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Abstract— Photovoltaic (PV) inverter manufacturers use 
custom, proprietary control approaches and topologies in their 
inverter design. The proprietary nature of these approaches 
makes it challenging to share electromagnetic transients (EMT) 
domain models for system studies. This research work presents 
an approach to develop EMT models from experimental data. 
We use novel approach in experimental design, high fidelity 
data collection, use of learning-based modeling, and co-
simulation to reduce the time taken to develop an EMT model 
for an inverter under test (IUT). We used a 20 kW off-the-shelf 
grid following PV inverter and subjected the inverter to 
controlled tests. The tests include voltage and frequency step 
changes, as well as solar irradiance variations. The recorded 
high frequency data were used to train a neural network model 
representing the dynamic behavior of the IUT. The model was 
subsequently imported into an EMT tool using co-simulation 
techniques, and thus completing the modeling effort. 

Keywords— Black box inverter modeling, Co-simulation, 
Electromagnetic transients simulation, Inverter, Inverter under 
test, Machine learning-based modelling, Photovoltaic 

I. INTRODUCTION 
Solar photovoltaic (PV) inverters are becoming a key 

distributed energy resource (DER) and a key power system 
component both in distribution and sub-transmission voltage 
levels [1]. Multiple standards across the globe have aimed to 
standardize the inverter controls and thus its dynamic behavior 
to system changes [2]–[4]. Accurately modeling these PV 
inverters in electromagnetic transients (EMT) domain is 
critical for system studies performed by utilities. Accurate 
representation of inverters in system studies can be 
particularly challenging if the inverter manufacturers do not 
intend to share their proprietary power electronics models and 
the proprietary inverter controls. Yet, developing an accurate 
inverter model is time-intensive and error-prone, due to the 
combination of both discrete and continuous components 
inherent in inverters [5],[6]. In addition, PV inverter 
manufacturers employ custom, proprietary control approaches 
and topologies in their designs, preventing the sharing 
accurate models for comprehensive system studies [5]. 

One approach to DER integration analysis and design in 
complex power system is the EMT simulation. These 
simulations are crucial for assessing the dynamic behavior of 
power systems, particularly focusing on electromagnetic 
phenomena. However, accurate EMT simulations pose 
challenges, including longer computation times due to 
numerical integration time-steps and high-precision models. 

These challenges arise from solving complex systems of 
differential and algebraic equations for nonlinear functions, as 
well as updating matrices because of switching events [6]–[8]. 

This work aims to leverage the developments in PV 
inverter experimental science to run exhaustive experiments 
on the inverters. The aim is to ensure that the experiments can 
emulate the power system dynamics of interest dictated by a 
user. High fidelity data will be collected from the experiments 
on both AC side and DC side of the experiments. This work 
has created a list of experiments suitable for modeling goals 
but the experiments need not be limited to the ones provided 
in this work. More experiments can be performed, and the data 
can be used to enhance the learning-based models.  

The use of machine learning (ML) to develop models is 
considered as a promising solution for addressing power 
system component modeling when high fidelity data sets are 
available [9]. In this study, ML technique is used to develop 
an inverter model using the high fidelity model collected in 
the lab experiments.  

The motivation behind this initiative is fueled by several 
key factors. Firstly, ML processes represent promising 
solutions to tackle challenges in power system modeling and 
analysis since they offer an alternative to traditional physics-
based modeling methods, which often rely on simplifications 
and linearization [10]. This approach combines data-driven 
models with ML and physical/mathematical principles, 
forming an advanced hybrid modeling and analysis method 
[10]. Leveraging ML's ability to learn from data-rich 
environments with minimal dependence on mathematical 
models provides an effective solution to modern power system 
challenges [11]. Thus, improving the accuracy, reliability, and 
dynamic response [12] of the inverter. 

Despite the growing interest in integrating ML with power 
systems, the limited number of real-world applications 
suggests that a gap still exists between research and practical 
implementation [10].  

