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ABSTRACT

Anthropogenic changes in water temperature can pose significant risk to thermoelectric and hydroelectric
generation. In this study, we developed indicators of thermal risk (ITRs) to assess risk to water-dependent
electricity generating assets under future climate. We projected future changes in water temperature and
quantified ITRs for plants across the conterminous US for a baseline and future period. One goal of our study was
to tailor ITRs to measure climate risks mediated by aquatic biota. When using local species’ thermal tolerances as
thresholds, we estimated that future conditions would expose an additional 53 GW or 30 % of once-through-
cooled thermoelectric power (OTE) capacity and an additional 7.1 GW (10 %) of total hydropower capacity
to slightly higher risk. Meanwhile, the future proportion of species exposed to risk increased by 25 % (OTE) and
15 % (hydropower). Because seasonal timing can be important when understanding competing demands for cold
water, we developed two metrics of risk timing (median date of exceeding thermal thresholds and the duration of
exceedances). Although changes were small (<5 d) for most plants, for some plants timing shifted by +/- five
weeks and for others the duration of exceedances increased by 10 to 15 d. Geographically, elevated future risk
was highest for plants in the southeastern US, reflecting future exposure to warming and the high aquatic
biodiversity of rivers draining to the Gulf of Mexico and South Atlantic coast. We discuss how results from our

ITR analysis can be used to plan climate-adaptation measures at both grid and plant scales.

1. Introduction

A high proportion of electricity production in the US relies on water
and the ability to discharge or release water at temperatures that are
protective of aquatic life. Cooling water for thermoelectric plants and
irrigation are the two largest users of water in the US (Pan et al., 2018).
The future risk to electricity generation and reliability caused by climate
change is expected to be considerable (Van Vliet et al., 2016). Under-
standing when and where grid reliability is threatened by thermal risk is
an important need when factoring in trade-offs between risk to aquatic
biota of elevated effluents and the electricity demand (Madden et al.,
2013). Already, curtailments in thermal power plants have increased,
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and they are projected to increase by up to 1 % of production with each
°C of warming (Coffel and Mankin, 2021). Under the US Clean Water Act
of 1973, utilities are required to use the ‘best available technology,’
which, if enforced, could lead to many conversions from once-through
cooling to expensive recirculating technologies, such as cooling towers
(Miara et al., 2013).

Climate risk assessments use downscaled climate from global climate
models (GCMs) to drive models of freshwater flow and temperature.
Results are then used to assess the risk of droughts and extreme tem-
peratures that could constrain electricity generation (Hoang et al., 2016;
van Vliet et al., 2012). Thermal risk is typically estimated as the fre-
quency of violating upper temperature thresholds. Among
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thermoelectric plants, those with once-through cooling (OTE) plants are
at greatest risk. Previous assessments have quantified the risk that
electricity generation would be curtailed when an upper regulatory
threshold is exceeded. For example, van Vliet et al. (2012) estimated a
future decrease of 16 % of capacity for thermoelectric plants in the US
using a constant 27 °C threshold. Others (Miara et al., 2017; Miara et al.,
2018; Miara et al., 2013) assumed US state-level upper temperature
limits specified under §303(d) of the Clean Water Act (CWA; US Code
vol. 33, section 1251 et seq.). Results varied regionally. For example, one
study focused on the Mississippi River basin estimated that thermal
pollution could affect over 30 % of river reaches during summer months,
with the highest impacts from thermal effluent in the Ohio-Tennessee
river basin (Miara et al., 2018).

Electricity generation that relies on freshwater will also face indirect
threats, i.e., threats mediated by aquatic biota under future climate
conditions (Wedekind and Kung, 2010). Previous climate assessments
have rarely considered indirect threats to electricity. In hydropower
research, ecological indicators have mainly focused on flow. In partic-
ular, Indicators of Hydrologic Alteration (IHA) (Boavida et al., 2020;
Carlisle et al., 2010; Jumani et al., 2018; Poff et al., 2010) have been
used very successfully to extract causal signatures for anthropogenic
influences on flow regimes. Despite this success, they neglect the fact
that effects of flow are often mediated by water temperature (Jager,
2014; Maheu et al., 2016; Olden and Naiman, 2009; Rosenfeld, 2017).
Temperature is arguably the most important driver of life history pat-
terns in aquatic biota, often outperforming flow as a predictor (Graham
and Orth, 1986). The importance of temperature to aquatic biota has
long been recognized (Magnuson and DeStasio, 1997; Pyne and Poff,
2016; Vannote and Sweeney, 1980). Yet, the focus of river management
has barely shifted away from flow. In climate-change research, tem-
perature effects on cold-water species, such as salmonids, have been a
primary focus (Chambers et al., 2017; Kusnierz et al., 2023; McCullough
et al., 2009), with much less emphasis on other taxa. Yet, biological
responses to temperature have important implications for all freshwater
communities as they track non-stationary climate conditions (Rosenfeld,
2017).

Climate risk assessment has usually focused on increased risk of
exceedances rather than changes in the timing of events (Isaak and
Rieman, 2013). However, changes in the timing of risk can also be
important because of conflicts between the availability and demand for
cold water. For thermoelectric generation, any increase in the need for
cooling water when coldwater is in short supply can be problematic.
Similarly, threats to hydropower are likely to occur in late summer and
fall, when the cold block of water stored in a reservoir is depleted and
inflows are substantively reduced (Zhao et al., 2023), particularly if, as
expected, summer water demands increase under future climate (Jager
et al., 2018; Payne et al., 2004).

