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This paper implements a highly efficient algorithm to extract electrochemical impedance spectra (EIS) from physics-based battery
models (e.g., a P2D model). The mathematical approach is different from how EIS is practiced experimentally. Experimentally, the
voltage (current) is harmonically perturbed over a wide range of frequencies and the amplitude and phase shift of the corresponding
current (voltage) is measured. The experimental approach can be implemented in simulation software, but is computationally
expensive. The approach here is to determine locally linear state-space models from the full physical model. The four Jacobian
matrices that are the basis of the state-space models can be derived by numerical differentiation of the physical model. The EIS is
then extracted from the state-space model using computationally efficient matrix-manipulation techniques. The algorithm can
evaluate the full EIS at an instant in time during a transient, independent of whether the battery is in a stationary state. The
approach is also able to separate the full-cell impedance to evaluate partial EIS, such as for a battery anode alone. Although such
partial EIS is difficult to measure experimentally, the partial EIS provides valuable insights in interpreting the full-cell EIS.
© 2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ad4399]
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This paper reports results in three interrelated areas. The first, and
perhaps the most significant, concerns the development and demon-
stration of a computationally efficient algorithm to extract electro-
chemical impedance spectra (EIS) from a physics-based model. The
paper also documents the pseudo-two-dimensional (P2D) model that
is used as the basis for demonstrating the EIS-extraction algorithm.
Finally, the paper shows that transient polarization measurements
(i.e., voltage versus current) alone are not sufficient to uniquely
establish physical parameters in Li-ion battery models. However,
modeling polarization and EIS together can greatly assist the
interpretation of experimental data.

Physics-based models may be written generally and solved as
systems of coupled non-linear partial differential equations with
algebraic constraints. The EIS algorithm begins by linearizing the
physics-based model in a state-space representation. The battery
performance (e.g., charge or discharge) is modeled with the full
nonlinear model. The state-space linearization is accomplished at
some instant in time (i.e., some particular state of the battery). The
EIS can be extracted very efficiently through a series of matrix
manipulations.1 Moreover, by partitioning the state variables and
matrices, the algorithm can evaluate the impedance contributions of
individual processes (e.g., how the anode chemistry and transport
contribute to the full EIS).

The paper illustrates the EIS extraction and application using a
pseudo-two-dimensional (P2D) Li-ion battery model.2–4 However,
the approach is generally applicable to other electrochemical models
that resolve voltage/current dynamics (e.g., a fuel-cell model5–8).
The P2D model itself and the EIS extraction are computationally
efficient and fast, typically requiring about one minute on a typical
personal computer.

Electrochemical impedance.—Electrochemical impedance spec-
troscopy is a powerful, widely used, non-invasive technique that
measures electrochemical system performance.9–11 The impedance
spectra can be used to characterize electrochemical and physical
phenomena (i.e., ionic transport, solid-phase diffusion, charge-transfer
process), and to identify and track internal degradation processes.11–13 By

applying a low-amplitude harmonic current (galvanostatic mode) or
voltage (potentiostatic mode) signal over a range of frequencies, the
impedance spectra can be obtained by measuring the amplitude and
phase shift of the output voltage or current, respectively. Figure 1
illustrates the physical meaning of electrochemical impedance. As
shown, a sinusoidal perturbation current is imposed and a sinusoidal
voltage response is observed. The frequency-dependent impedance is
then a representation of the changes in magnitude ∣Z∣ and phase shift θ
from the input/output sinusoids. This process is repeated for numerous
frequencies to produce the impedance spectra, which are typically plotted
as Nyquist (Fig. 1b) or Bode formats.

Equivalent circuit models.—Equivalent-circuit representations
are widely used to interpret the measured EIS. The equivalent
circuits typically use a combination of electrical circuit components,
such as resistors and capacitors, to describe the relationship between
the input current and voltage response.14 Although equivalent-circuit
analysis is well established, there is always some ambiguity
associated with assigning specific chemical and physical meanings
to the equivalent-circuit elements.9,15,16 In other words, for example,
it can be difficult to directly associate an equivalent resistor or
capacitor to a physical parameter such as a charge-transfer rate
constant or an ion diffusion coefficient.

By contrast with equivalent-circuit models, physics-based models
consider the coupled physicochemical processes and incorporate
chemical and physical parameters directly, thus serving as a good
foundation for quantifying the influences of contributing processes
to the EIS. Most models involve numerous empirical functions and
parameters that can be adjusted to fit measured behaviors. In
addition to measured polarization behaviors (charge/discharge
curves), EIS provides more and different data, which help establish
the fitting of needed physical parameters.

Pseudo two-dimensional models.—Beginning in around 1993,
Newman and colleagues developed a computational approach, which
is usually called a pseudo-two-dimensional (P2D) model.2 Over the
years, there have been many adaptions and implementations of the
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general approach.2–4 These models consider Li intercalation within
the solid electrode phases as well as Li-ion transport within organic-
solvent electrolyte phases. The P2D models are mathematically
systems of coupled nonlinear partial differential-algebraic equations
that must be solved computationally. As such, solving the P2D
models is much more complex than solving equivalent-circuit
models. Nevertheless, the model formulations and computational
algorithms are well established and can usually be solved with only a
few minutes on a personal computer. The objective herein is to
develop similarly efficient algorithms to extract the EIS.

Alternative EIS approaches.—Both analytical and numerical
approaches have been developed to extract the impedance spectra
from P2D models. The analytical solutions are obtained in the
frequency domain after linearization and using Laplace/Fourier
transformations of the coupled transient nonlinear partial differential
equations.13,17–27 Because deriving the analytical solution is com-
plex and tedious, different levels of simplification of the P2D models
are generally applied. These analytical approaches are primarily
concerned with the linear (first-order) system response, but recently
efforts are underway to study higher-order frequency responses to
uniquely identify internal parameters that were previously
undetectable.18,24 The numerical solutions are based on directly
solving the P2D models in the time domain with a small sinusoidal,
pulse, or step-change function of current or voltage input signal.28–36

Harmonic-perturbation algorithms can only evaluate the impedance
spectra at the frequency of the perturbation, which is computationally
expensive to evaluate a full EIS over wide frequency ranges.
Computationally, it is greatly more efficient to use step-change
perturbations (e.g., for current) and observe transient relaxations (e.g.,
voltage). Because the computational solution (i.e., the relaxation
response) can be modeled very accurately, it is possible to recover
the EIS from only a few perturbations.30,33,37 However, as an inherently
nonlinear and time-varying electrochemical system, the lithium-ion
battery is charging (or discharging) after applying a step change in
voltage or current. Thus state-of-charge varies while observing the
transient relaxation. Ideally, the EIS should be measured and interpreted
at a particular SOC under conditions of stability, causality, and linearity.
So, to model the EIS the relaxation times must be short compared to the
total discharge time, such that the SOC variations are small. However,
very long relaxation times are required to capture very low frequency
spectra, possibly leading to reduced accuracy or compromised meaning
of the EIS.

