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Abstract. Current wind turbine design methods require tens of thousands of time-domain
simulations and use different random seeds to account for the stochasticity of the environmental
conditions. The account of stochasticity is nonintrusive because the sampling method calls a
deterministic model multiple times without changing its underlying equations. In this work,
we investigate and demonstrate using simple proof of concepts how intrusive approaches can be
used to directly account for stochasticity in the equations representing a mechanical system. Our
long term goal is to apply such methodology to the design of wind turbines without requiring
an excessive number of simulations. Intrusive methods manipulate stochastic variables directly
to provide the probability density functions (PDFs) of the states and outputs at any time as
functions of the PDFs of the inputs. We illustrate how different methods can be used with a
reduced-order model of a wind turbine with one degree of freedom and for linear and nonlinear
models. We discuss how the methods can be extended and what it will take to apply them to
a level of fidelity similar to current state-of-the-art wind turbine design tools.

1. Introduction
Stochasticity is an inherent part of the design of wind energy systems: 1) The environmental
conditions (wind, wave, current, etc.) contain a stochastic component by their turbulent nature,
referred to as “aleatoric uncertainty,” and 2) the modeling of the system, or the measurement of
the system inputs and parameters, introduces stochastic errors that are referred to as “epistemic
uncertainty.” Both sources of uncertainties affect the design approach and the actual design of
the system.

Current design methods handle uncertainty by modeling the system under a large sampled
set of conditions, resulting in many simulations, at a non-negligible computational cost. The
official standards [1] for the design of an offshore wind turbine require approximately 10,000
simulations. The simulations only account for aleatoric uncertainty. The methods used to
quantify the epistemic uncertainties often use a similar approach by relying on the simulation of
a large number of cases at varying parameters (such as Monte Carlo sampling) or by applying
a simplified safety factor to try to stay within the design constraints of the system.

Such sampling methods are referred to as “nonintrusive” methods because they rely on a
model with deterministic equations, and the underlying equations of the model are not changed
to account for stochasticity. Design and optimization under uncertainty [2, 3, 4] are difficult to
achieve using nonintrusive methods because of the prohibitive computational time they require.
Additionally, we judge it unsatisfactory to use “brute-force” sampling methods to tackle an
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inherently stochastic problem. Intrusive methods (see e.g., [5]), on the other hand, use stochastic
variables and equations instead of deterministic equations to describe the model, and therefore
directly account for stochasticity.

In this work, we investigate and demonstrate how intrusive and dedicated stochastic
approaches can be used in solving the equation of a We focus on the account of aleatoric
uncertainty with the goals of reducing the number of simulations carried out in the preliminary
design process and allowing for accurate optimization under uncertainty. More precisely, we
seek to obtain probability density functions (PDFs) of structural loads from the PDFs of the
environmental inputs. To limit the scope of work, we focus on a reduced-order wind turbine
model with one degree of freedom. We leave to future work the task of applying the methodology
to the design of wind turbines. We study the reduced-order systems using both a linear method
and a nonlinear stochastic method. We then compare the results to the traditional “brute-force”
approach that uses time-domain simulations with multiple random seeds. Intrusive stochastic
methods come with challenges of their own—in particular, extending the approach to larger
systems and including controller dynamics. We discuss these challenges before concluding the
article.

2. Methods
In this section, we present three methodologies to obtain probabilistic and statistical quantities
related to a given system: stochastic linear theory, stochastic differential equation (SDE), and the
Fokker-Planck equation (FPE). The treatments are general and can be applied to any dynamical
system, but we will apply them to a wind energy case in Section 3.

2.1. Problem definition
We consider a dynamic system governed by a state and output equation defined as:

ẋ = f(x,u) (1)

y = g(x,u) (2)

where x describes an n-dimensional state, u describes an m-dimensional input, y describes an
l-dimensional output of interest, f represents the dynamics of the system, and g maps the states
and inputs to the output of interest y.