Indirect risks mediated by biota could also involve shifts in timing.
One concern about climate warming for biota is the potential for a
mismatch between the timing of reproductive maturation and the timing
of other critical events, such as flow pulses that cue spawning migration
(Peer and Miller, 2014) or the availability of prey resources (Wilson
et al., 2023). Shifting temperature regimes can result in changes in
migration timing and lead to early onset of adult mortality and declines
is reproductive success (Hinch et al., 2012). For many aquatic species,
thresholds in degree-day accumulation can describe life history events
such as maturation, reproduction, development rates, and growth
(Chezik et al., 2014). Less critically, thermal habitat can be viewed as a
resource (Magnuson et al., 1979), and temporal niche partitioning
among species can be disrupted by climate change (Bloomfield et al.,
2022).

In this study, we present a suite of ITRs to assess thermal risks to both
thermoelectric and hydroelectric generation for waters in the conter-
minous US. We quantify changes in direct and indirect (ecologically
mediated) risk to water-based electricity generation that may lead to
changes in plant operations. We introduce two novel approaches to
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assessing thermal risk at the energy-water nexus. First, we introduce
ITRs that assess ecologically mediated risk by using species tolerances as
thresholds. Second, we introduce ITRs that measure shifts in timing and
duration. We present visualization of metrics across multiple sites and
seasons (i.e., to address spatial and temporal questions) to help make our
results meaningful for electricity planners and resource managers.

2. Methods

2.1. Simulation of daily water temperature under baseline and future
climate

Our analysis focuses on reservoirs in the conterminous US (CONUS).
Our research builds on a recent effort to assess the effects of climate
change on federal hydropower generation in the US (Kao et al., 2022a).
The effort resulted in an ensemble of downscaled climate and hydrologic
projections across the CONUS based on six Coupled Model Intercom-
parison Projects Phase 6 (CMIP6) Global Climate Models (GCMs) under
the high end SSP585 emission scenario (Rastogi et al., 2022), a socio-
economic trajectory with minimal mitigation and adaptation (Mein-
shausen et al., 2020). This trajectory is the most-consistent with
observed recent trends in climate (Schwalm et al., 2020).

In this study, we illustrate the development of thermal risk indicators
and communication of results using one GCM, paving the way for an
ensemble approach by including more GCMs in future, as discussed in
Section 6. We chose the Australian Community Climate and Earth Sys-
tem Simulator (ACCESS) model (Ackerley and Dommenget, 2016; Dix
etal., 2019) because it performed well in a comparison among models in
the CMIP6 suite (Ashfaq et al., 2022; Evans et al., 2013). ACCESS has
previously performed especially well over the conterminous US domain
with respect to both precipitation (Raju and Kumar, 2020) and tem-
perature (Sillmann et al., 2013).

The Double Bias Correction Constructed Analogs method, DBCCA,
was used to downscale GCM projections from 1° to 1/24° horizontal
resolution (Rastogi et al., 2022). Downscaled precipitation was used to
drive a calibrated Variable Infiltration Capacity (VIC) model to simulate
total runoff (Hamman et al., 2018; Liang et al., 1994). Runoff and
climate drivers were then fed into the transport part of the Water Bal-
ance Model (WBM) (Fekete et al., 2001; Stewart et al., 2013) to simulate
routing and water temperature. WBM accounts for multiple geophysical
processes and routes discharge along a discretized (grid based) repre-
sentation of the hydrological network (Fekete et al., 2010). Runoff water
temperatures were equilibrated to wet-bulb air temperatures (Mohseni
and Stefan, 1999) and adjusted to reflect mixing during routing (Miara
et al., 2017). From the results, we drew two samples of simulated water
temperatures at 1-min? grid cells (1) containing hydropower projects
with capacity greater than 30 MW cells and (2) containing OTE plants.
Both samples include values simulated over a 20-year baseline period
(2000-2019) and future period (2040-2059). More detail is provided in
the ‘Data Sources’ section.

We used quantile mapping to compare the distribution of ITRs for the
baseline and future periods (Ashfaq et al., 2010; Jager et al., 2018).
Quantile mapping relies directly on process-based model projections
and is considered the most appropriate method for using simulated data
when extreme values of the distributions are of interest (Smith et al.,
2014). First, the ITR of interest was calculated for each grid cell con-
taining a thermoelectric or hydropower plant as described in sections
below. Next, we ranked ITR values (years) within each period (i.e.,
baseline and future), ¢ = 1, ..., T, where both baseline and future
simulated data include the same number of years, T = 20. We then
calculated differences between corresponding quantiles, g, of the ITR

distributions for the two periods. In the equation below, xf{ ) represent

the qth ranked annual value of a specified ITR, g = 1...T simulated years.
We refer to the difference between the two periods as a delta for each
ITR, for example, differences in ECO-dur between periods is represented
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as AECO-dur.

Ax, = xg) - xﬁlb),where :
xz = ITR value with rank q across years in the baseline period, b, and
x;' = ITR value with rank q across years in the future period, f

(€Y

Values can then be summarized in ways that reveal when and where
threats are most likely to emerge or increase. The details of the analysis
vary depending on the ITR.

2.2. Indicators of thermal risk (ITRs) relevant to electricity generation

We developed a suite of indicators to relate temperature changes to
electricity generation. These can be classified in several ways. One
subset measures the duration of exceeding thermal conditions that
might place electricity production at risk, whereas others measure
changes in seasonal timing or phenology. Changes in timing can alter the
synergies and trade-offs between temperature-sensitive water uses. An
overview is depicted in Fig. 1.

Three categories of indicators are listed in Table 1. Definitions for
indicators are given in Appendix A. Table Al.

2.3. ITRs that measure frequency and duration of thermal exceedance

2.3.1. Thermal risk to thermoelectric power

Once-through thermoelectric generation requires cooling water
below a certain temperature to avoid discharges that exceed thresholds
in absolute water temperatures or changes set by the US Environmental
Protection Agency (EPA) or individual US states. Although hydroelectric
power uses some cooling water, its temperature is not as important as for
OTE. As a measure of thermal risk to OTE, we calculated NM-risk, the
frequency of exceedances of state-level CWA upper thresholds specified
by EPA as required under §304(a) (See ‘Data sources’ section). The
concern is that future warming might lead to curtailment of thermo-
electric generation when ambient water temperatures are high.