In contrast to the small-perturbation algorithms, the present
approach does not directly require evaluating a transient response.

Rather, Jacobian matrices are evaluated computationally via finite
differences from the physical model at some particular state (e.g.,
state of charge). The model would typically be run transiently and
then relaxed to an equilibrium to achieve the particular state where
the EIS is to be evaluated.

P2D Model

This Section documents the pseudo-two-dimensional (P2D) that
is used in the present paper. Although all P2D models are
structurally and computationally similar, there are numerous varia-
tions in particular implementations. The Appendix provides further
details about specific parameters for a particular graphite-NMC532
battery.

Electrolyte Li+ transport.—The mass conservation for the
lithium-ion +CLi transport in the electrolyte (solvent) phase of the
porous electrode and separator can be represented as

ε∂
∂

+ ∇· = ̇ [ ]
+

+ +
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t
rJ , 1el Li

Li Li

where εel is the volume fraction of the electrolyte phase, ̇ +rLi is the
net Li+ production/consumption rate via charge-transfer reactions.
The lithium-ion transport molar flux +JLi can be represented as
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where C0 is the molar concentration of solvent in the electrolyte
phase, which is usually assumed not to be a function of lithium-ion
concentration +CLi . The Li+ stoichiometric coefficient ν+ = 1 and
charge number z+ = 1 are taken for the LiPF6 salt. The Li

+ effective
diffusivity and transference number in the electrolyte are represented
as +DLi and +

◦t , respectively.38 F is the Faraday constant.

Current density and charge conservation.—The current density
in the electrolyte phase iel under the gradients of electric potential
Φel and lithium-ion molar concentration +CLi can be expressed as,39
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where σel is the effective conductivity of the lithium ion in the
electrolyte. The thermodynamic factorV of the non-ideal electrolyte
is defined as
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where f± is the mean molar activity coefficient of the electrolyte.
The current density in the solid phase of the electrode (cathode or

anode) ied under the gradient of the electrode-phase potential Φed is
represented using the Ohm’s law as

σ= − ∇Φ [ ]i , 5ed ed ed

where σed is the effective conductivity of the electrode’s solid phase.
Charge conservation within the electrode and electrolyte phases

can be expressed as

∂
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where the local charge density due to the double-layer capacitance
Cdl at the electrode-electrolyte interfaces can be represented as

Figure 1. Electrochemical impedance extraction technique using harmonic
perturbations. (a) Harmonic input perturbative current and voltage response
in the time domain. (b) Nyquist response of the system.
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qed = –qel = AsCdl(Φed − Φel), and As is the specific surface area of
the active electrode per unit volume of the composite electrode.

Porous transport coefficients.—The effective transport proper-
ties within the porous electrode structure and separator (i.e.,
diffusivity Dm and conductivity σm) are related to the intrinsic
properties using a Bruggeman factor as

σ σ ε ε= = [ ]◦ ◦D D, , 8m m m
p

m m m
pm m

where εm are the volume fractions, and pm is the Bruggeman factor.

Lithium transport in electrode particles.—Unlike a typical P2D
model, the present model accommodates particle size distribution
within the electrode. The multiple electrode particle model accounts
for the variation of particle radii, properties, and contact resistances
within the electrodes. Because it is computationally inefficient to
consider all the particles, the particles are normally regrouped into
several sets with appropriate probability distribution.40 Additionally,
it is assumed that all the active electrode materials are exposed to the
same electronic and ionic environment such that the local variations
of the solid-phase and liquid-phase electric potentials as well as the
species concentration in the electrolyte among the particles are
neglected.

Mass conservation for intercalated lithium transport within the
active spherical solid-phase particles at a given location can be
represented as

∂
∂

+ ∇· = [ ]
C

t
J 0, 9

p
p

Li,
Li,

where CLi,p is the intercalated Li concentration in the pth particle.
The index p denotes properties and fluxes associated with a specific
particle radius within the particle size distribution. The lithium
diffusive flux JLi,p can be represented using the Fick’s law as

= − ∇ [ ]D CJ , 10p p pLi, Li, Li,

where DLi,p are the diffusion coefficients of the Li within represen-
tative electrode particles. On the particle surfaces, the Li flux within
the particle is balanced by the charge transfer rate as

· = − ̇ [ ]+sn J , 11p pLi, Li ,

where ̇ +s pLi , denotes Li+ production rate due to the charge transfer
reactions on pth particle surface.

The overall Li+ production rate ̇ +rLi of all the particles can be
represented as
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where np, Ap, and Vp are the number density, surface area,
and volume of pth particle, respectively. φp is the volume
fraction of pth particle with respect to the total active material
volume as
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where fp is the particle number distribution. The specific surface area
As of the active electrode per unit volume of the composite electrode
can be expressed as

∑ε ε ϕ=
∑

∑
= [ ]A

n A

n V

A

V
. 14

p p p

p p p p
p

p

p
s ed ed

Charge transfer.—Considering a single charge-transfer reaction
at the electrode-electrolyte interfaces

( ) ⇌ ( ) + ∗ ( ) + ( ) [ ]+ −Li ed Li el ed e ed , 15

the charge-transfer reaction rates are represented using the
Butler–Volmer formulation as

α η α η
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where iBV is the faradaic current density, i0 is the exchange current
density, and αa and αc are the anodic and cathodic symmetry factors,
respectively. The Faraday constant is F, the gas constant is R, and
the temperature is T. The overpotential ηact is defined as
ηact = E− Eeq where E= Φed − Φel is the potential difference
between the electrode phase Φed and electrolyte phase Φel, and Eeq

is the equilibrium electric-potential difference. The exchange current
density i0 depends on the local concentrations of Li+ within the
electrolyte +CLi and intercalated Li within the electrode at the
electrode-electrolyte interfaces CLi as

= [ − ] [ ]α α α
+i k FC C C C , 170 r Li Li

max
Li Li

a a c

where kr is a temperature-dependent rate constant. Defining
θ = + +C Cel Li Li

max , and θ = C Ced Li Li
max , the exchange current density

i0 can be separated into three parts: the temperature-dependent part
* = ( )α

+i k F C CT r Li
max

Li
maxa , the Li+ concentration-dependent part

θ* = α
+i

Li el
a, and the Li concentration-dependent part

θ θ* = ( − )α αi 1Li ed ed
a c. Thus, the exchange current density can be

rewritten as the product of three factors,

* * *= [ ]+i i i i . 18T0 Li Li

The temperature-dependent parameter *iT can be expressed generally
as

* °= − − [ ]⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

i i
E

R T T
exp

1 1
, 19T 0

Li
act

ref

where ELi
act is the activation energy, °i0 is the exchange current

density parameter *iT at a reference temperature Tref.
A charge-transfer resistance Rct can be evaluated from the

Butler–Volmer equation (Eq. 16) as
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which depends on the exchange current density i0 and the activation
overpotential ηact. High exchange current density i0 and high
activation overpotential ηact lead to low charge-transfer resistance
Rct, which leads to small impedance arcs in a Nyquist representation.