2.2. Stochastic linear theory
Stochastic linear theory is a convenient tool to account for stochasticity directly in a linear
system. It directly builds on top of tools used in linear theory, and under the assumption of
ergodicity, it reduces to the so-called “frequency domain approaches” To apply it, we consider
the linearized version of Equation 1:

ẋ = Ax+Bu (3)

y = Cx+Du (4)

with state-space matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m. We then use linear
theory tools to relate the spectra of the inputs and outputs based on the transfer functions from
inputs to state and inputs to outputs, G and H, respectively:

X(s)
U(s)

= G(s) = (sI −A)−1B (5)

Y(s)
U(s)

= H(s) = C(sI −A)−1B +D (6)
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Given the transfer functions, the double-sided autospectral density of the states, SXX , and
outputs, SY Y , is obtained from those of the inputs SUU , as [6]:

SXX(ω) = G∗(iω)SUU (ω)GT (iω) (7)

SY Y (ω) = H∗(iω)SUU (ω)HT (iω) (8)

From these, the standard deviation of the signals can be obtained by integration of the
autospectra. For instance, for the i-th state variable:

σ2
Xi

=

∫ ∞

−∞
SXX,i(ω) dω (9)

Higher statistical moments cannot be obtained in this method. Nonlinear systems and outputs
can only be approximated by their linearized counterparts, which may have different statistical
behaviors. Further discussions and limitations of the stochastic linear theory are found in
Section 4. In this work, we have implemented an open-source Python framework [7] to readily
apply the stochastic linear theory to a linear system.

2.3. Stochastic differential equation (SDE)
In the general (nonlinear) case of a stochastically forced problem, we can rewrite Equation 1 in
terms of the Itô-type SDE:

dx = fµ(x,u) dt+Σ(x,u) dW (10)

where fµ represents the deterministic (or “mean drift”) portion of the dynamics f , Σ represents
the stochastic portion of the dynamics, and dW represents the Brownian increment (i.e., a white
noise increment on dt) that governs the stochastic component of the forcing. We will illustrate
how the fµ and Σ functions are related to the system of equations of a mechanical systems in
Section 3.

Because of the Brownian forcing (dW ), the right-hand side of Equation 10 is continuous but
not differentiable. Dedicated SDE solvers are required to time-integrate this equation because
higher-frequency content is continuously uncovered by decreasing time step. As part of this
study, we have used the SRIW1 SDE discretization scheme implemented in the Julia language
[8] to perform direct numerical integrations of Equation 10. Results from the SRIW1 approach
are not presented in this article because they are another form of “brute-force” time integration,
which we are attempting to avoid in this work. The SDE formulation is yet useful as it is the
first step to establish the Fokker-Planck equation of a system.

2.4. Fokker-Planck equation
One advantage of the SDE formulation (Equation 10) is that the time evolution of the PDFs of
the system states can be described—given distributions of the system inputs—using the Fokker-
Planck equation (FPE)[9]:

∂p(x, t)

∂t
= −

∑
i

∂

∂xi
[fµ,i(x, t) p(x, t)] +

∑
i

∑
j

∂

∂xi

∂

∂xj
[Dij(x, t) p(x, t)] (11)

where p(x, t) is the probability density function of the system states as a function of time, and
D ≡ 1

2ΣΣ⊤, with Σ introduced in Equation 10. The integration requires discretization of the
solution space of the states (e.g., Rn for a problem with n states). In this work, we integrate the
FPE analytically when possible, or using a finite element approach otherwise. After performing
the time integration of the equation, the PDFs of the system states are known at every time
step. For simplicity, we assume that the PDFs of the outputs can be obtained from the PDFs
of the states or that the state vector is augmented to include the outputs.

Because we are primarily interested in the steady-state value of the probability density, the
solution can be simplified by setting the left-hand side of Equation 11 to zero, resulting in
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an elliptic problem that can be solved using typical discretization methods for steady partial
differential equations.

2.5. Steady-state Fokker-Planck equation for a linear system
The case of a linear system (Equation 3) is useful for the verification of numerical tools that
integrate the Itô or Fokker-Planck equation. Further, it provides a link between the linear theory
and the FPE formalism.

We assume that the solution for p in Equation 11 follows a multivariate normal distribution:

p(x) =
1

(2π)n/2
√
detC

e−
1
2
xTC−1x (12)

where C is the covariance matrix. We insert Equation 12 into the steady-state form of Equa-
tion 11. This operation results in a constant plus a term xT

[
1
2(A

TC−1 + C−1A) + C−1DC−1
]
x.

The term in bracket must be zero in order to satisfy the equation for any x. Therefore, the
following Lyapunov equation is obtained [10]:

AC + CAT + 2D = 0 (13)

The above equation can be solved to determine the covariance matrix C. Therefore, the steady-
state PDF of the state vector and the standard deviations of the state variables are entirely
determined.