The risk of exceedance was calculated annually for state thermal
criteria, T*, and time series of daily temperatures simulated at thermal

plants, T;, as % State criteria ranged from 27 to 34 °C (US Envi-

ronmental Protection Agency (EPA), 2023). We note that these criteria
are generally higher than those at individual water bodies, where Na-
tional Pollution Discharge Elimination System permits are informed by
local designated uses assigned to a waterbody. We used the run-length
encoding algorithm (RLE) in R (R Core Team, 2021) to obtain the
longest run of exceedances for each year as a duration metric, NM-dur.
We present a comparison of these ITRs for a climate run using the WBM
model for baseline (2000-2019) and future climate conditions
(2040-2059) with no influence of reservoirs or thermal pollution. Re-
sults were summarized across OTE plants and years within each period.
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Table 1
Indicators of thermal risk to electricity generation. Acronyms are NM = non-
mediated and ECO = ecological.

Category Non-mediated risk(EPA Ecologically mediated risk
/ state thresholds) (species thresholds)
Exceedance NM-risk, NM-dur, NM- ECO-risk, ECO-dur, ECO-nspp
nspp
Capacity-weighted NM-MW ECO-MW
exceedance
Phenological NM-date ECO-date, ECO-Js, ECO-Je
(temporal context)
Geographic (spatial Mapping of NM-dur and Mapping of ECO-dur or ECO-

context) capacity (MW) nspp and capacity (MW)

To examine impacts of future climate on OTE, we graphed the cu-
mulative impact on thermoelectric capacity as a function of future
change in risk. Similarly, we graphed the cumulative impact of future
increases in the duration of exceedances. We report the proportion of
years with an increase in NM-dur or ECO-dur. To provide an energy-
relevant metric, we also report the 25, 50, 75, and 100 percentiles of
the risk frequency-weighted sum of nameplate capacity.

2.3.2. Thermal risk to hydropower mediated by threats to aquatic biota

We assumed that thermal risk to hydropower is mediated by its ef-
fects on species because hydropower generation does not depend on the
temperature of cooling water. Ecological risk was estimated by calcu-
lating the frequency, ECO-risk, or duration, ECO-dur, of exceedances for
a set of species. We used an estimated upper thermal limit for each of
573 species to estimate exceedances (see ‘Data Sources’ section). To
illustrate ECO-dur (Appendix A. Table A2), we compare these risk
metrics for duration using species-specific thresholds for the same WBM
baseline and future simulations as in 2.3.1, sampled at OTE plants.

The change in risk-weighted number of species at a plant is a com-
posite indicator of projected additional number of future species at risk,
AECO-nspp. For hydropower, AECO-nspp is calculated by Eq. (2) sum-
med over species in the same WBM cell as plant (hydropower or OTE).
Similarly, we calculated the metric, ANM-nspp (Eq. (3), where nspp is
the total number of species and q refers to the quantile (i.e., ranking) of
the year, and superscripts refer to the baseline (b) and future (f) periods.
Note that, from probability theory (Hogg and Craig, 1979), the sum of
risks (probabilities) is the expected number [of species] at risk.

nspp

AECO-nspp, = Y17 (ECO-risk{) — ECO-risk!) ) @

ANM-nspp, = > (NM-risk;” — NM-risk!" ) 3

For two metrics Y = duration and midpoint day of the year, we fitted
a mixed model Y = a + f time-period + o grid-cell + . We report
parameter estimates for the intercept, @, the fixed effect of period
(baseline or future), and the random effect (variance) associated with

Indicators of

Risk overlap

. Direct
Thermal Risk Space
Climate period (EPA / state n o R
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Fig. 1. Overview diagram showing how indicators of thermal risk (ITRs) linking climate change to electricity generation are defined by 1) the ITR statistic (fre-
quency, duration, Julian date), the risk pathway (i.e., mediated by species or not), and the risk endpoint (electricity generation). Summaries of ITRs become
meaningful to energy and water resource managers when they provide information about the overlap between energy and changes to the aquatic environment in time

and space.
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grid cells.

To quantify trade-offs between species at risk and hydropower gen-
eration, we calculated curves relating the cumulative impact to hydro-
electric generating capacity as a function of future change in species at
risk, where species richness was calculated for cells in a 1-min? grid
represented by WBM. We also report correlations between capacity and
species at risk, calculated in two ways, i.e., those exposed in any year
and weighted by daily risk.

We examined geographic patterns in risk by mapping the change in
mean duration of temperature exceedances, ECO-dur, and the change in
the risk-weighted number of species at risk, ECO-nspp. ECO-risk showed
similar geographic patterns to ECO-dur, so in most cases only ECO-dur is
presented.

2.4. Metrics that measure shifts in timing

Phenology metrics are designed to quantify changes in timing of
events and potential mismatches in future resources available to support
electricity generation. We calculated the shift in the median Julian date
with exceedances posing a potential risk to thermoelectric generation,
NM-date. We present the differences between the two periods for NM-
date across plants and years. For hydroelectric power, we report two
types of ITRs to compare baseline and future climate effects on critical
periods for species or to compare with ITRs that measure the timing of
energy demand for cold water. First, we quantified the median dates of
elevated risk, ECO-date, summarized across species.

Second, shifts in species phenology may affect hydropower opera-
tions in the future. Therefore, we demonstrate ecological ITRs that
measure shifts in the annual timing of reproduction and spring-breeding
species for two species with available data (Supplemental Materials.
Shifts in species phenology).