The Butler-Volmer rate expression of Eq. 16 can be applied to
estimate the charge-transfer reaction rate iBV,p on each electrode
particle-electrolyte interface. And the Li+ production rate ̇ +s pLi , on
the pth particle surface can be related to iBV,p as ̇ =+s i Fp pLi , BV, .
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Spatial Discretization and State-Space Model

Equations 1, 6, 7, and 9 form a coupled nonlinear system of
partial differential-algebraic equations (DAE), which can be solved
computationally to obtain spatial profiles of lithium ion concentra-
tion in the electrolyte phase +CLi , lithium concentrations within the
electrode particles CLi, and electrostatic potentials Φed and Φel. The
numerical algorithm generally follows the method-of-lines.41,42 The
spatial operators in Eqs. 1, 6, 7, and 9 are discretized using a
conservative finite-volume formulation.

Transient terms in Eqs. 6 and 7 are due to the charge storage of
the double layer at the electrode-electrolyte interface. If the double-
layer capacitance within the electrodes is negligibly small, and there
is no charge storage within the dense electrolyte, the transient term
in the electric-potential equations can usually be neglected. In this
case, the spatially discretized electric-potential equations become
nonlinear algebraic-constraint equations.

However, it becomes important to consider the double-layer
capacitance in the P2D model in studying the electrochemical
impedance of the batteries. The summation of charge conservation
equations in the electrode and electrolyte phases (Eqs. 6 and 7) leads
to the following total charge conservation equation

∇ · ( + ) = [ ]i i 0, 21ed el

in which the transient term and charge-exchange term do not appear.
Therefore, the solution can be obtained alternatively by solving
Eqs. 1, 6, 9, and 21.

Defining iel
c as the part of current density in the electrolyte phase

under the Li+ concentration gradients as

σ= ( − ) ∇ [ ]+
◦ +V

RT

F
t Ci

2
1 ln , 22el

c
el Li

the total charge conservation equation (Eq. 21) can be rewritten as

σ σ σ−∇ · ( + )∇Φ = ∇ · ∇(Φ − Φ ) − ∇ · [ ]i , 23ed el el ed ed el el
c

which is a linear Poisson equation for Φel after the +CLi profiles are
found from solving from Eq. 1 and the potential difference
(Φed − Φel) from solving Eq. 6. Thus, the spatially discretized
electrostatic-potential equations (Eq. 23) are linear algebraic-con-
straint equations within the DAE setting (Eqs. 1, 6, 9, and 21).

After discretizing the spatial operators of the partial differential
equations, the resulting system forms a system of nonlinear ordinary
differential-algebraic equations, which can be expressed formally
and compactly as

∂
∂

= ( ( ) ( ) ) [ ]
t

t t tM
x

f x p u p, , , ; , 24

where f is a nonlinear function and M is typically referred to as the
mass matrix. The vector x represents states, u represents inputs or
actuation, p represents parameters, and t represents time. More
specifically, the state vector Φ( ) = ( )+tx p C C q, , , ,Li Li ed el is com-
prised of concentrations, charge densities, and electrostatic poten-
tials. +CLi represents concentrations of lithium ion within the
electrolyte phase on a spatially discretized finite-volume grid, CLi

represents all the lithium concentrations within the representative
electrode particles, the vector qed represents the local charge density
qed at the electrode-electrolyte interfaces, and Φel represents the
electric potentials Φel on the discretized finite-volumes. u(t) repre-
sents the external variables or input such as the cell potential
Ecell = Φed∣cc − Φed∣ac or the net current I. The mass matrix M is a
diagonal matrix that can be formally expressed as

= ( )Φ+M I I I 0Diag , , ,C C qLi Li ed el , where I is the identity matrix.
Because there are no time derivatives in the discretized Eq. 23 for
Φel, the mass matrix elements for Φel are zero.

Equation 24 can be solved using a differential-algebraic (DAE)
solver, such as LIMEX.43 However, for specified spatial profiles of

+CLi , CLi, and qed Eq. 23 is linear and can be solved easily and
efficiently. Thus, without the dependent variables Φel, x(t, p)
becomes ( ) = ( )+tx p C C q, , ,Li Li ed , M= I, and Eq. 24 becomes a
regular system of ordinary differential equations. Usually, ordinary
differential equations are easier to solve than DAEs.

The system of nonlinear ordinary differential equations (Eq. 24)
is considered to be a nonlinear dynamic system in the control
community.44–46 The dependent variables x(t, p) are the state
variables and the input variables u(t) are control variables. The
model output or response can be represented using observation
functions as

( ) = ( ( ) ) [ ]t t ty p g x p u p, , , , ; , 25

where the cell potential is an observed output or response y(t,
p)= Ecell(t, p) if the input u(t)= I for the battery models. The
coupled combination of the state equations of Eq. 24 and the
observation equations (Eq. 25) forms a nonlinear state-space model.

Linear State-Space Model and EIS

The physics-based P2D model (i.e., Eqs. 1, 6, 7, and 9) and its
spatial discretization in terms of state-space representation (Eqs. 24
and 25) are inherently nonlinear. To compute the linear response of
the physics-based model with respect to a low-amplitude harmonic
perturbation and therefore extract impedance spectra, the nonlinear
state-space should be linearized at a certain time and state.

Consider an input ( ) =tu u as applied to the system of Eqs. 24
and 25. From some initial state, the system evolves to a state x with
observable y at time t . With respect to ( )tu at time t , a small
harmonic perturbation ˆ ( )tu may be added to the input such that

( ) = ( ) + ˆ ( )t t tu u u is applied to the nonlinear system for ⩾t t .
Then, both the state variables and observations respond as

= ( ) + ˆ ( )t tx x p x p, , and = ( ) + ˆ ( )t ty y p y p, , . Assuming that the
perturbation ˆ ( )tu is very small such that both ˆ ( )tx p, and ˆ ( )ty p, are
also very small, the nonlinear systems of Eqs. 24 and 25 can be
linearized with respect to ( )tu , ( )tx p, , and ( )ty p, as

∂ˆ ( )
∂

= ˆ ( ) + ˆ ( ) [ ]t

t
t tM

x p
A x p B u

,
, , 26

ˆ ( ) = ˆ ( ) + ˆ ( ) [ ]t t ty p C x p D u, , , 27

with ˆ ( ) =tx p 0, . The Jacobian matrices A, B, C, and D at ( )tu and
( )tx p, are defined as

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

[ ]A
f
x

B
f
u

C
g
x

D
g
u

, , , , 28

which are called state-space matrices of the linear systems.
The Laplace transformations of the input perturbation ˆ ( )tu , the

state response ˆ ( )tx p, , and the observation response ˆ ( )ty p, may be
denoted U(s), X(s, p), and Y(s, p), respectively. Considering
ˆ ( ) =tx p 0, , the Laplace transformation of Eq. 26 becomes

= + [ ]sMX AX BU, 29

from which X can be evaluated as

= ( − ) [ ]−sX M A BU. 301

The Laplace transformation of Eq. 27 can be expressed

= + = [ ( − ) + ] = [ ]−sY CX DU C M A B D U GU 311

with the transfer function G being defined as

= ( − ) + [ ]−sG C M A B D. 321

Considering the input u(t) is the current I, and the output y(t, p) is
the cell potential Ecell, the transfer function can be represented as
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( ) = ( − ) + [ ]−s sZ p C M A B D, , 331

The electrochemical impedance can be obtained by setting s= jω,
where ω is the desired frequency.

