems and processes 
that were developed in the laboratory to 
function in the real world

Device and process scale-up comes with 
significant technical challenges and risk

Typical challenges:
• Data-driven models perform best when 

interpolating, extrapolation is inherently 
uncertain, and therefore risky

• Increasing ranges of scale (spatial, temporal) 
often lead to new/enriched physics

• High-fidelity physics-based models may capture 
new physics, but are typically too expensive for 
design/optimization work

• Operational regimes of existing experiments are 
limited, and new experiments are expensive

Image Credit: Dennis Schroeder, NREL 63958
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Adaptive computing: A holistic modeling approach to address scale-up
   challenges across NREL application domains

Adaptive Computing

Orchestration of a multi-fidelity model hierarchy 
and/or experiment campaign to arrive at the best 
goal-based solution with well-characterized 
uncertainty given finite resources

NREL LDRD FY23-25
PI: M. Day
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Key algorithmic components of Adaptive Computing

Optimize the use of finite resources to 
to achieve a specific science goal

Connect models with experiments to drive 
experiment design and data acquisition needs

Goal-oriented 
solutions

Multi-fidelity models 
and real-time 

experiment synergy

Uncertainty 
management

Control of extrapolation uncertainty 
through targeted active learning

Adaptive Computing

Orchestration of a multi-fidelity model hierarchy 
and/or experiment campaign to arrive at the best 
goal-based solution with well-characterized 
uncertainty given finite resources
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Most applications feature an assortment of models of 
widely varying fidelities, developed for different 
purposes:

• Experiment: “Truth”, but limited operational regime
• High-fidelity: Physics-based (PDE/ODE models), can 

be extremely costly
• Low fidelity: reduced physics, coarser meshes, 

cheaper
• Data-driven surrogates: AI/ML, PINNs, Gaussian 

Processes (GPs).  Typically, very cheap

Key Capability: Multi-fidelity modeling

Exploiting information from multiple fidelity levels can increase 
surrogate accuracy

Goal-oriented 
solutions

Multi-fidelity models and 
real-time experiment 

synergy

Uncertainty 
management
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Black-box expensive optimization: high fidelity 

min 𝑓𝑓(𝑥𝑥)
𝑠𝑠. 𝑡𝑡.𝑔𝑔𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … , 𝐼𝐼 

𝑥𝑥 ∈ Ω

Objective function to minimize
Constraint functions
Parameter domain

Black box𝑥𝑥 𝑓𝑓(𝑥𝑥)
𝑔𝑔𝑖𝑖(𝑥𝑥)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Surrogate model guided sampling
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Combining information from multiple 
fidelities into one model

Red = high-fidelity evaluations
Black = Lower fidelity evaluations

Combining high and lower fidelity information 
can lead to better approximation surface 
(compare to true contours) for similar cost

Python package surrogate 
modeling toolbox (SMT)
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Goal-oriented sampling methods

Expected improvement balances local and global search

𝑚𝑚𝐺𝐺𝐺𝐺 is the prediction from the surrogate (e.g., GP)
𝑠𝑠 is the standard deviation of the GP predictions
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the best function value found so far
𝜙𝜙,Φ are the normal density and cumulative distribution

Probability of improvement – mostly local search Lower confidence bound

𝜅𝜅 – adjustable parameter 

Goal-oriented 
solutions

Multi-fidelity models and 
real-time experiment 

synergy

Uncertainty 
management



NREL    |    10

Leveraging distributed heterogenous data sources
Goal-oriented 

solutions

Multi-fidelity models and 
real-time experiment 

synergy

Uncertainty 
management

Investigations may target a variety of design goals, e.g.
• Maximize energy efficiency
• Minimize down times
• Minimize operating costs
• Minimize pollutants
• …

Each of these may lead to different requirements
• Accuracy
• Uncertainty
• Reproducibility
• …

…and thus a different campaign of data acquisition, including a mix of:
• Experimental data gathering
• Surrogate/ROM evaluations (including any required training)
• High-fidelity simulations
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Leveraging diverse compute resources

Edge DatacenterCloud

Experiment

Resource manager: 
how much and what kind of 

resources do I have available?