2.5. Geographic patterns in thermal risk to electricity generation

Patterns in ITRs were mapped to assess the geographic distribution of
thermal risk to electricity. We evaluated spatial patterns for indicators
ECO-dur and ECO-nspp. We used these maps to identify hot spots of risk.
Shifts in timing, ECO-date, were also displayed for major river basins in
CONUS.

2.6. Data sources

The data sources used in our analysis are described below. In addi-
tion, we summarize data required to apply the approach in other regions
(Appendix A. Global application).

Climate projections used as drivers of WBM (Kao et al., 2022b) are
available from HydroSource, https://hydrosource.ornl.gov/datas
et/9505V3. Water temperature and flow data used in our analysis
were simulated by the WBM model (Miara et al., 2017; Vorosmarty
et al., 2000) under baseline and future climates with naturalized flow
conditions (i.e., no influences of reservoirs or water withdrawals). Data
are hosted by the ESRI Cloud server at https://cloud.environmentalcro
ssroads.net/s/ZT4TGz3NBFFodp9. Data from the Energy Information
Agency were used to determine the nameplate capacity in MW for both
thermoelectric and hydropower plants (www.eia.gov/electricity/data
/eia860/). Only thermoelectric plants with once-through cooling tech-
nology as of 2022 were included in the analysis because plants that
recirculate cooling water are not at risk to warmer river temperature.
OTE plants represent a total capacity of 176.327 GW across CONUS
(www.eia.gov/electricity/data/eia860/). We included some OTE plants
drawing from non-freshwater (e.g., estuaries) sources, where the latter
represented 76.83 GW (44 %) of generating capacity. For hydroelectric
power, a total of 67.3 GW of nameplate capacity was estimated for active
projects with capacities > 30 MW. These data are available from
HydroSource in the HILARRI cross-linkage database (Hansen and Mat-
son, 2021).
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We calculated risks using two sets of thresholds. First, ITRs were
calculated by comparing simulated water temperatures with US State
thermal criteria obtained from the USEPA (US Environmental Protection
Agency (EPA), 2023) (see Appendix A. Figure A1). These values were
used as upper thresholds.

Two datasets were used in our assessment of risk ITRs mediated by
species, upper thermal tolerances, and data required to model repro-
ductive phenology. Thermal tolerances were assembled and organized
for freshwater fishes across the conterminous US (Welch and Jager,
2022). Species names were systematized using FishBase and fish life
stage classes were consolidated. These data are available at the Oak
Ridge National Laboratory (ORNL) HydroSource data repository,
https://hydrosource.ornl.gov/dataset/GMLC_Thermal_Metrics.

To model reproductive phenology for spring-breeding species,
species-specific thresholds of temperature (range from Tmin to Tmax)
and photoperiod (range from Pmin to Pmax) were required. Results are
tabulated with literature references (Supplemental Materials Table 1).

3. Results
3.1. Metrics that measure frequency and duration of thermal exceedances

3.1.1. Thermal risk to thermoelectric power

Using state thresholds, we estimated changes in the duration of risk
to OTE between future and baseline period. Results were similar for the
frequency and duration ITRs. Under future climate conditions
(2040-2059), both NM-risk and NM-dur almost always equaled or
exceeded values under baseline (2000-2019) climate conditions. Among
OTE plants, the average annual risk was less than 0.05 in simulated
baseline years, with a maximum duration of 8 d. Typically, a higher
percentage of years experienced non-zero risk in the future period.
Fewer than 10 % of cases (years and plants) had a non-zero risk in the
baseline period. In future years, risk exceeded zero for 25 % of cases,
with an average frequency (including zeroes) of 0.0056 and average
duration of just under one day. The maximum future risk was 0.16 and
the maximum projected future duration was 38 d. The average projected
risk difference between the two periods was 0.005 (range: -0.0027 to
0.1148) and on average the duration of exceedances increased by 0.9
d (range 0 to 31 d).

To add energy context, we estimated the expected value of additional
annual OTE capacity at risk as the sum-product of the change in risk
frequency times per-plant capacity. The risk-weighted average future
increase was 0.927 GW (<1% of total OTE capacity) using EPA / state
thresholds. The maximum change in risk-weighted capacity was 178.5
MW. In short, the estimated OTE capacity affected is much lower when
the magnitude of risk is considered, and this better reflects how often
generation would be affected. Across OTE plants, around 127 GW (~70
%) experienced no simulated increase in risk. The remaining 53 GW
experienced additional future risk up to 0.12, with the magnitude
varying across years (quantiles in Fig. 2A). When the duration of ex-
ceedance changed, it usually increased by five days or less (Fig. 2B), but
a few OTE plants representing a small fraction of capacity were pro-
jected to experience prolonged future risk (Fig. 2B).

3.1.2. Thermal risk to electricity mediated by aquatic biota

For both OTE and hydropower, the duration of exceedances of spe-
cies’ thresholds was always greater in the future period than the baseline
period (Fig. 3).