3. Proof of concept and numerical application
As part of this work, we implemented numerical tools, which, based on given input spectra, can:
1) perform brute-force time integration of a nonlinear mechanical system; 2) apply stochastic
linear theory to a linear system, 3) integrate the Fokker-Planck equation using an FEM solver,
4) perform brute-force SDE integration using the SRIW1 scheme. The tools are made available
as part of an opensource repository [7].

In this section, we present proofs of concept of the methods presented in Section 2. by
using a reduced-order, linear model of a wind turbine with one degree of freedom. We use a
simple model to provide an illustrative example of the complex methods introduced in Section 2.
We choose a linear model so that the FPE methods can be compared to the stochastic linear
theory directly, but we note that the direct integration of the SDE and the FPE method can be
applied to nonlinear systems. First, we present how the reduced-order model is obtained before
presenting numerical applications.

3.1. Wind turbine reduced-order model
We use the framework presented in previous work [11, 12] to obtain reduced-order models. The
approach relies on a shape function approach to model the motion of the flexible bodies (support
structure and blades) and joint coordinates to link the different bodies. In this work, we focus
on a model with one degree of freedom representing the generalized tower fore-aft motion, noted
q. The equations of motion reduce to a linear mass-spring-damper system (see [11]):

mq̈ + cq̇ + kq = F (q, q̇, t) (14)

where m, c, and k are respectively the generalized mass, damping, and stiffness associated with
the elastic degree of freedom, q, and F is the generalized force (which comes from aerodynamics,
hydrodynamics, and potential nonlinear structural dynamics terms).

We further assume a linear forcing for simplicity (i.e., F (q, q̇, t) = F (t)). In this case, the
analysis in Section 2.2 can be used. For the stochastic setting, we assume a model of the form:

F (q, q̇, t) = F (t; η) = F0(t) + ση(t) (15)
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where F0(t) represents the base forcing, with an additional white noise component η scaled by
σ that represents the stochastic variability of the input force. In this case, the white noise term
η (and Equation 14 by extension) are shorthand for a well-posed Brownian increment (which
integrates into a well-posed differential form Itô SDE).

In the following numerical experiments, we will focus on obtaining the PDFs and statistics of
the system states, and we assume that the PDFs of the outputs of interest can be computed from
the PDFs of the states and inputs. We discuss this assumption in Section 4. As an example,
the output corresponding to the bending moment at a given height z along the tower may be
approximated to be a function of the states (q) using: M(z) ≈ q̈(t)κ(z)EI(z), where κ is the
curvature of the tower fore-aft shape function, and EI is the bending stiffness of the tower (see
[12]).

We apply our numerical framework to the IEA 15-MW reference wind turbine, leading to the
following numerical values: m = 4.375× 105 kg, c = 6.31× 103 Nm/s, k = 1.84× 106 N/m.

3.2. Sampling method
In this section, we use a typical sampling (brute force) method to obtain time series of forces,
and then we integrate Equation 14 using a deterministic ordinary differential equation solver.
In Section 3.1, the input force is assumed to be a Gaussian process. Gaussian processes (also
called white noise) have an infinite-band spectrum, which makes it impossible to generate a
white-noise time series and use a regular time-integrator (see Equation 10). To use a regular
time-integrator1, we assume that the input process has a cutoff white noise spectrum, namely:

SUU (ω) =
σ2
F

(2ωc)
Π[−ωc;ωc](ω) (16)

where σ2
F is the variance of the force and Π[−ωc;ωc] is the gate function equal to 1 in the interval

[−ωc; ωc] and zero elsewhere, where ωc is the cutoff frequency. In this example, we use a cutoff
frequency of ωc = 2π (1 Hz), which is considered far enough from the system frequency of 0.32
Hz as to not significantly affect the results.

We generate N = 100 samples of 600 s time series of force inputs from the input spectrum
(Equation 16). We then use these time series as input to integrate Equation 14. An example of
two samples of input force and resulting states (position and velocity), is shown on the right of
Figure 1. For each time series, the statistics over the 600 s simulation are obtained. We plot
the individual PDFs of the different samples, pi and the ensemble average, pN , in the left of
Figure 1. The figure also contains results from linear theory and Fokker-Planck theory, as will
be presented in subsequent sections.

