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Abstract. In this work, we modify the blade element momentum algorithm of OpenFAST to
improve its predictions under large skewed inflow conditions. We use the well-known Glauert’s
skew correction and introduce continuous extension of the model for high-thrust conditions.
We present the rationale behind Glauert’s empirical model and discuss the different conventions
possible for the axial induction factor. We verify the model against the higher-fidelity lifting-line
vortex method and blade-resolved computational fluid dynamics, and we observe that the new
implementation enhances the accuracy and reliability of OpenFAST’s aerodynamic modeling
capabilities in conditions involving large skew angles. For the parametric studies run using the
different codes, we find that the power changes with the skew angle as cos1.7(θskew) and the
thrust as cos0.65(θskew). An analysis of the azimuthal variation of the induced velocities in the
rotor plane reveals that current redistribution models used in blade element momentum codes
may need to be refined.

1. Introduction
The multiphysics engineering tool OpenFAST models the aerodynamics of wind turbines through
the AeroDyn module [1]. This aerodynamic module includes, among others, a blade element
momentum (BEM) algorithm to compute the loads and induced velocities on rotating blades.
The present BEM algorithm was introduced in 2014 [2], and its core has received limited
changes since. Recent verification and validation work (e.g., [3]) has revealed weaknesses in the
formulation in cases with large skew angles. Skew refers to the case where the main inflow is
not perpendicular to the rotor plane but at a given angle of incidence. For a wind turbine, both
tilting and yawing of the nacelle introduce skew. Under uniform inflow, situations with pure
yaw, pure tilt, or a combination of the two are aerodynamically equivalent when expressed in a
suitable coordinate system.

In this work, we present changes to the AeroDyn algorithm to improve the predictions at large
skew angles, and we compare the old and new formulations of AeroDyn against blade-resolved
computational fluid dynamics (CFD) simulations and vortex-wake simulations.

Skew models for BEM codes typically consist of three components: a momentum correction,
a modification of the high-thrust correction, and a redistribution of the induced velocities. In
this work, we revise the first two aspects of the OpenFAST formulation that were previously
missing:



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 022003

IOP Publishing
doi:10.1088/1742-6596/2767/2/022003

2

(i) We reformulate the momentum theory model to include skewed inflow effects on the
momentum balance, referred to as the “skew momentum theory.”

(ii) We modify the high-thrust correction algorithm such that it is a function of the skew angle.

We detail these models in the following sections before presenting results in section 4.

2. Skew momentum correction
2.1. Glauert’s empirical formula
In 1926, Glauert [4] suggested a model to account for the change of thrust of a rotor when
placed at an angle of incidence (skew angle) relative to the wind. The model is empirical and
not derived from first principles. The model can be justified by considering the skewed situation
as an intermediate between an aligned flow and a fully skewed flow. The notations for the three
cases are illustrated in Figure 1. For aligned flows of a rotor (Figure 1, left), the one-dimensional

inflow skew 
angle, θskew

rotor axis

mean inflow
 

normal 
induced velocity 

normal to 
disk, n

resultant, 
V

rotor 

Wn V
T

Aligned flow Skewed flow Fully skewed flow
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Wn = (W . n) n

 U0

 U0

T

VThrust, T

Figure 1. Notations for Glauert’s empirical skew momentum correction. The flow about a
skewed rotor (center) is seen as an intermediate between aligned flow (left) and fully skewed
flow (right).

axial momentum theory [5, 6, 7] gives

T = 2ρS∥U0 +W n∥ ∥W n∥ (aligned) (1)

where bold symbols are vectors, ρ is the air density, S is the rotor area, U0 is the freestream
velocity, and W n is the induced velocity normal to the rotor plane. In general, we define the
induced velocity vector, W , and the unit vector normal to the rotor plane, n, such that by
definition, W n = (W · n)n. In aligned flows, the axial induction factor, a, is defined such that
W n = −aU0x̂, where x̂ is the unit vector along the main flow. After introducing the induction
factor into Equation 1, the thrust coefficient is obtained as CT = 2T/(ρSU2

0 ) = 4a(1−a), which
is the classical result of wind turbine axial momentum theory.