The impedance evaluation based on Eq. 33 involves only the
manipulation of state-space matrices (i.e., A, B, C, D, and M) from
the linear systems of Eqs. 26 and 27). Evaluating the matrices

depends on the actuation ( )tu and state ( )tx p, at time t . The
transient state x(t, p) is obtained by numerically solving the physics-
based model or the nonlinear state-space model (i.e., Eq. 24) using
DAE software such as LIMEX43 or the ode15i function in
MATLAB. The EIS extraction from the physics-based model can
be accomplished at any instant time during the entire transient
processes. The extraction can be implemented as a post-processing
tool. Depending on the level of spatial discretization, and thus the
size of the state-space matrices, each EIS extraction takes tens of
seconds on a typical personal computer.

State-space matrices evaluation and partition.—The state-space
derivatives A, B, C, and D can be approximated by the first-order
finite differences, which is widely used in numerical mathematics,
such as in implicit algorithms to solve nonlinear differential
equations.41 For example, consider how a small perturbation of the
jth element xj of the state vector x affects the ith element fi of the
function vector f at the state x. The Jacobian element Ai,j of the
matrix A is evaluated as

=
∂
∂

≈
( + Δ ) − ( )

Δ
[ ]A

f

x

f x t f t

x

x e u p x u p, , ; , , ;
, 34i j

i

j

i j j i

j
,

where ej is the jth unit vector of the state space, and the perturbation
Δxj is much smaller compared to xj. Typically, Δ =x u xj j where u
is the computer’s unit roundoff. Computational efficiency is usually
achieved by sequentially perturbing elements of x and evaluating
columns of the Jacobian.42

Reducing the rounding error of the finite-difference approxima-
tion is critical, especially at very low frequencies. Considering
Eq. 33, it is evident that the approximation error ϵ in evaluating A
should be much less than ω. If not, then the inverse ( − )−sM A 1 will
be inaccurate. Evaluating the Jacobian derivatives using quadruple-
precision (i.e., 128 bits with a precision of about 32 decimal digits) is
found to produce reliable EIS even at very low frequencies.

The global state variables x(t, p) can be partitioned into three
groups: xa(t, p), xe(t, p), and xc(t, p), where xa(t, p) represents all the
state variables within the anode, xe(t, p) represents all the state
variables within the separator, and xc(t, p) represents all the state
variables within the cathode. The global state-space matrices A, B,
C, and D can be correspondingly partitioned into three groups: Am,
Bm, Cm, and Dm with m= a, e, c. This enables evaluating the
individual contributions Zm(s, p) associated with the anode, the
separator, and the cathode to the total impedance based on the Am,
Bm, Cm, and Dm. The Jacobian of the observation with respect to the
input is D. In this formulation, the observation is not directly related
to the input. Thus, Dm = 0.

To be concrete about computing times, consider an example. In
the physics based P2D model, assume discretization with 20 finite
volumes each for the anode, the separator, and the cathode. Further,
consider 10 radial volumes for each of the representative electrode
spheres within the anode and cathode. The compute time for a 5C
charge using the P2D physics-based model is approximately 40
seconds. The compute time to evaluate any instance of the
impedance spectra at some particular state is approximately 20
seconds. Of course, compute times depend upon the computer itself,
the implementation language, functional dependencies of constitu-
tive properties, mesh discretization, etc. In any case, the algorithm
provides a highly efficient and effective means to extract EIS from a
physics-based model.

P2D Models and Parameter Fitting

Pragmatically, as with most models, some empirical parameters
and functions need to be adjusted such that the model’s predictions
are consistent with experimental observables. Parameters in P2D
battery models are typically fit to, and “validated” with, polarization
measurements at different charge/discharge rates. However, pub-
lished literature reveals significantly different parameter sets for

Figure 2. Comparison of the model predictions and measured polarization4

for a P2D model with different parameters. The two models with different
parameters are found to produce very similar polarization predictions. The
operating temperature is nominally 30 °C and the model is operated
isothermally.

Table I. Parameters for the LiC6-NMC532 battery4.

Anode parameters

Thickness (μm) 70.0
Electrode volume fraction 0.5928
Electrolyte volume fraction 0.3450
Polymer phase volume fraction 0.0622
CLi

max (mol cm−3) 30.53 × 10−3

+C
Li
0 (mol cm−3) 1.2 × 10−3

Stoichiometry at 0% SOC 0.0700
Stoichiometry at 100% SOC 0.8434
Particle radius (μm)/Volume fraction 6.00/1.0
Bruggemann exponents (ped, pel) 2.0, 2.0
Charge-transfer coefficients (αa,αc) 0.5, 0.5

Cathode parameters

Thickness (μm) 70.0
Electrode volume fraction 0.5131
Electrolyte volume fraction 0.3540
Polymer phase volume fraction 0.1329
CLi

max (mol cm−3) 49.60 × 10−3

+C
Li
0 (mol cm−3) 1.2 × 10−3

Stoichiometry at 0% SOC 0.8900
Stoichiometry at 100% SOC 0.3400
Particle radius (μm)/Volume fraction 1.5/0.75

2.5/0.25
Bruggemann exponents (ped, pel) 2.0, 2.0
Charge-transfer coefficients (αa,αc) 0.5, 0.5

Separator parameters

Thickness (μm) 20.0
Electrolyte volume fraction 0.4000

+C
Li
0 (mol cm−3) 1.2 × 10−3

Bruggemann exponents (pel) 2.0
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nominally similar batteries.47 Thus, it is apparent that polarization
data alone is insufficient to uniquely establish needed parameters.48

Augmenting polarization data with EIS measurements helps to
constrain the parameter-fitting process. However, as discussed
subsequently, even polarization and EIS data together are not
sufficient to establish P2D parameters uniquely.

Figure 2 illustrates measured polarization behaviors for a
graphite-NMC532 battery at five different charging rates.4 The
graphite anode is 70 μm thick, the NMC532 cathode is 70 μm
thick, and the separator is 20 μm thick. The electrolyte is 1.2 M
LiPF6 in EC:EMC 3:7 (w:w). Table I summarizes other relevant
physical parameters and the Appendix provides more detailed
information about the battery.