Thermo-electric power. When using species’ thresholds, changes in
the duration of risk to OTE between future and baseline period were
similar for the frequency and duration ITRs. Under future climate con-
ditions (2040-2059), both NM-risk and NM-dur almost always equaled
or exceeded values under baseline (2000-2019) climate conditions.
Among OTE plants, annual risk was less than 0.06 in simulated baseline
years, with a maximum duration of 12 d. Ten percent of cases (years and
plants) had a non-zero risk in the baseline period. In future years, risk
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Fig. 2. Cumulative OTE capacity in the conterminous US with changes in A) frequency and B) duration of exceedances less-than-or-equal to the x-axis value based on
EPA / state thresholds, C) frequency and D) duration of exceedances less-than-or-equal to the x-axis value based on species’ thresholds. Cumulative hydropower
capacity with changes in E) frequency and F) duration of exceedances less-than-or-equal to the x-axis value based on species’ thresholds. Temporal variation is shown
by curves for quantiles representing ranks for years within a period (0 = lowest-risk year, 1 = highest-risk year).

exceeded zero for 40 % of cases, with an average value (including
zeroes) of 0.0145 (maximum = 0.21) and average duration of 2.45
d (maximum = 44 d). The average projected change in risk between the
two periods was 0.013 (range: -0.004 to 0.139) and on average the
duration of exceedances increased by 2.17 d (range -0.33 to 34.4 d). To
put the results in an energy context, total OTE capacity exposed to non-
zero risk increased from 21.46 GW in the baseline period to 78.12 GW in
the future period, a difference of 56.66 GW. Across OTE plants, risk-
weighted capacity increased by 1.668 GW (median), ranging from
0.183 to 6.327 GW in the best and worst years, respectively.

We also evaluated the number of species exposed to risk. Total spe-
cies exposed to non-zero risk increased from 7,620 to 22,681 species

between the baseline and future period. Weighted by risk the increase
was from 75 to 776 species, a difference of 700 (1.2 %) of total species.
Note that cumulative species should not be interpretted as total number
of unique impacted species because the same species may occur in
different cells across CONUS.

Risk to OTE was lower when using the EPA / state thresholds (Fig. 2A
and B) than when using species’ thresholds (Fig. 2C and D). This
comparison revealed differences, especially in the extremes of the dis-
tributions. The proportion of capacity with non-zero future risk and
duration (x-axes in Fig. 2) was higher for species thresholds than for EPA
/ state thresholds (0.70 versus 0.55). The average increase in risk was
higher when using species’ thresholds than when using EPA / state
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Fig. 3. Using species thresholds, risk duration in the baseline period is lower than that in the future period for both A) once-through cooled thermoelectric and B)
hydropower plants. Values below the one—one line indicate a future increase in duration. Rank indicates the ranking among years within a period to allow com-
parison between the two periods. Nameplate capacity is indicated by symbol size.

thresholds (average 0.0052 versus 0.0123). Similarly, increases in the
mean durations of exceedance were longer when using species thresh-
olds compared to EPA / state thresholds (1.913 d versus 0.899 d)
(Fig. 2B versus D).

Hydropower. We assume that risk to hydropower is often mediated
by risk to aquatic biota because hydropower generation does not require
cooling water. Based on species’ thresholds, exposure to thermal risk
occurred in only 5 % of cases (plants and years) in the baseline period,
but 25 % of cases in the future period. No change in risk was predicted
for over 0.152 GW of hydropower capacity (Fig. 2E). The increase in risk
(duration) averaged 0.013 (1.43 d), reaching a maximum of 0.12 (32.2
d) (Fig. 2E, 2F). Between the future and baseline period, we estimated
that the change in risk exposure could affect an additional 7.1 GW of the
total 67.3 GW of hydropower capacity. However, the total risk-weighted
change in capacity was only 0.286 GW, suggesting that exceedances
occurred during a short period of time.

The indirect cumulative impact of climate to hydropower is also
indicated by change in the number of species at risk. Indirect impacts
mediated by species could occur through a variety of potential mecha-
nisms. Additional species at risk can require shifts in the timing and
value of reservoir releases, increase the cost of mitigation (Oladosu
et al., 2021), or changes in regulation via the designated beneficial uses
assigned to waterbodies. We ranked gridcells by increasing risk and
calculated cumulative number of species and capacity. At the level of
individual plants, the median risk-weighted change in number of species
was 2.25 (interquartile range 0.80 to 5.11), with a minimum of -0.14
and a maximum of 27.1 species. Note that cumulative species should not
be interpretted as total number of unique impacted species because the
same species may occur in different cells across CONUS.

Around 75 % of cumulative species (60,996) experienced no increase
in risk and most of the remaining 25 % of species experienced less than a
0.08 change in risk (Fig. 4A). Similarly, a small fraction of hydroelectric
plants were predicted to experience increased risk (Fig. 4B). To examine
the potential for reducing risk to species with minimal decrease in ca-
pacity, we examined correlations. Higher future risk to species was
concentrated in cells with mid-to-high species richness (Fig. 4C).
whereas impacts on added future risk to hydropower did not have a
strong relationship to either capacity or richness (Fig. 4D).

We conducted a mixed model analysis to assess the importance of
time period and to quantify spatial variation. For both OTE and

hydropower, the effect of future period was significant and positive for
both ECO-dur and ECO-date (Table A2). On average, exceedances of
species’ thresholds persisted 1.22 d longer and occurred later in the year
near hydropower plants than OTE plants. Differences in geographic
location (i.e., Cell id) explained 45 % of remaining variation in duration,
but only 25 % of variation in the median date of exceedances (Table A2).
For OTE, the positive effect of future period on risk duration was even
more significant. On average, future exceedances of species’ thresholds
were 2.2 d longer. For both OTE and hydropower, differences in
geographic location (i.e., Cell id) explained 40-45 % of variation in
duration and ~ 25 % of variation in the median dates of exceedance
(Table A2).

To understand the correspondence between capacity at risk and
species at risk, we calculated correlations between the two for un-
weighted metrics (plants or species exposed at any time and frequency).
Weak relationships between capacity and local species richness were
revealed by correlations for the unweighted metrics, suggesting that
smaller plants with high species diversity could be targetted for miti-
gation with minimal impact on electricity. We observed small correla-
tions, negative for OTE plants (-0.1227) and positive for hydropower
plants (+0.1021).