When the rotor is skewed to almost 90◦ (Figure 1, right), the flow can be assumed to resemble
the one about a wing. Using Glauert’s expansion of Prandlt’s lifting-line theory [8, 9], the lift
on a wing, under the small angle approximation, is obtained as

T =
1

2
ρU2

0πSARA1 (2)

where S is the wing surface, AR is the wing aspect ratio (as computed in the classical lifting-line
theory: AR = b2/S, with b the wing span), and A1 is the first coefficient of Glauert’s expansion,
which involves expressing the circulation, Γ, as a Fourier series: Γ = 2U0b

∑
n≥1An sin(nθy),

where the angle θy is defined as cos θy = −2y/b, with y as the axis along the wing span. For a
circle (or an ellipse), the aspect ratio is AR = 4/π (and not 1 if a different convention were used).

Assuming an elliptic distribution of the circulation, Γ = Γmax

√
1− 4y2/b2, the only coefficient in

Glauert’s expansion is A1 because
√
1− 4y2/b2 = sin θy by definition. The maximum circulation

is then identified as Γmax = 2U0bA1. In the special case of an elliptic distribution of the
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circulation, lifting-line theory predicts an induced velocity equal to ∥W n∥ = Γmax/(2b) = U0A1.
Inserting this definition into Equation 2 leads to

T = 2ρSU2
0A1 = 2ρS∥U0∥ ∥W n∥ ≈ 2ρS∥U0 +W n∥ ∥W n∥ (fully skewed) (3)

where the approximation above is valid under the small angle approximation of the lifting-line
theory. It is the analogy between Equation 1 and Equation 2, obtained for the two extreme
situations of aligned flows and fully skewed flows, that led Glauert to assume that the form
taken by these equations can be expected to be valid for intermediate flows. Glauert’s empirical
skew momentum correction therefore consists of using Equation 1 for skewed flows (Figure 1,
center).

2.2. Local formulation for BEM implementation
In this work, we assume that Glauert’s skew momentum equation is also valid at the annulus
level, that is, for an elementary thrust, dT , spread over an annulus of area dS. This is also the
approach mentioned in other references [10, 11]. We further assume that the local thrust on a
blade node can be obtained from the annulus thrust by multiplication with Prandtl’s tip-loss
factor, F . The local thrust is therefore taken as

dT = 2ρ dS F∥U0 + (W · n)n∥(−W · n) (4)

where U0(r, ψ) and W (r, ψ) are the local wind and induced velocity taken at radial position r
along one of the wind turbine blades at azimuthal position ψ. The notation (r, ψ) is omitted
for conciseness. The projection of the wind against the rotor normal (see Figure 1, center) is:
Un = U0 · n = U0 cos θskew. We define the axial induction factor, a, using the wind normal to
the rotor1; therefore,

W · n = −aUn = −aU0 cos θskew (5)

Using the definition from Equation 5, Equation 4 becomes

dT =
1

2
ρ(U0 cos θskew)

2 dS 4aF
√
(1− a)2 + tan2 θskew (6)

We also define the local thrust coefficient, Ct,MT (for momentum theory), as function of the
wind normal to the rotor; therefore,

Ct,MT =
dT

1
2ρ(U0 cos θskew)2 dS

= 4aF
√
(1− a)2 + tan θskew (7)

We note that different formulations are obtained if the axial induction factor and the thrust
coefficients are defined with U0 instead of Un (see Appendix A). Equation 7 is illustrated on the
left of Figure 2 for a tip-loss factor of 1. We observe that, for a given thrust coefficient, the axial
induction factor is reduced when the skew angle increases. This observation is also true when
these quantities are expressed as a function of U0 (see Appendix A). The previous AeroDyn
implementation did not account for this dependency with the skew angle and, as will be shown
in section 4, was therefore predicting inductions that were too high.