Figure 3 illustrates the measured and modeled EIS at an open-
circuit voltage of 3.78 V with the state of charge at 58.6%.49 The

measurements with the red markers include high-frequency induc-
tive behavior. However, because the P2D models do not include
inductive phenomena, the inductive contributions should be removed
for the purposes of fitting other physical parameters. By fitting the
measured EIS using an equivalent circuit, the high-frequency
inductance is found to be L≈ 2.14× 10−6 Ω s cm2. The induction
effects can be removed by subtracting the induction impedance
ZL = jωL from the original measurement, leading to the EIS shown
with blue markers.

Kramers–Konig compliance.—The real and imaginary impe-
dance components as measured and reported may not be self
consistent. A Kramers–Kronig test can be applied to determine the
self consistency (i.e., determine the KK compliance).50,51 The
measured data shown in Fig. 3 are not KK compliant, especially at
the lowest frequencies. The modified KK-compliant blue dashed line
in Fig. 3 is determined by assuming the real impedance as measured
and evaluating a KK-compliant imaginary impedance. It is common
for reported battery EIS measurements at very low frequency to not
satisfy fully the linearity, causality, and stationarity conditions
required for Kramers–Kronig compliance.50,51

Fitting measured EIS.—The measured impedance in Fig. 3
shows three regions: high-frequency arc (i.e., 103 to 105 Hz), mid-
frequency arc (i.e., 20 to 200 Hz), and a low-frequency tail (i.e., 0.01
to 1.0 Hz). The low-frequency impedance is attributed primarily to
transport phenomenon. The high- and mid-frequency arcs may be

Figure 3. Comparison of the two model-predicted, KK-tested, and measured
impedance spectra of a graphite-NMC532 battery at an open-circuit voltage
of 3.7856 V and 30 °C. The EIS data is from Chen, et al.49

Figure 4. Comparison of the real and imaginary parts of the two model-
predicted and measured EIS for the graphite-NMC532 battery. The graph
also shows model-predicted anode and cathode contributions to the im-
pedance. The model is operated isothermally at 30 °C.

Figure 5. Comparison of impedance spectra of four combinations of state
variables (i.e., charge-density qe, lithium ion concentration +CLi in the
electrolyte, and lithium concentration CLi in the electrodes): 1) qe; 2) qe and

+C ;Li 3) qe and CLi; 4) qe, +CLi , and CLi. To maintain quantitative readability,
note that the axis scales are different for each of the sub-plots.

Table II. Fitting parameters.

Parameters Model A Model B

◦i0,a (A cm−2) 9.8388 × 10−04 4.2665 × 10−04

Cdl,a (F cm−2) 7.5658 × 10−05 1.1225 × 10−07

◦i0,c (A cm−2) 1.8177 × 10−04 4.0947 × 10−04

Cdl,c (F cm−2) 3.3837 × 10−08 2.2776 × 10−05
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attributed to charge-transfer kinetics. In this model, impedance
contributions from the anode and cathode charge-transfer reactions
are attributed to one of the two arcs. Thus, parameters associated
with reaction kinetics may be tuned for each electrode to fit one of
the arcs. In the present study, only four fitting parameters are
considered: exchange current density ◦i0,a within the anode,

◦i0,c within
the cathode, and double-layer capacitance Cdl, a and Cdl,c within the
anode and cathode, respectively. Table II lists two different sets of
parameters (denoted as Models “A” and “B”). Figure 3 shows that
both models fit the measured impedance spectra reasonable well.
Additionally, Fig. 2 shows Models A and B also predict the
polarization charging behaviors well. At least two different P2D
parameter sets are able to fit both polarization and limited EIS data
well and the predictions from the two models are very close to each
other. Both cannot be entirely physically correct, highlighting the
parameter-uniqueness dilemma.

Figure 4 shows the real and imaginary components of impedance
as a functions of frequency, comparing model predictions and
measured (KK-complaint) results. The plot also shows the model-
predicted anode and cathode impedance contributions from both
Models A and B. For Model A, the cathode primarily contributes to
the high-frequency arc and the anode primarily contributes to the
mid-frequency arc. However, for Model B, the anode mainly
contributes to the high-frequency arc while the cathode contributes
primarily to the mid-frequency arc. For both models, lithium
diffusion transport in the cathode particles primarily contributes to
the low-frequency impedance.

Individual impedance contribution of states.—The P2D model
has three state variables: profiles of local charge densities qe,
lithium-ion concentrations in the electrolyte +CLi , and lithium
concentrations within the electrode particles CLi. These are all
coupled via charge-transfer processes. The state-space-model-based
impedance algorithm enables evaluating the impedance of each

individual state variable or any combination thereof. Using the
parameters of Model A, Fig. 5 compares the EIS of the combination
of state variables in the anode, cathode, and the overall cell. Four
combinations of state variables are considered: Case 1: qe alone;
Case 2: qe and +C ;Li Case 3: qe and CLi; and Case 4: qe, +CLi , and CLi.

As indicated in Fig. 5, the state variable qe (Case 1), which
represents the charge-storage capacity of the double layers at the
electrode-electrolyte interfaces and involves directly the charge
transport and transfer processes within the electrode, contributes to
a single arc in the high-frequency region for both the anode and
cathode. In combining qe with +CLi , the mass transport of lithium ion

+CLi in the electrolyte contributes to a low-frequency partial arc. In
combining qe with CLi, the mass transport of lithium CLi within the
electrode particles contributes to a low-frequency tail. Because of
the much slower transport of lithium CLi within the electrode
particles compared to lithium-ion +CLi transport within the electro-
lyte, the impedance contribution of CLi transport dominates the low-
frequency impedance.

Non-uniqueness of fitting parameters.—Figures 2 and 3 show
that polarization measurements and EIS can be predicted equally
well using two different sets of fitting parameters (Table II). By
example, this is evidence that polarization and impedance measure-
ments are insufficient to uniquely determine the physical and
electrochemical parameters for P2D models. Further analysis and

Figure 6. (a) Comparison of three model-predicted polarization curves
against measurements of a LiC6/NMC532 battery at five charging rates. (b)
Comparison of the three model-predicted electrochemical impedance spectra
at open-circuit voltage of 3.78 V and the state of charge of approximately
50%. The operating temperature is 30 °C.

Figure 7. Model-predicted (Model A) anode and cathode contributions to
full-cell EIS at five states of charge: 10%, 30%, 50%, 70%, and 90%. To
maintain quantitative readability, note that the axis scales are different for
each of the sub-plots. The markers identify selected frequencies on the
Nyquist plots.
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discussion on parameter uniqueness using polarization and EIS data
is available in Laue et al.52

Figure 6 includes results from another set of modeling parameters
(Model C), which can predict the polarization curves well, but with EIS
that is very different from the Model A and B impedance. Model C uses
a single representative cathode particle size with a radius of 1.8 μm.
The Bruggemann factors for both the electrode and electrolyte phases in
the cathode are assumed to be 2.0, and the Bruggemann factor for the
separator is assumed to be 2.4. The polarization curves are fitted first
with the exchange-current density parameters: = ×◦ −i 9.9780 100,a

4

A cm−2, and = ×◦ −i 1.2900 100,c
4 A cm−2. Since fitting the polariza-

tion curves does not involve double-layer capacitances, the double-layer
capacitances Cdl,a and Cdl,c required for predicting the measured

impedance spectra are obtained by fitting the measured impedance by
fixing the exchange current density parameters ( ◦i0,a and

◦i0,c). The best-
fit double-layer capacitances are Cdl,a= 5.3604× 10−3 F cm−2 and
Cdl,c= 2.6517× 10−8 F cm−2. However, although fitting the polariza-
tion well, this parameter set does not predict the measured impedance.
From this result, one concludes the exchange-current density impacts
both polarization and EIS response. Exchange-current density is
important when evaluating degradation behaviors, such as plating.
For this reason, using both EIS and polarization to establish the
parameter set is important for accurate model predictions.