3.3. Linear response theory
In this section, we apply the formalism of Section 2.2. In the linear case, Equation 14 is cast
into the linear state-space equation given in Equation 3 as:

ẋ = Ax+Bu, A =

[
0 1

−k/m −c/m

]
, B =

[
0

1/m

]
(17)

where u = {F − F0} is the linearized input vector, and x = {q − q0, q̇}T is the linearized state
vector, where the subscript 0 indicates values at the operating point. Taking the steady-state
equilibrium as the operating point leads to q0 = F0/k, where F0 is the mean of f . The time
scale for the position and velocity are expected to be τq =

c
k , τq̇ =

c
m , and a steady-state solution

1 One can use a dedicated SDE integrator (as discussed in Section 2.3), in which case, there is no need to cutoff
the white noise spectrum. Because wind turbine simulation tools use continuous time integrators, we choose to
limit ourselves to such integrators to be more representative of a typical wind turbine design scenario. As a result,
we need to cutoff the input spectrum.
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Figure 1. Left: Example of time series generated using the sampling approach. The input is
the force f , generated from a cutoff white-noise spectrum, and the states are the position and
velocity, q and q̇, respectively, obtained by time integration of Equation 14. Right: Probability
density functions of the position as obtained using different methods: 1) sampling method, 2)
linear theory, 3) steady-state Fokker-Planck method.

can be assumed if the time is sufficiently large compared to these time constants. We assume
y = x = {q, q̇}T for simplicity (i.e., C = I andD = 0). The transfer function is readily obtained
from Equation 6, and for this simple mass-spring-damper system, a closed-form expression is
obtained as [6]:

Y(s)
U(s)

= H(s) = (sI −A)−1B =
1/m

s2 + 2sζω0 + ω2
0

[
1
s

]
(18)

where ω0 =
√
k/m and ζ = c/

√
4km are the natural frequency and damping ratio, respectively.

In this example, H = {HQ, HQ̇}
T has dimension 2 × 1. The amplitudes and phases of the two

components of the transfer function H(iω) are illustrated in the Bode plot provided in Figure 2.
The autospectral density of the outputs, SY Y = {SQQ, SQ̇Q̇}

T , is then directly obtained from
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Figure 2. Left: Amplitude and phase (Bode plot) for the components of the transfer function
going from the input (force f) to the states (position and velocity q and q̇). The results are
centered around the natural frequency ω0. Right: Autospectral density of the input and states
as obtained using the linear response theory (Equation 8).

the ones of the input by using Equation 8 and Equation 16. The values of SUU and SY Y for
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this example are illustrated in Figure 2. The standard deviations of the outputs are obtained
from Equation 9, giving: σQ = 0.033 m and σQ̇ = 0.146 m/s. In the next section, it will be
shown that in this case, the steady-state PDFs of the states are Gaussian. Therefore, the PDFs
can be entirely determined from the mean and standard deviation of the states. The Gaussian
distribution obtained from linear theory is plotted in the left of Figure 1 based on the standard
deviation mentioned above. Pros and cons of the method are discussed in Section 4.

3.4. FPE
The state-space Itô equation corresponding to Equation 14 with a Gaussian process forcing is
obtained from Equation 10 as:

dx = fµ(x,u) dt+ΣdW , with fµ =

[
q̇

−kq/m− cq̇/m+ F0/m

]
, Σ =

[
0

σF /m

]
(19)

The term fµ represents the deterministic part of the equation. In this example, we assume a
constant forcing F0 for this part, whereas the stochastic part of the loading is attributed to dW .
The associated FPE (Equation 11) is:

∂p

∂t
= −q̇

∂p

∂q
+

∂

∂q̇

[(
k

m
q +

c

m
q̇ − F0

m

)
p

]
+

σ2
F

2m2

∂2p

∂q̇2
(20)

where p(q, q̇) is the joint probability density of q and q̇. From the analysis of the overdamped
system (Orstein-Uhlenbeck process), we expect a stationary solution of the form:

p(q, q̇) =
1√
2πσ2

Q

1√
2πσ2

Q̇

e
− (q−q0 )2

2σ2
Q e

− q̇2

2σ2
Q̇ (21)

After inserting into Equation 20, and evaluating at {q, q̇} = {0, 0}, and {q, q̇} = {1, 1}, we
identify the standard deviation as:

σ2
Q =

σ2
F

2ck
(22)

σ2
Q̇
=

σ2
F

2cm
(23)

We note that for the stationary solution, there is no correlation between the velocity and position,
even if a correlation exists at the initial condition. The PDFs of the individual states are obtained
by integration of the joint PDF p in all the other directions but the one of interest, for instance:

pQ(q) =

∫ ∞

−∞
p(q, q̇)dq̇ (24)

In this simple example, the PDF is a Gaussian and the variables are uncorrelated: p(q, q̇) =
pQ(q)pQ̇(q̇). We plot the steady-state solutions of the FPE in Figure 1.