2.3. BEM equations
The BEM equations are obtained by equating the local thrust2 coefficients from MT and blade
element theory (labeled BT in the following). The local thrust coefficient from BT takes the

1 We present results for a different convention in Appendix A.
2 The torque coefficients from both theories also need to be equated. Typically, the thrust equation is used to
determine the axial induction and the torque equation for the tangential induction. This is the approach used
here.
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Figure 2. Left: Skew momentum theory (Equation 7) and high thrust correction (Equation 13).
Dots represent the value at a = ac. Right: The four roots of the k−a relationship (Equation 10),
for θskew = 40◦.

following form [9]:

Ct,BT = 4Fk(1− a)2, with k =
σcn
4F

aV 2
rel

U2
n(1− a)2

dz

dr
(8)

where aVrel is the relative velocity norm in the airfoil coordinate system, cn is the aerodynamic
coefficient (based on the angle of attack in the airfoil system) projected along n, σ is the local
solidity, z is the spanwise coordinate along the pitch axis of the blade, and r is the radial
coordinate in the rotor plane. The BEM equations are obtained by equating Equation 7 and
Equation 8. aVrel depends on the axial and tangential induction, the elastic motion of the blade,
the airfoil aerodynamics, and the geometrical transformation between the coordinate system
of the MT (typically the rotor plane) and BT (typically the airfoil chord). The problem of
solving for the axial induction is therefore nonlinear and can be solved using different methods
(see e.g., [12] for a straight blade), the most common ones being the iterative method of
rearrangement (used, e.g., in [10, 9]) and the method of Ning [2]. In this work, we use the
method of Ning to express the BEM equations as a constraint based on the flow angle as
variable, but we internally solve for the axial induction using the approach described below.
The approach can also be used in other methods of solutions such as the iterative method.

We begin by equating Equation 7 and Equation 8:

k(1− a)2 = a
√
(1− a)2 + tan θskew,

(
alt. k =

a

|1− a|

√
1 +

tan θskew
(1− a)2

)
(9)

where an alternative form is presented on the left for future use. Then, we square the equation
to remove the square root, and obtain

(1− k2)a4 + (4k2 − 2)a3 + (−6k2 + tan2 θskew + 1)a2 + 4k2a− k2 = 0 (10)

This quartic equation can be solved to find the axial induction factor that corresponds to a
given value of k. The algorithm is by nature iterative because k depends on a. We note that
the typical solution without skew and in the windmill state is a = k/(1 + k), or equivalently,
k = a/(1− a), which is often used in iterative BEM algorithms. The four roots of Equation 10
are illustrated on the right of Figure 2. We choose between the roots based on the loading state
of the rotor (e.g., “windmill” or propeller states) and the sign of the flow angle. Most “windmill”
operation occurs for k ≥ 0 and a ≥ 0, and typically the first and second roots are used. For high
loading and high axial induction factors, a correction is used, as detailed in the next section.
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3. High-thrust correction and skew
High-thrust corrections are used in BEM codes to alleviate the so-called momentum breakdown,
where momentum theory predicts a zero or negative velocity in the wake for axial induction
factors larger than a = 0.5. Corrections have been developed for aligned rotors and therefore
need to be corrected for rotors in skew. We introduce a critical axial induction value, ac, indicated
by dots on Figure 2, above which an empirical high-thrust correction should be applied. For
aligned flows, the value ac = 0.35 is used by AeroDyn. For skewed flows, we empirically suggest
the following model:

ac = min

[
0.35

cos θskew
,
1

2

]
(11)

Using Equation 9, this critical value corresponds to a critical value of k equal to

kc =
ac

|1− ac|

√
1 +

tan θskew
(1− ac)2

(12)

It is common to represent high-thrust corrections using a polynomial; for example, Spera used
a first-order polynomial [9], Glauert used a second-order polynomial [9], and a third-order
polynomial is found in the a(Ct) relationship of Madsen et al. [11]. In line with the previous
version of AeroDyn, we use a second-order polynomial:

Ct,HT(a) = c2a
2 + c1a+ c0 (13)

where the label HT is used for “high-thrust.” As illustrated in Figure 3, we ensure C1-continuity
between the momentum theory and the polynomial extension at a = ac. This leads to two

0.0 0.2 0.4 0.6 0.8 1.0 1.2
a [-]

0.0

0.5

1.0

1.5

2.0

2.5

C t
 [-

]

(ac, Ct, c)

(1, Ct, 1)
Momentum theory, Ct, MT

Polynomial, Ct, HT

Constraints

Figure 3. Second-order polynomial obtained as C1 continuation of the momentum theory
relation and using an additional constraint at a = 1.

constraints:

Ct,HT(a = ac) = Ct,c = Ct,MT(a = ac),
dCt,HT

da
(a = ac) = sc =

dCt,MT

da
(a = ac), (14)

where Ct,c and sc are the value and slope of Ct at the critical point ac. We introduce the third
constraint by specifying an empirical value at a = 1. Currently, this value is set as follows:

Ct,HT(a = 1) = Ct,1 = max
[
2 + 2.113

√
(tan θskew), Ct,c + sc(1− ac)

]
(15)

The maximum is introduced to ensure that the polynomial extension is above the tangent at ac.
Different empirical models may be used in the future based on supporting experiments. With
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these three constraints, the coefficients in Equation 13 are entirely determined as

c0 = (1− ac)
−2(Ct,1a

2
c − 2Ct,cac + Ct,c + a2csc − acsc), (16)

c1 = (1− ac)
−2(−2Ct,1ac + 2Ct,cac − a2csc + sc), (17)

c2 = (1− ac)
−2(Ct,1 − Ct,c + acsc − sc). (18)

The high-thrust corrections for different skew angles are illustrated in the left of Figure 2.
We adapt the method of solution presented in subsection 2.3 to obtain a for high loading

conditions. We equate the Ct from HT (Equation 13) with the one from BT (Equation 8),
leading to the following quartic equation:

(A2 − c22)a
4 − (4A2 + 2c1c2)a

3 + (6A2 − 2c0c2 − c21)a
2 − (4A2 + 2c0c1)a+ (A2 − c20) = 0 (19)

with A = 4kF . Equation 10 is used when k ≤ kc (or, equivalently, a ≤ ac). Equation 19 is used
otherwise.

4. Results
We implemented the two models described in section 2 and section 3 in the BEM module of
AeroDyn. In this section, we present results of the old and new BEM of AeroDyn (labeled
“BEM-old” and “BEM-new”) against free-wake vortex-lattice simulations performed using the
OLAF module of AeroDyn [13] and blade-resolved CFD using the ExaWind framework [14].

4.1. Simulation setup
We use the International Energy Agency Wind Technology Collaboration Programme 15-MW
reference wind turbine [15] as a baseline model. We use the test case suggested in an open-source
benchmark3 intended to compare aeroelastic codes. The baseline model is modified to remove
precone, prebend, presweep, and tilt, and it uses 51 equidistant blade stations. The operating
conditions are chosen such as to be in Region 2 (optimal Cp tracking region), with a uniform
wind speed set to U0 = 9 m/s (no turbulence or shear). The rotational speed is prescribed at
Ω = 6.4 rpm and the pitch at 0◦ for all cases. In aligned flows, this corresponds to a tip-speed
ratio of λ = 9, and gives aerodynamic coefficients of CT = 0.78 and CP = 0.48. For the BEM
and vortex code (further referred as “lifting-line” codes), we updated the baseline airfoil polars
and used polars obtained from a two-dimensional version of the CFD solver at Reynolds numbers
3, 5, 8, 10, and 15 million.

The OLAF parameters were set such that vorticity is shed every 6◦ of azimuth; the wake
performs five free revolutions and 11 revolutions with a frozen wake, resulting in a wake length
of approximately 5 rotor diameters; and the blade and wake regularization is set to 0.35 and
0.25 of the blade chord.

Blade-resolved CFD simulations were performed using the ExaWind stack [14]. Nalu-Wind,
an unstructured mesh-based solver, was employed for near-body (blade) simulations, and AMR-
Wind, a Cartesian mesh-based solver, was applied for off-body simulations. Overset connectivity
between Nalu-Wind and AMR-Wind meshes was searched through TIOGA. All cases shared
the same AMR-Wind setup, and the Nalu-Wind mesh was rotated based on yaw angles. The
simulations were run for 15 rotor revolutions with a time step size of 0.125◦, and the integrated
rotor performance was calculated by averaging over the last revolution. The k–ω SST turbulence
model was utilized for turbulence closure in both Nalu-Wind and AMR-Wind. The rotor mesh
(Nalu-Wind) comprises 17 million cells (one third per blade), and the background mesh (AMR-
Wind) is composed of 30 million cells, for total 47 million cells.