Effects of State of Charge

Using the Model A fitting parameters, Fig. 7 illustrates how the
impedance spectra depends on states of charge at 10%, 30%, 50%,
70%, and 90% SOC. These results assume that the battery is
equilibrated at the specified SOC (i.e., state variables are spatially
uniform). Figure 7a shows the model-predicted full-cell impedance,
with Figs. 7b 7c showing the anode and cathode contributions. As
the SOC increases from 10% to 90%, Fig. 7c shows that the
impedance contributions from the cathode Zc decrease. Because the
cathode dominates the high-frequency response, the heights of the
high frequency arcs in the full-cell and cathode EIS decrease
monotonically as SOC increases (Figs. 7a and 7c). However, the
anode contributions (Fig. 7b) are qualitatively different from the
cathode behaviors as functions of SOC, and the high-frequency arc
heights in the anode contributions are not monotonic with SOC.

Figure 8 shows the model-predicted lithium-concentration-de-
pendent exchange current density *iLi as functions of the battery SOC.
Because *iT and *+i

Li
(Eq. 18) do not change as functions of SOC

under equilibrium conditions, the exchange current density i0 and *iLi
behave similarly as functions of SOC. Therefore, considering Eq. 20,
when the SOC increases from 10% to 90%, i0 for the cathode
increases, leading to decreasing the charge-transfer resistance Rct

(ηact = 0 under the equilibrium condition). This leads to smaller
impedance arcs (Fig. 7c) at higher SOC.

Figure 8 shows that the anode *iLi increases as SOC increases from
10% to 50%, but decreases when SOC increases further from 50% to
90%. Thus, the anode charge-transfer resistance is smallest at SOC
≈ 50%, causing the anode contribution to high-frequency arc to be
lowest at SOC ≈ 50% (Fig. 7b). The same behavior contributes to
mid-frequency arcs shifting to the left (Fig. 7a).

Dynamic Electrochemical Impedance

Lithium-ion batteries are intrinsically non-stationary and non-
linear. However, EIS is typically measured and reported under
stationary conditions (e.g., open circuit after relaxation to a
stationary condition). Of course, EIS measurements are inherently
transient, albeit using small transient perturbations around some
nominally steady condition. Nevertheless, there is useful information
that could be acquired by understanding impedance under non-
stationary conditions. Such dynamic EIS can assist understanding
and controlling degradation and aging mechanisms, states of health,
electrode-electrolyte interfacial chemistry, etc. Several groups are
developing both linear and nonlinear dynamic or in situ EIS
techniques.53–62 These dynamic EIS measurements are generally
based on superimposing an alternating-current perturbation on a
direct current during battery charging and discharging processes.

The present EIS-extraction algorithm can evaluate the impedance
spectra from the physical model at any instant in time, enabling
further interpretation of dynamic EIS measurements using the
physics-based models. The following discussion considers a range
of charging and discharging rates, evaluating EIS responses at a 50%
SOC, but before relaxation to a stationary condition at the SOC.

In practice, measuring a full impedance spectrum (i.e., over large
frequency ranges) during a transient is difficult. Especially at the low
frequencies, the state of the battery changes during the course of

Figure 8. Lithium concentration-dependent part of exchange current density
*iLi as functions of the state of charge using the Model A parameters.

Figure 9. Comparison of the impedance spectra of the cell, anode, and
cathode at the states of charge of 50% when the battery is charged from SOC
= 0% at charging rates of 5C, 3C, 1C, C/2, and C/100. To maintain
quantitative readability, note that the axis scales are different for each of the
sub-plots. The markers identify selected frequencies on the Nyquist plots.
Model A parameters are used.
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measuring the impedance spectra. However, there is value in
evaluating impedance at specific frequencies or over small frequency
ranges. For example, Love et al.63 report that state-of-health (SOH)
can be predicted using measured impedance in frequency ranges
around 300 Hz. The present algorithm, which predicts the instanta-
neous full EIS, assists in the physics-based interpretation of the
specific-frequency impedance results. In other words, there is value
in understanding the impedance in the vicinity of the single-point
impedance diagnostic.

Effects of charge rate.—Using the parameters of Model A,
Fig. 9 illustrates the effects of charging rate on the EIS. Consider
that the battery is being charged from a 0% SOC to 50% SOC at five
rates: 5C, 3C, 1C, C/2, and C/100. The EIS is evaluated immediately
upon reaching 50% SOC, without waiting for the cell to equilibrate.
Thus, the Li and Li+ concentration profiles and electrostatic-
potential profiles are not uniform throughout the cell. However, at
very low charging rates (i.e., C/100), the profiles will be very close
to being equilibrated. Although the model can evaluate the instanta-
neous EIS under these non-equilibrated conditions, there is no
practical way to measure the full EIS experimentally.

Figure 9a shows the cell’s predicted impedance spectra, with
Figs. 9b and 9c showing the anode- and cathode-specific impe-
dances. The height of the high-frequency arc (imaginary impedance)
is highest at C/100 and lowest at 5C with the width of these arcs
decreasing at higher charge rates. The mid-frequency arcs reveal

different behavior, with the arc heights being greatest at 5C and
lowest at C/100. Considering the anode and cathode contributions, it
is evident that the cathode is most responsible for the full cell’s high
frequency behavior. The anode is largely responsible for the full
cell’s mid-frequency arcs. The trend seen in Fig. 4 corroborates this
result. An impedance spectra, using Model B parameters, would
show the anode is responsible for the cell’s high-frequency
impedance with the cathode responsible for the mid-frequency
impedance.

Figure 10 shows spatial profiles of the anode’s exchange current
density i0, activation energy ηact, and charge-transfer resistance Rct.
Figure 10a shows that the anode exchange current density i0 at high
charging rates is significantly smaller than it is at low charging rates.
At high charge rates, the Li+ concentration in the anode’s electrolyte
phase is reduced due to transport limitations in moving the Li+ from
the cathode to the anode. Because of lower Li+ concentrations in the
anode, the activation overpotential ηact must be greater (i.e., in
Fig. 10b, larger negative) and the charge-transfer resistance Rct

higher. These effects are greatest near the current collector, where
the Li+ concentration is lowest. Figure 10c shows that the charge-
transfer resistance Rct increases as the charging rate increases. Thus,
as Fig. 9b shows, the anode impedance increases with increasing
charge rate, increasing the size of the mid-frequency arc (Fig. 9a).