In this work, we implemented a 2D finite-element (FEM) solver to time-integrate the FPE
with two state variables, such as Equation 11, but not necessarily linear. In Figure 3, we
illustrate how the PDFs of the position and velocity evolve between the initial condition and a
time sufficiently large compared to the time scale of the system. As indicated previously, it is
seen how the two states become uncorrelated as time evolves. We verified that the steady state
solution from our numerical FEM implementation indeed led to the same PDFs and standard
deviations as the ones presented in this section.

The results of Section 2.5 can be directly applied to the 2D case presented here. It can
be shown that the solution of the Lyapunov equation (Equation 13) is a diagonal matrix, the
coefficients of which are given by Equation 22 and Equation 23.
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Figure 3. Time evolution of the probability density function of two state variables at the initial
time (left) and after the time-integration of the FPE. The states are: position (on the x-axis)
and velocity (on the y-axis) of the generalized coordinate for the support-structure bending.

4. Discussions, limitations and path forward
4.1. Advantages and limitations of the stochastic linear theory
The advantage of the stochastic linear theory is in its simplicity, ease of use, computational
efficiency, and in the fact that the method can be extended to arbitrary input spectra. Further,
the method does not suffer from the “curse of dimensionality” discussed in Section 4.2. In our
example, we limited ourselves to a quasi-Gaussian input spectrum, but arbitrary (and more
realistic) load spectra can be used.

A downside of the method is that the probability density function is not readily obtainable.
The standard deviation can be obtained from the spectrum, but not the higher order moments.
If the spectra are assumed to be Gaussian though, the steady-state solution of the FPE that
we presented in Section 2.5 can be used to obtain the PDFs of the system states. Therefore,
both the probability density function and the spectra of the states can be obtained with linear
theory, and the information can be useful to the early design phase of a wind turbine.

Another disadvantage of the method is that nonlinear relationships need to be linearized,
which can lead to inaccuracies. For instance, the wind speed is the natural input to the wind
turbine system, and it is expected that the loading will have a squared dependency on the wind
speed. Such dependency cannot be used explicitly but could be accounted for by introducing
additional states that filter the inputs and approximate the nonlinear operation, at the expense
of increasing the number of states of the system.

4.1.1. Additional outputs In this work, we have limited our analysis to the determination of the
spectrum, statistics, and probability density functions of the system states. In most applications,
additional outputs are desired. For instance, the design of wind turbines typically requires the
determination of the internal loads of components (e.g., blades or tower). As long as the outputs
are functions of the states, accelerations, and inputs of the system (i.e., of the form given in
Equation 1), it is possible to include them in the formalism presented in this article. For the
linear theory, Equation 8 can be directly used from a linearization of the output equation. For
the FPE, the principle consists in augmenting the state vector to include the outputs in it.
Formally, we can introduce the augmented state vector xaug = {x, u}. The application of the
FPE is then identical, replacing x by xaug.

Often, design methodologies rely on time series analyses instead of probabilistic and statistical
approaches. For instance, the fatigue of components is estimated by applying the rain-flow
counting algorithm on time series of the component stresses [13]. One possible path forward
is to generate time series from the knowledge of the autospectral density of the signal and
apply the rain-flow counting algorithm on these sampled time series. Linear theory provides
such a quantity, but the Fokker-Planck approach only provides the PDF. In any case, applying
a sampling method on the outputs, though likely orders of magnitude faster than performing
time integrations of the system (due to the leveraging of fast Fourier transform algorithms to



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 082001

IOP Publishing
doi:10.1088/1742-6596/2767/8/082001

9

sample from the autospectral density), appears unsatisfactory given our objectives to circumvent
sampling. Alternative approaches can consist of modeling the physics of the damage directly
into the system using additional states. The downside is that this approach would further
increase the number of states of the system, which is undesirable (see Section 4.2). A likely
path forward is instead to go away from time-series analyses and rain-flow counting for the
estimation of component damage and use a probabilistic and statistical approach. Such an idea
can be supported by the fact that the standard deviation is generally accepted to be a good proxy
of damage equivalent loads. Further, component failures inherently have a stochastic nature,
which often predominates their deterministic counterpart [14]. Last, wind turbine blades tend
to fail because of manufacturing defects, which cannot be captured by damage equivalent load.
A shift away from time-series damage analysis is therefore encouraged.