For each code, we run parametric studies by varying the yaw (skew) angle from −50◦ to 50◦.
For BEM and OLAF, parametric tilt studies were also performed to verify that the results are

3 https://github.com/ebranlard/aerobench (accessed Nov. 2023, commit: df1c2ae)
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the same between pure yaw and pure tilt. We also performed these parametric studies with
the National Renewable Energy Laboratory’s 5-MW turbine and found similar conclusions as
those presented in the subsequent sections with similar accuracy; therefore, these results are not
included for conciseness. We expect the model to perform well for common turbine designs, but
it remains to be investigated whether nonlinear effects are present for blades with large prebend
or presweep operating in large skew.

The average simulation times for simulating 10 min is 10 s for BEM (on one core), 20 min
for OLAF (on 12 cores), and 96 hours (on 1440 cores) for the blade resolved CFD.

4.2. Integral quantities
In the left of Figure 4, we show the power and thrust obtained using BEM formulations,
vortex methods, and CFD for varying yaw angles. We observe that the results from the old
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Figure 4. Left: Power and thrust obtained using the old and new AeroDyn implementations, a
vortex-based tool, and CFD for a sweep of yaw angles. Right: Same curves but dimensionless.
Fits of the form cos(θyaw)

α are indicated with dots.

BEM implementation are in disagreement with the other codes. Results from the new BEM
implementation, the vortex methods, and the blade-resolved CFD are in strong agreement.

In the right of Figure 4, the results are made dimensionless by dividing with the value at
zero yaw. This reduces the impact of potential offsets between the implementations. The
dimensionless curves are then fitted with the function cosα(θyaw) to find the exponent α that
best match the results in the least-square sense. In this dimensionless representation, the results
from the different codes (except BEM-old) strongly agree. The high-fidelity results suggest the
following trends at these operating conditions:

P (θyaw)

P (0)
= cos1.75(θyaw),

T (θyaw)

T (0)
= cos0.64(θyaw). (20)

The exponents are likely to depend on the operating conditions (see also, [16, 17]) and the turbine
design (e.g., in cases of large presweep or precone), and will likely vary for more complex flows
(e.g., with shear, veer, turbulence).

Overall, from these results, the new implementation is demonstrating a strong improvement
in accuracy over the old BEM implementation of AeroDyn.
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4.3. Radial and azimuthal variations
In this section, we illustrate the effect of the new model on the local blade quantities. Figure 5
(left) presents the dimensionless induced velocity normal to the rotor plane, W · n/U0, as
obtained by the lifting-line algorithms for three yaw angles: θyaw = {−50◦, 0◦, 50◦}. The
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Figure 5. Induced velocity normal to the rotor plane (W · n) as obtained by the lifting-line
algorithms. Induced velocity is made dimensionless by dividing with U0. Left: Columns from left
to right represent the cases θskew = {−50, 0, 50}◦. The rows are the different algorithms, from
top to bottom: BEM-old, BEM-new, and OLAF. Right: Azimuthal variation of the induced
velocity at 30%, 60%, and 90% span along the blade for a skew angle of 50◦.

algorithms are in strong agreement for zero skew (central column) and the induction profiles are
axisymmetric. In skewed conditions, all codes display the expected behavior that the induced
velocity is strongest on the side of the rotor plane that is most into the wake (“downwind”).
This phenomenon is readily understood by approximating the wake as a collection of vortex rings
parallel to the rotor [9, chap.6]. From the figure, we observe that the induced velocities from
BEM-old are stronger than those from the other two algorithms. As mentioned in subsection 2.2,
the strong induced velocity comes from the lack of skew momentum correction. Qualitatively, the
BEM-new results are in fair agreement with the vortex code results and show a clear improvement
compared to the previous implementation.

In Figure 5 (right), we plot the azimuthal variation of the induced velocity at three spanwise
positions (30%, 60%, 90%) for the case θyaw = 50◦. We purposely choose a challenging case
to highlight differences between BEM and OLAF; these differences are less pronounced for
smaller yaw angles (not shown). In this paragraph, we take the OLAF results as a reference
because it is of higher fidelity and does not rely on empirical models. We observe that the
prediction of the mean induction levels and amplitude ranges are significantly improved using
BEM-new compared to BEM-old. We note that the induction redistribution model used in
BEM enforces a sinusoidal oscillation of the induction, but we see that OLAF oscillations are
flatter and not symmetric with respect to the mean signal. Such differences point to the need
for improved induction redistribution models. The azimuthal locations of the minimum and
maximum inductions (indicated with • in the figure) are well captured by the BEM codes for
the outer part of the blade (60% and 90% span), but not for the inner part of the blade where
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a near 180◦ phase shift is observed. Differences near the root can be related to the swirl in the
wake.4 The lack of modeling of the root vortex is often given as a reason for these differences.
Yet the investigation performed in [18] did not confirm this assumption but instead pointed to
improvements needed in the induction redistribution model with a better account of the annuli
dependency.