Solve stochastic discrete 
optimization problem

Resource Management

Optimal computing strategy driven by specific output quantity of interest
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• What resources are available when?
• Formulate as optimization problems with 

stochasticity
• Implement solutions as constraints for multi-

fidelity sampling
• Eventually must exploit asynchronous parallel 

computations

Compute resource optimization 
problem

• Enumerate the user-defined simulation types 
(fidelity levels)

• Possible hardware configurations (# of CPUs, GPUs)
• Corresponding calculation duration
• Measurement noise estimate (aleatoric uncertainty)
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Compute resource allocation with 
stochasticity

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑥𝑥∈𝒳𝒳 

𝑎𝑎(𝑥𝑥)
1. Select sample points (e.g., maximize EI with multi-start; candidate point approach)

2. Get total resource limit 𝑇𝑇 and per level resource limit 𝑇𝑇𝑗𝑗 and allocate compute resources

max
bji∈ 0,1 k

�
𝑗𝑗=1

𝐽𝐽

𝑟𝑟𝑗𝑗 𝑥𝑥𝑖𝑖  ∗ 𝑏𝑏𝑗𝑗𝑗𝑗
𝑟𝑟𝑗𝑗 the benefit of evaluating 𝑥𝑥𝑖𝑖  at fidelity level 𝑗𝑗, e.g., 
𝑟𝑟𝑗𝑗 captures accuracy or other QoI

�
𝑗𝑗=1

𝐽𝐽

�
𝑖𝑖=1

𝑁𝑁

𝑏𝑏𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑗𝑗(𝑥𝑥𝑖𝑖 , 𝜁𝜁𝑗𝑗𝑗𝑗) ≤  𝑇𝑇 

𝑏𝑏𝑗𝑗𝑗𝑗 = �1if 𝑥𝑥𝑖𝑖 evaluated with fidelity level 𝑗𝑗
0 else 

Total resource restriction

∑𝑖𝑖=1𝑁𝑁 𝑏𝑏𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑗𝑗 𝑥𝑥𝑖𝑖 , 𝜁𝜁𝑗𝑗𝑗𝑗 ≤  𝑇𝑇𝑗𝑗  ∀𝑗𝑗 Resource restriction on fidelity level 𝑗𝑗

𝐽𝐽 ∗ 𝑁𝑁 binaries 
to optimize

𝑡𝑡𝑗𝑗  resource consumption at level 𝑗𝑗 𝜁𝜁𝑖𝑖𝑖𝑖 ∼ ?
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Uncertainty management and extrapolation 

Leverage ML models across system hierarchy
• Small data: Gaussian processes
• Large data: Bayesian NNs
• Incorporating data across fidelities

Adaptive learning and data 
acquisition for QoI and model 

uncertainty

guide

update

Sample evaluation: Experiments/high-
fidelity evaluations and surrogates

send queries

Goal-oriented 
solutions

Multi-fidelity models 
and real-time 

experiment synergy

Uncertainty 
management

Requires implementation of a library of ML models, model validation 
techniques and decision frameworks for model updates
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Adaptive Computing Software
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Application: virtual engineering of biofuels

• Process lignocellulose-rich biomass into 
biofuel

• Inputs: ~10 chemical and processing design 
parameters

• Large design space to search for optimal 
chemical process
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Framing the optimization problem:
Single fidelity models

• Quantity of interest
• E.g., $ cost of generating one unit of biofuel

• Design parameter
• E.g., temperature of the reactants

• Constraints
• Fixed computational budget
• Acceptable ranges for design parameters

• Samples require expensive simulations
• Adaptive computing

• Given the results of previous simulations, which 
point in the design space should we simulate 
next?

Q
ua

nt
ity

 o
f i

nt
er

es
t

Design parameter
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Gaussian processes for surrogate modeling

• A way to do interpolation
• Spline interpolation is a special case of GP 

models

• Provide an estimate of uncertainty
• Estimated variance is related to the number of 

samples and the smoothness of these 
observations

• Analytical representation can be 
differentiated for optimization

A
B



Bayesian optimization
• Avoiding brute force parameter sweep
• Algorithm

1. Run some trial simulations (initial 
random samples)

2. Train a GP model using simulation data
3. Minimize acquisition function to find 

next sample point
4. Run a simulation at this sample point
5. Repeat steps 2-5
Animation ->
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Acquisition function (AF)

• Key ingredient for automatic model 
training

• AF minimum is the optimal place to sample 
next (not necessarily obj func minimum)

• If goal is to develop a globally accurate 
surrogate,

• AF could be the variance

• If the goal is to find the global minimum,
• AF could be Expected Improvement, an 

algorithm that balances exploitation and 
exploration [1]

[1] Jones et al., Journal of Global Optimization 1998

Shahriari et al. Proc. IEEE 2016

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) = 𝐸𝐸[max 𝑌𝑌(𝑥𝑥) − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 0 ]
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Expected improvement and global 
minimization

Expected improvement −𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝐸𝐸[max 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌(𝑥𝑥), 0 ]
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Virtual engineering of biofuels

• Maximize O2 uptake rate
• 8 design parameters:

Parameter name VE 
default

Min Max Final

Fraction of solids that is xylan 0.263 0 1 0.32

Fraction of solids that is 
glucan

0.4 0 1 0.29

Porous fraction of the 
biomass particles

0.8 0 1 0.64

Initial concentration of acid 1e-4 0 1e-3 
(1)