The limited practical implementation of ML underscores 
the significance of our study introducing a practical approach 
that combines leaning-based modeling of inverters and the use 
of these models in EMT simulation for accurate power system 
modeling and analysis. This approach is commonly known as 
collaborative simulation, or alternatively, co-simulation that 
address the challenges stemming from the extensive 
heterogeneity of EMT models [13], [14] allowing an accurate 
modeling of the dynamic behavior of smart grids with their 
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diverse components [14] and addressing each specific 
component via its own specialized simulation tool [6]. 

The primary objective of this study is to develop an 
accurate inverter model through the use of exhaustive 
experiments, high frequency data collection and the use of ML 
to develop an EMT domain model and leverage co-simulation 
to integrate the ML-based model into an EMT tool. The ML 
based model can recreate current references based on the AC 
voltage, DC voltage and DC current. Since, EMT tools cannot 
inherently take ML-based models, we use novel co-simulation 
of the developed ML-based model with a commercial off-the-
shelf EMT tool. 

 The proposed approach is depicted by figure 1. 

II. SETUP TO RUN EXPERIMENTS ON PV INVERTER 
UNDER STUDY 

The inverter under test for this work is a 20 kW off-the-
shelf grid-following PV inverter. The experimental setup used 
a controllable AC supply and a controllable DC supply at 
NREL's Energy Systems Integration Facility [15]. The 
experimental setup for these tests is show in figure 2. Two sets 
of tests were performed on the inverter. In Test 1, voltage step 
changes were introduced on the AC voltage within the range 
of 0.88 pu to 1.09 pu, with a step size of 0.025 pu, while the 
AC frequency was maintained at 60 Hz. In Test 2, frequency 
changes were made on the AC voltage while keeping the 
magnitude unchanged. The frequency changes were within the 
range of 59.4 Hz and 60.45 Hz, with a step size of 0.2 Hz. 
Both tests were conducted under varying the PV insolation on 
the DC side. The PV insolation was kept at 25%, 50%, and 
75% with the 100% load condition excluded due to limitations 
in the DC supply. More details on the experiment can be found 
in [16] and the data set can also be found in [15]. More 
changes can be made on the AC and DC side depending on 
the modeling requirements from the user.  

The recorded data encompasses a series of parameters, 
including the time stamp, the three phase voltages 𝑉𝑉𝐴𝐴, 𝑉𝑉𝐵𝐵, 𝑉𝑉𝐶𝐶, 
the three phase currents 𝐼𝐼𝐴𝐴, 𝐼𝐼𝐵𝐵, 𝐼𝐼𝐶𝐶  and the DC signals 𝑉𝑉𝐷𝐷𝐶𝐶 , 𝐼𝐼𝐷𝐷𝐶𝐶 . 

More details giving a comprehensive understanding of the 
experimental setup, data gathering process, and analysis is 
provided in reference [16]. 

This study mainly focuses on the voltage step change 
dataset from Test 1. This data, totaling 1.85 GB, required 
extensive computational time. Consequently, it was 
partitioned into 10 cycles, each measuring 1.05 MB. As a 
result, a single cycle corresponds to 49.95 ms, and 10 cycles 
span 499.95 ms. This dataset is stored in a CSV file. 

III. MACHINE LEARNING-BASED MODEL 
To achieve the main goal of accurately representing the 

inverter behavior ML tool was used to derive a model from 
the data collected during the experiments.  