5. Conclusions
In this work, we presented changes to the blade element momentum (BEM) algorithm in the
AeroDyn module of OpenFAST to improve predictions under skewed inflow conditions. We
presented the rationale behind Glauert’s skew correction and discussed the different conventions
possible for the axial induction factor. We implemented Glauert’s skew momentum correction
and introduced continuous extension of the model for high-thrust conditions. We verified, using a
higher-fidelity vortex method and CFD, that the model greatly improves the BEM prediction in
large skew for integral quantities (such as power and thrust) and for local quantities (such as the
induced velocity). In this work, and for the operating condition considered (CT = 0.78), we found
that the power changes with the skew angle as cos1.75(θskew) and the thrust as cos0.64(θskew),
based on average results from LES and vortex methods.

The mean and amplitude of the induced velocities predicted by the new BEM algorithm
agree to a high degree with the results from the vortex methods. Yet differences in phases
were observed toward the root of the blade, and overall, the sinusoidal variations of the BEM
inductions appeared to be simplified compared to the variations observed with the vortex code.
Further work is therefore needed to investigate the source of these differences, and future work
will focus on the implementation of different induction redistribution models. Further tuning
of the model is also envisaged, in particular, to verify the high-thrust corrections in skewed
conditions and investigate more complex flows including shear, veer, turbulence and transient
yawing.
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Appendix A. Convention for the axial induction factor
As mentioned in subsection 2.2, different definitions are possible for the axial induction factor and
the thrust coefficient. In this section, we formalize these conventions using dedicated notations
and illustrate the differences between the two. The axial induction factor may be defined using
the wind normal to the rotor, noted a (approach used here, in Equation 5, and in OpenFAST),
or using the wind along the “main flow” direction (approach used, e.g., in [11]), noted a0:

W · n = −aUn = −a0U0, (with Un = U0 cos θskew) (A.1)

The local thrust, Equation 6, can therefore be expressed as

dT =
dS

2
ρ(U0 cos θskew)

2 4a
√
(1− a)2 + tan2 θskew =

dS

2
ρ(U0)

2 4a0

√
1 + a20 − 2a0 cos θskew

(A.2)

The thrust coefficient can also be defined as a function of Un (as in Equation 7) or U0:

Ct,Un =
dT

1
2ρ dS U

2
n

, Ct,U0 =
dT

1
2ρdS U

2
0

(A.3)

The different conventions above are related as:

a0 = a cos θskew, CT,U0 = cos2 θskewCT,Un (A.4)

leading to the following forms, further illustrated in Figure A1:

CT,U0 = 4a0

√
1 + a20 − 2a0 cos θskew = cos2 θskew 4a

√
(1− a)2 + tan2 θskew (A.5)

CT,Un = 4a
√

(1− a)2 + tan2 θskew =
1

cos2 θskew
4a0

√
1 + a20 − 2a0 cos θskew (A.6)

We note that the “U0” convention has the advantage that the axial induction is well defined,
even for skew angles of 90◦. The main disadvantage of this convention is that the choice of flow
direction at a given blade node may be difficult in simulations with turbulence. The opposite
is true for the “Un” convention: the direction is well defined (normal to the rotor), but, for a
skew angle of 90◦, Un is 0 and it is therefore impossible to retrieve the induced velocity normal
to the disk using an axial induction factor. For both conventions, the choice of which amplitude
to use (e.g., the velocity at the blade node or in a weighted sector) in sheared and turbulent
simulations adds complexity to these conventions.
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Figure A1. Skew momentum relationship for two conventions of Ct and a. Left: Ct,Un(a).
Right: Ct,U0(a0). The different variables are defined in Equation A.1 and Equation A.3.
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