Figure 11 compares spatial profiles of the cathode’s i0, ηact, and
Rct at different charge rates. Both the exchange current density i0 and
activation overpotential ηact increase as the charge rate increases,
decreasing the charge-transfer resistance (Fig. 11c). In other words,

Figure 10. Comparison of the spatial profiles of i0, ηact and Rct within the
anode at SOC = 50% when the battery is charged from SOC = 0% at five
different charging rates: 5C, 3C, 1C, C/2, and C/100. Model A parameers are
used.

Figure 11. Comparison of the spatial profiles of i0, ηact and Rct within the
cathode at SOC = 50% when the battery is charged from SOC = 0% at five
different charging rates: 5C, 3C, 1C, C/2, and C/100.
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high charge rates reduce the cathode impedance contribution,
producing smaller high-frequency arcs (Fig. 9a).

Effects of discharge rate.—Continuing to use the parameters of
Model A, Fig. 12 shows EIS during a discharge from 100% SOC to
50% SOC at five discharge rates. The EIS is evaluated immediately
upon reaching 50% SOC. Thus, the cell is not equilibrated.
However, at a very slow discharge rate of C/100, the state variables
are nearly spatially uniform throughout the discharge transient.
Figures 12b 12c show anode- and cathode-specific EIS behaviors.
The high-frequency arcs of the full cell EIS are dominated by the
cathode contributions while the anode contributions dominate the
mid-frequency arcs of full-cell EIS. The results shown in Fig. 12 are
corroborated by those shown in Fig. 4. These contributions are
interchanged when using Model B parameters. The full cell EIS
reveals some interesting behaviors. The height of the high-frequency
arc is highest at 1C and lowest at 5C. However, the C/2 and C/100
high-frequency arcs lie within the 1C and 5C arcs (Fig. 12a).

Figure 13 shows the spatial profiles of exchange current density
i0, activation energy ηact, and charge-transfer resistance Rct within
the anode at 50% SOC at different discharging rate. As Fig. 13
illustrates, the exchange current density i0 near the separator drops
greatly at the high discharge rate of 5C due to the lower lithium
concentrations at the particle surfaces. The charge-transfer rate near
the separator is also small, increasing the charge-transfer resistance
near the separator. The anode impedance contribution increases as
the discharge rate increases (Fig. 12b), producing the relatively large
mid-frequency arc at the highest discharge rate (Fig. 12a).

Figure 14 compares the spatial profiles of exchange current
density i0, activation energy ηact, and charge-transfer resistance Rct

within the cathode at 50% SOC in varying the discharging rate.
Figure 14 shows that the exchange current density i0 decreases as the

discharging rate increases due to the lower Li+ concentration in the
electrolyte. However, the larger activation energy ηact is required to
achieve the higher discharging rate. The opposite trend of i0 and ηact
in increasing the discharging rate leads to non-monotonic variation
of the charge-transfer resistance. As indicated in Fig. 14c, Rct near
the separator increases when the discharging rate decreases from 5C
to 1C, but decreases when the discharging rate further reduces to C/
2, and C/100. Figure 12 shows that the cathode impedance increases
when the discharging rate decreases from 5C to 1C, but decreases
when the discharging rate increases to C/2 and C/100. Figure 12a
shows the similar variation appears in the high-frequency arcs.

Summary and Conclusions

Electrochemical impedance spectra play important roles in assisting
the design, characterization, and operation of electrochemical cells (e.g.,
batteries, fuel cells, electrolyzers, etc.). The measured EIS are typically
interpreted in terms of equivalent-circuit models, with circuit elements
being associated with physical behaviors. However, although very widely
practiced and accepted, the circuit-to-physics association is indirect and
heuristic. Physics-based models represent electrochemistry and transport
processes in terms of conservation equations that can be posed as partial
differential equations and solved computationally. These models directly
incorporate physical and chemical processes. Several computational
approaches have been developed to exercise the physics-based models
to extract electrochemical impedance spectra. The present approach is
computationally efficient and provides new avenues to assist EIS
interpretation.

Figure 12. Impedance spectra of the full cell, anode, and cathode at 50%
SOC when the battery is discharged from 100% SOC to 50% SOC at rates of
5C, 3C, 1C, C/2, and C/100. To maintain quantitative readability, note that
the axis scales are different for each of the sub-plots. The markers identify
selected frequencies on the Nyquist plots. Model A parameters are used.

Figure 13. Spatial profiles of i0, ηact and Rct within the anode at 50% SOC
when the battery is discharged from SOC = 100% at five different discharge
rates: 5C, 3C, 1C, C/2, and C/100. Model A parameters are used.
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Models that solve transient conservation equations can be written
abstractly as nonlinear state-space models. That is, simply put, the
rates of change of state variables x depends upon nonlinear functions
f of the states themselves, constitutive functions, physical para-
meters, and input actuations u. These models can be linearized by
evaluating four Jacobian matrices that, for example, represent partial
derivatives such as A= ∂f/∂x. Although the practitioner must have
access to the model’s source code, the Jacobian evaluation via
numerical differentiation is efficient and straightforward. With the
Jacobians in hand, evaluating the complex impedance (i.e., the EIS)
is a matter of straightforward matrix manipulations. Although the
mathematics of this process are well established, the authors are
unaware of any prior application for batteries or other related
electrochemical applications.

In addition to evaluating full EIS from the physics-based models,
the algorithm can also to evaluate partial EIS. For example, the
individual contributions of an anode or cathode alone can be
evaluated. Although these partial contributions cannot be easily
measured, understanding physics-specific contributions can assist
interpretation of full impedance spectra.

Experimentally, EIS battery measurements are typically made
around some steady-state operating point (e.g., open circuit at an
equilibrium state of charge). The present algorithm, however, can
evaluate the EIS at any instant during a transient, whether or not the
battery is equilibrated. For example, assume a cell is fast charged to

a specific SOC. Immediately upon reaching the SOC, there will be a
non-equilibrated distribution of Li within the cell. Over time, at the
fixed SOC, the battery will redistribute the Li to relax any
concentration gradients within the electrode structures. Although
the instantaneous EIS is not easily measured experimentally,
valuable insights can be drawn from the model-predicted instanta-
neous, non-equilibrated, impedance spectra.