The inverter model is generated using TensorFlow™, via 
the Keras™ interface. The resulting model is integrated at the 
calculation step for generating the three phase reference 
currents from Python™ through a neural network application 
programming interface (API). This model takes the measured 
three-phase voltages 𝑉𝑉𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑉𝑉𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑉𝑉𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,  and the DC 
voltage and current 𝑉𝑉𝐷𝐷𝐶𝐶 , 𝐼𝐼𝐷𝐷𝐶𝐶  as inputs, and predict the three-
phase current references 𝐼𝐼𝐴𝐴𝑟𝑟𝑚𝑚𝑟𝑟 , 𝐼𝐼𝐵𝐵𝑟𝑟𝑚𝑚𝑟𝑟 , 𝐼𝐼𝐶𝐶𝑟𝑟𝑚𝑚𝑟𝑟  accordingly as 
shown in the figure 3.  

In this study, the neural network API is treated as a black 
box. However, more details giving a comprehensive 
understanding of ML-based model is provided in reference 
[16], [17]. Upon integrating the ML-based model in the 
Python™ script, the resulting current references output from 
the Python™ script are depicted in figure 4. It is observed in 
this figure that the AC reference currents constitute 
approximately 63.5% of the DC current. 

IV. CO-SIMULATION APPROACH TO INTEGRATE ML-
BASED MODEL IN EMT SIMULATOR 

A. EMT Model 
The EMT model is implemented on PSCAD™ software 

and consists of two main parts. The first part represents the 
EMT model itself, targeting a grid-connected three-phase 
grid-following inverter. The inverter is modeled in Python™ 
and the current references from the model are injected using a 
controlled current source in the EMT model as shown in figure 

Fig. 1.  Co-simulation of ML-based PV inverter model and EMT tool to 
accurately represent the inverter under test 

Fig. 2.  Setup to run exhaustive experiments and collect high frequency data 
for the three phase PV inverter under test 

Fig. 3.  ML-based model synopsis 

Fig. 4.  Learning based Python  script outputs 
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5. In this model, the three-phase currents in the circuit, along 
with the three-phase voltages on the grid side are measured. In 
addition, the RMS values are also calculated. The grid is 
represented by an external input-based voltage source. The 
input signal to this voltage source is imported from a dataset. 
This allows the user to play AC voltages stored in the 
experiments. The control signal for the current source is 
external and comes from the ML-based model. 

The implemented EMT model is depicted by figure 5.  

The data importing is achieved using a file read element to 
read the formatted CSV file. The data read from the CSV file 
is then converted within PSCAD™ to kV and kA to maintain 
consistency. The simulation results related to 1 cycle data 
importing are presented in figure 6.  

The second part of the EMT model showcases the co-
simulation interface between the EMT tool and the ML-based 
model based on the co-simulation component in PSCAD™. 

The co-simulation component enables the exchange of 
data between the EMT model and an external application, 
using the PSCAD™ inter-application communications control 
architecture known as Communication Fabric (ComFab). A 
client ID is assigned to the co-simulation component, serving 
to identify the client application—in this case, the Python™ 
application. The client ID also plays a role in generating and 
identifying the configuration file to establish the connection 
with the external application. The co-simulation component is 
configured with an array of dimension 5 for sending data from 
PSCAD™ to Python™ and an array of dimension 4 for 
receiving data from Python™ to PSCAD™. The data sent 
includes 3 AC voltages, one DC voltage and one DC current. 
All these five values are from experiment. This can also be 
easily replaced with controlled voltage sources for additional 
experiments. The received data encompasses the three-phase 
currents, which will serve as control signals for the controlled 

current sources, as well as a test variable for confirming the 
accurate data transfer from Python™ to PSCAD™. 

The implemented ML/EMT models co-simulation 
interface is depicted in figure 7.  

The ML-based model outputs for the co-simulation 
illustrated in figure 8, show the three-phase current references 
characterizing the inverter's behavior and a test variable, 
showcasing one of the voltages transmitted from PSCAD™ to 
Python™ and relayed from Python™ to PSCAD™. This 
serves as confirmation that the transmitted variables are 
accurately read within the Python™ environment. 

B. Cosimulation with ML-based model 
The external application co-simulated along with the EMT 

model is implemented in Python™. Within the Python™ 
script, the ML-based model is integrated into the co-
simulation framework, becoming an integral part of the 
computation process. This integration takes place within the 
main co-simulation function of the program.  