3.2. Metrics that measure shifts in timing

The timing of risk at OTE plants was measured as the median date of
the longest run of exceedances of species tolerances, ECO-date. For OTE,
the median change (future minus baseline) in ECO-mid was 1.69
d (interquartile range -0.875 to 4.088 d; min = -63.5; max = 34.5 d). For
hydroelectric plants, ECO-mid, was delayed by 1.74 d (median) between
future and baseline simulations. Changes in date had a small inter-
quartile range, -0.95 to 4.1 d and extremes ranged from a 49-d advance
to a 57.6-d delay. The range of dates was less variable in future than
baseline years (interquartile range: day of the year 200.5 to 212.4 in
future, 199.3 to 210.5 in the baseline period.

3.3. Geographic patterns in thermal risk to electricity generation

Understanding where species will be vulnerable to higher future risk
is important to the power industry. Spatially, results using EPA and
species’ thresholds were similar, so we present only those for species’
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and hydroelectric capacity.

thresholds. When using species’ thresholds, the average proportion of
years with an increased duration under future climate was 0.83 and
cases of no increase were concentrated in northern states for OTE
(Fig. 6A). The largest increases in duration of risk included OTE and
hydroelectric plants in southern states in the Mississippi River basin
(Texas, Arkansas, Tennessee, Louisiana, Florida), and some watersheds
along the South Atlantic coast (Fig. 6B, 6D).

For hydropower, changes in duration occurred in all years for large
parts of the Eastern US (Fig. 6C). We observed the largest increases in the
southeast in rivers draining Texas and the Mississippi river basin, most
of the Ohio-Tennessee River basin, and along the South Atlantic coast
from the Chesapeake Bay south to Georgia (Fig. 6D).

The largest increases in species at risk were estimated in the Colo-
rado and Trinity basins of Texas, the Arkansas-White-Red, Lower
Atchafalaya and Lower Mississippi River basins for both OTE and hy-
dropower (Fig. 7A). By contrast, changes in species at risk across the
western and northern US were small for both OTE and hydropower
(Fig. 7A & B).

4. Discussion

In this study, we designed ITRs to quantify thermal risk to electricity

generation mediated by climate change effects on water temperature.
We estimated a small magnitude increase in risk exposure for a signifi-
cant proportion of electricity capacity, with high year-to-year variability
in exceedances and durations.

Our analysis differed from previous assessments in several ways.
First, we considered indirect risks mediated by climate effects on aquatic
species and our assessment highlighted the importance of considering
species tolerances. We compiled and used the species tolerances for
hundreds of aquatic species across the US to estimate risk to electricity
mediated by effects on biota. Compared to results based on regulatory
thresholds (Fig. 2A & B), the magnitudes of frequency and duration of
exceedances were greater for indirect risks evaluated using species-
specific thresholds (Fig. 2C & D) because species tolerances were
often lower than the EPA criterion. Previously, concerns have been
raised that existing criteria will be sufficiently protective under future
conditions (McCullough, 2010, 2011). However, state-level standards
may be higher than criteria developed locally for individual waterbodies
based on designated beneficial uses, which typically reflect specific
thermal concerns for the local ecological community (Jager et al., 2018).

Second, we evaluated temporal ITRs (duration of exceedances and
median time of exceedance) as well as the frequency of exceedance.
Understanding the effects of shifts in phenology is critical to
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understanding ecological responses (Staudinger et al., 2019). Species
life histories in temperate freshwater systems evolved to take advantage
of predictable seasonal patterns to undertake migrations (Dalton et al.,
2022), reproduce (Jager et al., 1999), and ensure that enough energy is
stored to persist through winter (Shuter et al., 2012) or other seasons of
adversity. For both OTE and hydropower, we observed a small average
delay in the median date of thermal exceedances, but across plants, we
observed both delays and advances of 5-8 weeks. Whereas durations of
exceedance generally increased by a day or two, in a few cases the
duration increased by 10-15 d. The few plants that experienced large
shifts in timing or duration could experience significant ecological
consequences. Our simulations also showed decreased inter-annual
variability in the median date of thermal exceedances. Because this
implies increased predictability, industry (and possibly species) could
benefit from knowing with higher confidence when exceedances will
occur. However, another implication for species, is that the breeding
season would be compressed into a shorter period, thereby increasing
density-dependent mortality [e.g., from superimposition of salmonid
redds (nests)] and synchronized emergence of many offspring. Risk to
mussels would also be higher for short-term brooders, which breed
within a short window and have fewer hosts (Archambault et al., 2018).

Third, we explored trade-offs between ecological and energy out-
comes by estimating changes in the number of species at risk. The
number of species exposed to risk in the OTE sample almost tripled
between the baseline and future period, although the magnitudes of
added risk were low. We also found that higher future risk was
concentrated in cells with lower-capacity hydropower plants and mid- to
high-species numbers. These results have policy implications. They
suggest that plants producing more electricity may not experience a
large increase in risk to species in future. They also suggest that localized
adjustments to the generating portfolio could protect biodiverse reaches
at higher future risk.

Risk varied spatially, mirroring the geographic pattern of higher
species richness in the wetter eastern US and in larger rivers (Munee-
peerakul et al., 2008; Schweizer and Jager, 2011). The east-west pre-
cipitation gradient also reflects higher availability of cooling water in
the east. Hotspots of vulnerability occurred in the southeast US, which is
known to support higher aquatic biodiversity [including imperiled
species (Elkins et al., 2019)], including rivers draining to the South
Atlantic coast and Gulf of Mexico. Spatial patterns of risk found here are
consistent with the results of a previous study (van Vliet et al., 2012). We
expected to see more elevated risks in the west, which would put more
hydropower at risk, but our results instead follow previously observed
patterns of higher increases in temperature in the eastern US (Van Vliet
et al., 2016). Understanding where species will be less vulnerable to
higher future risk can help to inform future energy development and

recognizing areas where species are more vulnerable can help the hy-
dropower and TE industries to anticipate adaptive measures needed to
avoid adverse ecological outcomes.