The combination of physics-based models and efficient EIS
extraction can play a valuable role in evaluating physical parameters
that are often included empirically in models. Physics-based models
(e.g., P2D) are frequently validated using polarization measurements
(voltage vs. current) alone. However, there can be significant
ambiguity in the resulting best-fit parameters. Models that represent
both polarization and EIS data can assist the establishment of
reliable physics-based parameters.
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Appendix A. Properties of LiPF6 in EC:EMC (3:7 w:w)
Electrolyte

For LiPF6 in EC:EMC 3:7 (w:w) electrolyte, the intrinsic lithium-
ion diffusivity ◦

+D
Li

(cm2 s−1) can be expressed as functions of T (K)
and +CLi (M) as64
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and +CLi (M) is expressed as

∑ ∑σ σ= [ · ]
ℓ

ℓ ℓ◦

= =
+T C , A 3

k

k
k

el
1

4

0

4

Li

where σkℓ are listed in Table A·II.
The transference number +

◦t as functions of +CLi (M) and T (K) is
expressed as

∑ ∑= [ · ]
ℓ

ℓ ℓ
+
◦

= =
+t t T C , A 4

k

k
k

0

2

0

2

Li

where tkℓ are listed in Table A·III.

Figure 14. Spatial profiles of i0, ηact and Rct within the cathode at 50% SOC
when the battery is discharged from SOC = 100% at five different discharge
rates: 5C, 3C, 1C, C/2, and C/100. Model A parameters are used.
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Appendix B. Reversible Potentials of LiC6 and NMC532
The open-circuit potential of the graphite anode En

eq is fitted as a
function of θ = C Cn Li Li, LiC

max
6
as64

= + ( − ) [ · ]E E E HE , B 1n
eq

1 2 1

where

∑ α θ β γ= + ( + ) [ · ]
=

E E tanh , B 2
k

k k k1 0

1

8

n

∑ ξ θ= [ · ]
=

E , B 3
k

k
k

2

0
n

ζ θ θ= + [− *( − )] [ · ]H 1.0 exp , B 4n 0

with the parameters of =E 0.659 473 500 484 7470 , ζ= 100.0,
θ0 = 1.029 562 032 151 98. The parameters αk, βk, γk, and ξk are
listed in Table B·I.

The open-circuit potential of NMC532 is fitted as a function of
θ = C Cp Li Li,NMC

max as64

∑θ θ= ( ) + [ · ]
=

E a a bexp , B 5a

k

k
k

p
eq

1 2 p
0

14

p
3

where the parameters ak and bk are listed in Table B·II.

Appendix C. Electrode Diffusion DLi
The temperature-depended diffusivity of lithium in the electrode

particles DLi can be generally expressed as

= − − [ · ]◦
⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥D D

E

R T T
exp

1 1
C 1Li Li

Li
Diff

ref

where ELi
Diff is the activation energy, ◦DLi is lithium diffusivity at the

reference temperature of Tref.
For the LiC6 particles, = ×◦ −D 1.750 10Li, LiC

13
6

m2 s−1, and

=E 30.0Li, LiC
Diff

6
kJ mol−1. For NMC532, = × γ◦D 1.125 10Li, NMC

with γ θ= ∑ = ak k
k

0
10

p , and the parameters ak are listed in Table C·I,

and the activation energy =E 30.0Li, NMC
Diff kJ mol−1.

Table A·II. Parameters for electric conductivity σ◦
el.

k σk1 σk2

0 +9.003410 × 10+00 −2.414638 × 10+02

1 −8.038545 × 10−02 +3.195295 × 10−00

2 +1.909446 × 10−04 −1.583677 × 10−02

3 +3.483638 × 10−05

4 −2.887587 × 10−08

k σk3 σk4

0 +1.380 976 × 10+02 −2.335 671 × 10+01

1 −1.828 064 × 10−00 +3.090 003 × 10−01

2 +9.071 155 × 10−03 −1.532 707 × 10−03

3 −1.998 760 × 10−05 +3.377 143 × 10−06

4 +1.653 786 × 10−08 −2.791 965 × 10−09

Table A·III. Parameters for transference number +
◦t .

k tk1 tk2 tk3

0 +3.091 761 × 10−01 +1.777 266 × 10−01 −3.881 203 × 10−02

1 +6.389 189 × 10−04 −8.682 500 × 10−04 +2.077 407 × 10−04

2 −6.766 258 × 10−07 +1.161 463 × 10−06 −2.876 102 × 10−07

Table A·I. Parameters for diffusivity ◦
+D

Li
.

k Dk,0 Dk,1

0 −5.688 226 × 10−01 −1.607 003 × 10+03

1 −8.108 721 × 10−01 +4.752 914 × 10+02

2 −5.192 312 × 10−03 −3.343 827 × 10+01

Table B·I. Parameters for equilibrium potential En
eq of LiC6.

k αk k βk

1 −1.05942335557277 × 10−02 1 −1.45370842560956 × 10−02

2 2.44361520308711 × 10−02 2 −5.46426136995040 × 10−01

3 −1.63752078805381 × 10−02 3 −5.63902501447549 × 10−01

4 −6.54236562289641 × 10−02 4 −5.96037052423359 × 10−01

5 −4.17322605929349 × 10−02 5 −1.78767058786864 × 10−01

6 −4.79217816384689 × 10−01 6 3.84570785201182 × 10−03

7 −4.36429392407499 × 10−02 7 −9.44923189331833 × 10−02

8 −8.24116639676041 × 10−02 8 −7.74668578957223 × 10−02

k γk k ξk

1 9.089 868 397 988 61 × 10−05 0 −5.037944982759270 × 10+01

2 6.270 508 166 379 02 × 10−01 1 −1.228217254296760 × 10+01

3 7.053 886 409 518 52 × 10−02 2 −6.906367679257650 × 10+01

4 1.409 966 536 648 62 × 10+00 3 +3.437968012320620 × 10+00

5 7.693 844 911 793 47 × 10−02 4 +3.322960033709470 × 10+01

6 4.112 633 446 959 46 × 10−02 5 +5.913206621637760 × 10+01

7 −2.04677601257078 × 10−02 6 +1.233160814852810 × 10+02

8 3.593 817 905 677 97 × 10−02 7 +8.252008712749000 × 10+01

8 −1.731504647676420 × 10+02

Table B·II. Parameters for OCV of NMC532.64

k ak k ak

1 −5.57319176272331 × 10−4 3 4.148209275061330 × 101

2 6.56024084265969 × 100

k bk k bk

0 5.31473563300030 × 100 8 −1.07437433318619 × 104

1 −4.15827660360906 × 100 9 −2.05780887352635 × 103

2 2.72340921804213 × 101 10 1.26563097851240 × 104

3 −2.72485166844578 × 102 11 −1.57109426436509 × 103

4 1.19022342119331 × 103 12 −1.45574206229136 × 104

5 −2.07376554757481 × 103 13 1.31765754448427 × 104

6 −8.29790460410703 × 102 14 −3.64011769200149 × 103

7 8.69811275534872 × 103
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Appendix D. Charge Transfer Rates
For NMC532, the lithium concentration dependence of the

exchange current density *iLi, NMC can be fitted as function of θed
(=θp) as

∑* θ= [ · ]
=

i a , D 1
k

k
k

Li, NMC
0

5

ed

where ak are listed in Table D·I. The parameters of temperature
dependence of exchange current density are take as i0°= 3.0, and

=E 30Li, NMC
act kJ mol−1.
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