The co-simulation function uses two arguments: the path 
to the configuration file and the total runtime for the EMT 
model simulation. To ensure the validity of these arguments, 
subprocesses perform checks to verify the existence of the 
configuration file specified by the user and to confirm that it 
is associated with a valid client ID. Additionally, the 
subprocesses ascertain that the user-provided runtime value is 
positive. 

Once the arguments are validated, a co-simulation context 
is set up using the configuration file and the communication 
channel is identified. Initialization of all time-related variables 
is then performed. Subsequently, the main program loop is 
initiated, and keeps running until the time variable reaches the 
specified run time. 

Within this loop, data from the EMT model is read at 
designated time intervals and from specified channel indexes. 
This data are then used for the calculations to generate the 
ML-based model outputs that represent the control signals for 

Fig. 7.  Python /PSCAD  co-simulation interface 
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Fig. 6.  Data importing simulation results (a) DC voltage, (b) DC current, (c) 
three phase AC voltages and (d) three phase currents (showing startup) 
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the controlled current source in PSCAD™. The time variable 
is iteratively incremented to advance the simulation time. The 
values of the output channels are updated and sent to EMT 
model at the specified time points. The co-simulation process 
flow is shown in figure 9.   

This co-simulation framework provides the flexibility to 
incorporate any ML application at the calculation step for 
generating Python™ outputs. For co-simulation purposes, the 
Python™ application must be included as an external process 
within the simulation sets in PSCAD™. This involves naming 
the application in accordance with the assigned client ID as 
well as indicating the Python™ executable file as the process 
to be launched. Two arguments are also to be set when 
including the external process: the Python™ script associated 
with the application and the configuration file linked to the 
client ID. 

C. Co-simulation results 
In this section, the key components that construct the co-

simulation framework are outlined, emphasizing the 
integration of a ML-based model, using neural network API 
for a prediction purpose, with an EMT domain model based 
on imported experimental data. Figure 10 illustrates the data 
exchange between the different environments. 

The simulation results of this project are depicted in figure 
11 and show the plotted outcomes of the EMT model, mainly 
the three phase voltages and current measured within the 
circuit, as well as their RMS calculations. 

 

 

V. CONCLUSION 
The significance of this research lies in addressing the 

critical need for accurate inverter modeling in EMT domain. 
The current lack of accurate and comprehensive inverter 
models from manufacturers poses a considerable challenge for 
a comprehensive analysis of power systems. While classical 
approaches offer the possibility of obtaining accurate models, 
their inherent time-consuming nature highlights the need for 
more efficient methodologies. 

This research work introduces a rapid and innovative 
method to obtain inverter model within a week, from hardware 
reception to modeling in an EMT domain tool. The proposed 
approach employs an ML-based model, derived using inverter 
experiments taking a maximum of 1 hour to collect sufficient 
data. Since the ML-based models might lack mathematical 
structure that are sufficient to be integrated into commercial 
off-the-shelf EMT tools, a co-simulation between the EMT 
model and a ML-based model was used. In essence, the paper 
offers a novel and rapid approach for achieving accurate 
inverter modeling using ML-based modeling to process 
experimental data and use the developed models through co-
simulation between the ML-based model and an EMT domain 
tool. 

Future perspectives include developing a more generic and 
exchangeable application that can be used on various EMT-
type simulation tools, independent of the co-simulation 
interface. To achieve this, future work will be based on a well-
defined open industry standard for coupling power system 
tools across different time domains and voltage levels with 
ML tools. Additionally, the digital real-time implementation 
of the standard-based co-simulation between the EMT model 
and ML-based model will provide a dynamic platform to 
emulate real-world conditions, testing and refining inverter 
models within scenarios that reproduce the complexities of 
actual grids. 
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