Our results have implications for electricity providers, consumers,
and resource managers. For the OTE industry, curtailments during
summer may impact electricity availability to consumers. Although
variances to thermal limits are common in the US (Liu et al., 2017), as
warm conditions become more extreme, continued operation with
insufficient cooling water will be risky. Extreme heat will also increase
demand for both water (e.g., irrigation) and electricity, elevating the
risk of power outages. At the scale of an individual plant, converting
OTE plants to a cooling technology with lower freshwater requirements
can be accomplished through recirculating cooling systems (wet, dry
and hybrid) (Miara et al., 2013) or using brackish- or waste-water
sources (US EPA, 2023). These technologies have their own environ-
mental costs; for example, salts and other constituents are concentrated
in their (Pan et al., 2018).

At the scale of a plant, risk can be reduced by shifting away from OTE
plants to energy technologies with lower demand for cold water. At the
grid scale, impacts to consumers may be buffered by generators (e.g.,
solar, hydropower, non-OTE plants) with lower water constraints and
impacts to consumers may be reduced by relying on less-vulnerable grid
assets. However, simultaneous outages across a regional grid can impact
consumers (Ke et al., 2016). Based on our results, future impacts would
affect the Eastern and Texas Interconnections most. Electricity in this
region is currently managed through a patchwork of independent system
operators (ISOs) and regional transmission organizations (RTOs) (the
Electric Reliability Council in Texas, the Pennsylvania-New Jersey-
Maryland Interconnection, and the Mid-continent ISO), whereas trans-
mission in the Southeast has been vertically integrated under large
utilities. Improved national grid integration could improve resilience
under a climate future with distinct regional profiles in the availability
of variable renewables (Bloom et al., 2022) and increased risk to indi-
vidual assets. Our results can be used to assess the reliability implica-
tions of projected future risks for alternative grid scenarios.

For hydropower, managing cold-block storage will likely become
more challenging in future (Jager et al., 2018), and it may be necessary
to assign higher priority to releasing colder water when it is most needed
by fish. This can lead to conflicts during summer and require changes in
seasonal operation, as well as selective withdrawal from different levels
of the reservoir using temperature control devices. For example, without
access to upstream tributaries, the endangered winter-run Chinook
salmon is now restricted to one tailwater reach below Shasta and Kes-
wick Dams in California. These are operated to release cold water during
summer spawning and rearing (Nickel et al., 2004). Our results suggest
that similar cases may be expected in southern basins draining to the
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Gulf of Mexico and South Atlantic coast under future climate. Our timing
metrics can be used in planning future operations.

Resource managers can also use the information here to protect
aquatic species. More freshwater species will be threatened under future
climate conditions (Barbarossa et al., 2021), possibly as many as 17 %
(International Union for Conservation of Nature, 2023). Under the Na-
tional Permit Discharge Elimination System (NPDES), thresholds are
tied to species tolerances through Representative Important Species
(RIS). RIS represent the biological needs of a balanced, indigenous
community of shellfish, fish, and wildlife in the body of water into which
the discharge of heat is made (US EPA, 2023). RIS may reflect thermal
guilds (Casselman, 2002; Magnuson and DeStasio, 1997; McManamay
and DeRolph, 2019; Wehrly et al., 2003), the presence of coldwater
fisheries (Kusnierz et al., 2023), or the tolerances of species listed under
the state or federal Endangered Species Act. The analysis presented here
assembled data showing what species may be most at risk near OTE and
hydropower plants under future climate. Our results can help resource
managers to identify species to serve as sentinels of risk and to assess
thermal risk under future climate for species of high conservation
concern. In addition, our timing metrics can be used to assess potential
effects on key life history events (e.g., spawning), while duration ITRs
can be used to estimate physiological risk (Troia, 2023).

4.1. Study limitations

4.1.1. Model uncertainties

Uncertainty analysis can help to interpret the results of our ITR
assessment. Previous assessments have evaluated uncertainties for most
of the models employed here (Fig. 1). Uncertainties due to climate
drivers are far higher than those due to watershed models (Joseph et al.,
2018). However, air temperature projections from CMIP6 models are
more reliable than precipitation projections (Pathak et al., 2023). The
choice of downscaling approach, meteorologic reference dataset, and
hydrologic model can also affect future hydro-climate projections (Kao
et al.,, 2022a; Rastogi et al., 2022). We accounted for year-to-year
variation in climate by including 20 years in each period.

Our analysis was restricted to one GCM (ACCESS) and one emission
scenario (SSP585), so our results may not reflect the full range of vari-
ability in risk that might emerge by including a wider range of future
hydroclimate projections. However, more is not necessarily better.
Communicating risks to non-scientific audiences becomes more chal-
lenging when presenting results from multiple models (Carr et al.,
2018). Furthermore, the ‘effective’ number of independent GCMs is
reduced by similarities among models (Pathak et al., 2023; Pennell and
Reichler, 2011). Ideally, a set of models can be selected to minimize
correlation and then assigning higher weight to better-performing
models (Bhowmik et al., 2017; Dethier, 2022; Steinschneider et al.,
2015).

Choice of ITR parameters is another source of uncertainty. Sensitivity
to the choice of upper thresholds was evident based on our comparison
of EPA/state thresholds and species’ thresholds. In general, as values (e.
g., temperatures) get closer to a threshold, sensitivity will increase.
Therefore, we expect that variability in risk estimates will be higher
when (and where) water temperatures are near a threshold.