1e-3

Steam temperature (C) 150 3.8 250.3 170

Fraction of insoluble solids 0.745 0 0.99 
(1)

0.99

Enzymatic load 30 0 1000 57

FIS_0 target 0.05 0.005 
(0)

1 0.005
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Multi-fidelity Gaussian Process

• Multi-fidelity model assumes:
• Correlation of low- and high-fidelity 

models
• 𝑦𝑦𝑀𝑀𝑀𝑀 = 𝑦𝑦𝐿𝐿𝐿𝐿𝜌𝜌 𝑥𝑥 + 𝛿𝛿 𝑥𝑥
• 𝜌𝜌 𝑥𝑥  and 𝛿𝛿 𝑥𝑥  are low-order 

polynomials called bridge functions
• Algorithm

• Given high-fidelity 𝑦𝑦𝐻𝐻𝐹𝐹 and low-
fidelity 𝑦𝑦𝐿𝐿𝐹𝐹  samples

• Solve the least squares problem 𝑦𝑦𝐻𝐻𝐹𝐹 ≈
𝑦𝑦𝐿𝐿𝐿𝐿𝜌𝜌 𝑥𝑥 + 𝛿𝛿 𝑥𝑥  for the polynomial 
coefficients
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Multi-fidelity optimization

• Acquisition function written for bi-
fidelity GP determines which x to 
sample next

• How to decide from which fidelity level 
to sample from?

• Multi-fidelity acquisition function is 
weighted by computational cost

max(
𝐸𝐸𝐼𝐼𝐿𝐿
𝐶𝐶𝐿𝐿

,
𝐸𝐸𝐼𝐼𝐻𝐻
𝐶𝐶𝐻𝐻

, … )

• Janelle Domantay is working on more 
sophisticated criteria
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Why adaptive computing for buildings?

• The total load seen by utilities is the aggregate of 
individual loads
– Buildings: residential, commercial, and industrial

• To decarbonize, we 
– Electrify energy consumption: demand goes up
– Replace generation with clean sources: fluctuating 

generation
• The buildout of a 100% decarbonized grid is 

prohibitively expensive
– NREL research shows that the last ~10% is 

economically infeasible
– Alternate solutions, particularly controlling loads 

will play a major role
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• Two fidelity models for building HVAC
• Low fidelity model inaccurate at high 

latitudes, but captures the trends

High fidelity

Low fidelity

Application to energy use of buildings
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Adaptive computing serves the various scales needed

• For monthly, weekly, and day-ahead projections
– Tools like EnergyPlus help evaluate large scale scenarios factoring in large 

uncertainties of weather, social events, and DER behavior
– Explore/optimize pathways of orchestrating control and coordination
– Provide highest fidelity in modeling building physics
– Optimization can become computationally expensive

• For hourly and time of day projections
– Tools like OCHRE can ‘simplify’ assumptions while still within bounds defined 

by EnergyPlus
– Be more responsive to grid conditions

• For immediate, local control of equipment
– Reduced order surrogates can be very responsive, use little compute while 

living at the edge, and deliver targeted control within buildings
– Can be responsive to larger ‘supervisory’ guidance/commands from OCHRE or 

EnergyPlus to relax or tighten control execution to meet the larger community 
scale energy goals

Community City Scale

ON

OFF



Connection to ARIES

• The adaptive computing framework supports the buildout of the 
ARIES Virtual Emulation Environment
– There is a need to represent local to regional scale energy systems and 

buildings contribute an oversized share to the total picture
– Communities that use ARIES have questions that require an adequate 

representation of their buildings stock
– Many of these questions require the evaluation of technology choices 

involving DERs and controllability of these devices, individually and at scale
– Multi-fidelity capabilities are needed to emulate and validate the solutions
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Application to material synthesis for solar PV

• Objective- optimal atomic structure to 
maximize PV performance

• Design parameters- synthesis gas 
composition, temperature, and pressure

• Fidelity levels
• LF- Molecular dynamics (interatomic potentials 

are uncertain)
• HF- Automated experiment
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1. AC infrastructure, surrogate model management (AC Leads: Kevin Griffin, Ryan King)
2. Optimization, active learning, UQ (AC Lead: Juli Mueller)
3. Engagement of applications that guide development of AC infrastructure

• Power grid stability with renewable energy sources (AC Leads: Jibo Sanyal, Deepthi Vaidhynathan)
SME: Jen King, Rob Hovsapian

• Biofuels Virtual Engineering (AC Leads: Marc Day, Kevin Griffin)
SME: Nicholas Carlson (TEA), Andrew Glaws (Surrogate models), Hari Sitaraman (High-fidelity simulation),
 Ethan Young + Olga Doronina (Optimization + Workflow)