4.2. Limitations of the Fokker-Planck approach
In this article, we have shown how the resolution of the FPE can provide the desired probability
density functions of the different states of the system for a nonlinear system, such as the ones
found in wind energy applications. The stationary solution of the FPE, if existing, is likely to
provide the necessary statistics for evaluating the design. It can be obtained with significantly
less computational time, as dedicated solvers can be implemented. However, solving the FPE
requires a numerical sampling of the state space, and the computational requirement increases
with the number of degrees of freedom. Obtaining the tails of the distributions and extreme
events requires a wide domain, which further increases the computational requirements. This is
referred to as the “curse of dimensionality,” that is, the combinatorial growth of variables with
the dimension of the problem.

4.3. Potential paths forward
In [15], the authors propose solving the stationary FPE in high-dimensional cases by combining
tensor decomposition and Chebyshev spectral differentiation. The tensor decomposition
techniques lead to linear growth in the variable numbers with the number of dimensions. The
authors demonstrate their approach on several examples, including a nonlinear oscillator with
10 spatial dimensions. The authors of [16] focus on single-dimensional stationary solutions
and give a closed-form solution for a generalized FPE. They further give a free-energy-like
functional composed of energy and entropic terms and show that the stationary solutions
minimize this free-energy functional. Finally, the authors demonstrate that the stationary
solution is also the maximizer of a constrained optimization problem where the entropic term is
the objective function. While their article is limited to a single spatial dimension, generalizing
the entropic terms to multiple dimensions suggests obtaining the stationary solution of the
FPE by computing the maximal entropy distribution. Similar methods have proven effective in
uncertainty quantification [17] and machine learning [18].

5. Conclusion
Current wind turbine design procedures require multiple time-domain simulations to account for
the stochasticity of the environmental conditions. Different random seeds are used to generate
time series of turbulent wind and sea states, and these samples are used as input for time-
domain simulations. The multiple simulations are used to assess statistical properties, such as
the potential damage of individual components or the overall performance of the design. In this
work, we investigated ways to avoid the computationally intensive time-domain simulations. We
identified two ways to obtain probability density functions (PDFs) and statistical moments of
states and outputs without the need for time-domain sampling: stochastic linear theory and the
integration of the Fokker-Planck equation (FPE).
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Stochastic linear theory provides a means to obtain the spectral density, covariance, and
standard deviation of the state and outputs from the spectral density of the inputs. These
statistical properties can then be used as proxy to evaluate the fatigue and ultimate loads on the
system components. The method can be applied to arbitrary input spectra, but cannot provide
the PDFs of the states and outputs. The other limitation resides in the linear assumption, which
is only valid close to the operating point of interest.

The integration of the FPE provides the time evolution of the PDFs of the states (and simple
outputs). The solution method can be simplified by considering only the steady-state solution
of the FPE. The integration of the Fokker-Planck equation still presents some challenges. It
requires a form of numerical sampling of the state space, and therefore, the computational
requirement increases with the number of degrees of freedom. This is referred to as the “curse
of dimensionality.” Additionally, the method does not provide the covariance, which could be
critical to assess component damage.

In this work, we compared the two approaches with the conventional “brute-force” sampling
approach. The proof of concept presented showed promising results and consistency between
the two approaches when applied to a linear system. The methods return different quantities of
interest; therefore, a combination of the two can be beneficial to estimate component damage
and the overall performance of a wind turbine.

Because of the curse of dimensionality, the generalization and implementation of high-
fidelity stochastic models of wind turbine design tools would require an involved process. It
is nevertheless believed that the methods illustrated here can be applied to canonical systems
with few degrees of freedom, to obtain preliminary wind turbine designs during the scoping
and bidding phases of a project, where quick evaluations and design turnarounds are required.
Future work will focus on presenting more practical applications of the methods to wind turbine
designs and study the computational requirements needed as the number of dimensions of the
problem increase.
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