4.1.2. Future directions

Future improvements to the indicators presented here are possible.
For example, our business-as-usual projection of risk in the future period
considers existing electricity generation assets (no retirements or new
deployments) and no changes in land use/vegetation, or species distri-
butions. Future analysis could consider capacity expansion results that
include retirements and new power plant deployments along river
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reaches (Miara et al., 2019; Short et al., 2011) to determine whether the
remaining OTE plants will be at risk. Our hydrologic modeling could
also be refined by considering future changes in land cover consistent
with the SSP5 socioeconomic trajectory (Estoque et al., 2020; Riahi
et al., 2017).

Similar improvements are possible for the ecological risk ITRs. Like
land cover, spatial shifts in biodiversity may be associated with the so-
cioeconomic trajectories assumed here (McManamay et al., 2021). We
would ideally consider future, not current, distributions of aquatic biota
for those species able to migrate (Nunez et al., 2013). In addition,
plasticity in life histories might allow species adaptation. For example,
under warmer climate conditions, aquatic species capable of repeat
spawning will likely be able to produce more broods than in the past, in
both fall and spring. Our phenological ITRs can be improved by ac-
counting for the possibility of multiple spawning events per year in
favorable locations or climates.

Another refinement might be to improve representation of down-
stream effects of reservoirs on water temperature below reservoirs
across CONUS, which is a significant challenge at regional scales.
Hypolimnetic releases moderate risks (Rheinheimer et al., 2015). For
example, one study found that hypolimnetic water releases from dams
could alleviate climate impacts on more than 76 % of once-through
power plants with a 3 % reduction in curtailment under future 2040
RCP 4.5 and 8.5 scenarios (Zhang et al., 2020).

5. Conclusions

We developed ITRs that showed significant increases in the exposure
of OTE and hydropower) to risk under future climate (24 % and 10 % of
capacity, respectively). However, the increased magnitudes of risk were
low. The low correlation between species richness and capacity suggests
that focusing mitigation on biodiverse regions could reduce future risk
without significantly impacting electricity supply. Our ITRs also
measured changes in timing. Although most plants experienced small
changes in the timing and duration of risk, some plants experienced
large changes. Shifts of 5-9 weeks were observed in both directions
along with 1-2 week increases in duration. Geographically, increases
were concentrated in southern basins draining to the Gulf of Mexico and
South Atlantic coast. In regions where risk is projected to increase most,
grid reliability can be improved through connection to climate-resilient
generating assets.
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Fig. Al. State / EPA upper thermal thresholds used in our risk assessment. Note that these do not reflect the beneficial uses of individual waterbodies or the NPDES
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Indicators of thermal risk to electricity, definitions, and data requirements.

Category Direct / Electricity Indicator Tllustrated Definition Data required
indirect endpoint name (Figure #)
Exceedance  Direct Thermo- TE-risk Fig. 1A Proportion of days with surface Facility upper thermal limits (state regulation);
(energy) electric temperature exceeding EPA threshold WBM-ACCESS simulated water temperature
sampled at thermal plants
Exceedance Direct Thermo- TE-dur Fig. 1B Duration of risk to TE (d) Same as TE-risk
(energy) electric
Exceedance  Direct Thermo- TE-MW+ NA Maximum positive (negative) change in ~ Same as TE-risk
(energy) electric (TE-MW-) risk to generation, as measured by TE-
risk.
Phenology Direct Thermo- TE-date Fig. 1C Median day of year with temperature Same as TE-risk
(energy) electric exceeding threshold of risk to TE power
(based on TE-risk)
Exceedance  Indirect Thermo- ECO-risk Fig. 2A Proportion of days with dam release Ecological species thresholds; HUC6 screening
(ecological) electric temperatures exceeding species data; WBM-ACCESS simulated water temperature
thresholds sampled at thermal plants
Exceedance  Indirect Thermo- ECO-dur Fig. 2B Duration of longest annual exceedance Same as ECO-risk
(ecological) electric (d)
Phenology Indirect Thermo- ECO-mid Fig. 2C Midpoint of exceedance date in longest Same as ECO-risk
(ecological) electric run
Phenology Indirect Thermo- ECO-Js Fig. 3A Spawning day of year in spring Parameters of ecological phenology model by
(ecological) electric species; WBM-ACCESS simulated water
temperature sampled at thermal plants
Phenology Indirect Thermo- ECO-Je Fig. 3B Development as juvenile fish Same as ECO-Js
(ecological) electric (‘emergence’) or end of brooding period
for mussel
Geographic  Indirect Thermo- AECO-nspp Fig. 4A Change in number of species at risk at Same as ECO-risk; Thermoelectric plant locations
(ecological) electric HUCS6 scale
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Table A2
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Mixed model results for the duration of exceedances and median date of exceedances at hydropower (HY) and once-through cooled thermoelectric plants (OTE). The
model is Y = a + f§ time-period + o grid-cell + ¢. Statistics relevant to assessing model fit included REML = Residual maximum likelihood at convergence and AICc = bias-
corrected Akaike’s Information Criterion. The hydropower analysis involved 14,154 observations with 335 cells and the OTE analysis involved 11,466 observations

and 240 cells. The standard error (SE) is given in parentheses.

Coefficient (fixed effects) Variance (random effects)

Electricitysource Model AICc (REML)
Duration, d (Eco-dur) OTE 57,240.4(57,232.4) 0.2835 (SE = 0.15) 2.165(SE = 0.05) 5.50 8.01
Median day of year (Eco-date) OTE 88,775.2 (88,783.2) 207.06 (0.50) 1.60(0.22) 53.0 138.3
Duration, d (Eco-dur) HY 60,734.14 (60,726.1) 0.223 (SE = 0.10) 1.220 (SE = 0.03) 3.218 3.926
Median day of year (Eco-date) HY 106,388.8 (60,726.1) 204.6 (SE = 0.35) 1.287 (SE = 0.172) 36.2 104.2

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecolind.2024.111755.
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