• Multiscale Biomass Modeling (AC Lead: Hilary Egan)
SME: Peter Ciecielski

• Virtual Material Synthesis (AC Lead: Hilary Egan)
SME: Garritt Tucker (Mines), Andriy Zakutayev 

• Vapor Deposition for Halide Perovskites (AC Lead: Marc Henry de Frahan)
SME: Dave Moore

• Catalyzed polymer upcycling (AC Lead: Bruce Perry)
SME: Matt Carbone (BNL), Mike Crowley

Adaptive Computing Project Staffing
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• Understand the needs and challenges of scale up across applications
• Data and model inventory

• Develop resource management tools and base capability
• Model (re-)design, cross-fidelity model management, feedback loop

• Application integration and testing on readily available models and data
• Demonstration across diverse applications, results publication

• Further tuning and feature expansion 

Full project scope (FY23-FY25)
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Most applications feature an assortment of models of widely varying fidelities, 
developed for different purposes:

• Experiment: “Truth”, but limited operational regime
• High-fidelity: Physics-based (PDE/ODE), costly
• …
• Low fidelity surrogates: data-driven AI/ML, PINNs, …

Multi-fidelity Modeling

1. Can we orchestrate levels, leveraging the appropriate hardware, 
to maximize bang for our computational buck?

2. How do domain-specific models and goals impact this?

LF models can reduce 
uncertainty with 

minimal extra cost

HF only

LF+HF

Typical MF control variate estimator:

Idea: introduce and train new ML model such that 
the variance of the new MF model is minimized

Goal-oriented 
solutions

Multi-fidelity models and 
real-time experiment 

synergy

Uncertainty 
management



Black-box optimization
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Gaussian process model

• Wang (2020) “An Intuitive Tutorial to Gaussian Processes 
Regression.”

• Two random (normally distributed) uncorrelated processes:
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Adding more 
uncorrelated processes

• E.g., cost of a unit of biofuel versus a butterfly’s wing position
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Assume the samples are 
correlated

• E.g., cost of a unit of biofuel versus reactant temperature



Different fidelity regimes for building mod, sim, & control

EnergyPlus OCHRE Reduced order model
Applications Modeling building for residential and commercial 

buildings
Building to grid integration for residential 
single zone buildings

Building to grid integration for 
commercial and residential single 
zone buildings control applications

Fidelity High/Ground truth Medium Low / grey box model

Computational 
Resources-need

High Medium Low / dependent on data used to 
train the model. 

Inputs Detailed building geometry, weather files, detailed 
equipment information, schedules, occupancy 
information and models. 

Building geometry, weather files, 
equipment information, occupant profile 
and schedules. 

Time series data of indoor air 
temperature, cooling/heating effort, 
loads, outdoor air weather 
conditions.

Outputs Building energy consumption, sensors and building 
physics data. 

Building energy consumption, sensors and 
building physics data

Room air temperature, 
Cooling/Heating Power

Adaptive 
computing

Develop multi-fidelity and goal-oriented building energy models that spans across spatial and temporal scales to support clean energy 
transition of communities at scale.
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Application-flexible interface

Model()
Surrogate 
modeling 
toolbox

AC common software stack

Hardware 
scheduler

Online model training

Simulation 
data

Edge 
devices

HPC 
resources

Simulation 
implementations

List of 
model 

parameters

Application-specific code

Surrogate 
model 
queries
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Adaptive computing framework

Query acquisition 
function

AC software

Hardware 
scheduler

Simulation hardware

AWS database

HPC 
resources

Decides which case to run
• Which fidelity level simulation?
• Where in the sample space?

Cloud 
resources

Simulation data 
sample space

Train surrogate 
model

𝑥𝑥1

𝑥𝑥2

𝑥𝑥1𝑥𝑥2

𝑦𝑦
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Adaptive computing framework

Query acquisition 
function

Adaptive computing driver

Hardware 
scheduler

Sim
ulation task m

anagem
entAWS database

HPC 
resources

Decides which case to run
• Which fidelity level 

simulation?
• Where in the sample 

space?

Cloud 
resources

Simulation data 
sample space

Train surrogate 
model

𝑥𝑥1

𝑥𝑥2

Application-specific 
simulation code
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Model and “experiment” (physical or hi-fidelity) synergy

Sample point requester: 
• How many new samples?
• What fidelity level of new samples?
• Experiment/high-fidelity or surrogate?

Constrained muti-fidelity 
optimization: Maximize a utility 

function such that compute 
constraints satisfied

Requires optimization modeling, 
sampling strategy development & 

UQ developments

• Return list of experiments / simulations to be carried out
• Higher fidelity results can also to inform / improve lower 

fidelity surrogates

Goal-oriented 
solutions

Multi-fidelity models and 
real-time experiment 

synergy

Uncertainty 
management

Edge DatacenterCloud

Resource Management

Experiment

Model/resource matching 
requirements
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