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Abstract. Current wind resources within the United States (US) indicate a potential to profitably 
install nearly 1,400 gigawatts of distributed wind (DW) capacity. This amount is equivalent to 
over half of the United States’ current energy demand from electricity, making it enough to 
power millions of homes and businesses and replace countless fossil fuel-based generating 
plants. Despite the potential growth of DW in the US, deployments are presently hindered by a 
lack of confidence in resource estimation methods. One potential challenge is that smaller-scale 
turbines, with hub heights of 40 meters or less, are disproportionately impacted by obstacles such 
as buildings and vegetation. These obstacles may produce complex wake effects, best modeled 
with high-fidelity complex fluid dynamics (CFD) models that are too computationally expensive 
to use for routine siting and resource assessment. Thus, installers today make use of heuristics 
and simple equations to approximate the impact of obstacles while also leveraging long-term 
resource data from commercial or publicly available atmospheric models. This study evaluates 
these historical and commonly used methods alongside new lower-order obstacle models 
produced from CFD simulations and measurement-based bias correction. The preliminary results 
from this study show the importance of taking care in the choice and application of mesoscale 
atmospheric models and the significant value of bias correction using measurements from nearby 
meteorological towers. Detailed obstacle modeling provides only modest additional gains in 
performance and, in some cases, can add error, especially at sites where turbines have already 
been located to avoid obvious impact from upwind obstacles. These findings reinforce the 
importance of collecting in situ measurements and suggest that obstacle models may be better 
applied in practice to automated or computer-aided siting, rather than in economic wind resource 
assessments. 

1.  Introduction  

Distributed energy resources (DERs) provide energy solutions to communities, individuals, and regions 
at or near the location of energy use. In the realm of wind energy, distributed wind (DW) involves 10- 
to 60-meter turbines appropriate for deployment in a broad range of application areas including 
residences, farms, industrial sites, and campuses. Recent studies have found a significant opportunity to 
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utilize distributed wind to meet US energy needs [1]. Despite this significant opportunity, adoption of 
such technology is hindered by the cost of projects, confidence in the underlying technology and 
resources, and availability of incentives. A lack of confidence in the technology is propelled by limited 
availability of accessible energy production predictions. While their utility-scale counterparts can afford 
in-depth wind resource site assessments, DW relies on less computationally expensive models and 
survey methods to make estimations of the available resources. Due to the financial limits of DW siting 
operations, a higher dependence is found on the results of such models and estimations. However, 
because of the presence of obstacles and vegetation closer to the hub height of the turbine, modeling the 
resource is significantly more difficult.  
    This study looks at methods for modeling obstacle impacts on resource assessment and siting. Models 
determined to be usable for this application include: (1) classic simplified empirical models well utilized 
by industry (e.g., [2]), (2) new reduced-order models developed from machine learning and complex 
fluid dynamics (CFD) simulations [3], and (3) urban dispersion models adapted for use in wind turbine 
siting [4]. A prior study with EAZ Wind in the Northern Netherlands found newer obstacle models 
tended to outperform legacy methods and that data-informed approaches, including a priori bias 
correction, resulted in the largest performance gains [5]. The present study significantly extends that 
work to develop best practices and recommendations in a broad range of topographies, environments, 
and resource conditions in the continental US. To analyze each approach, this study leverages data from 
existing installations in collaboration with Bergey Windpower. The chosen turbine sites represent a 
spatially diverse cohort, with detailed data available from multiple years of continuous operation. 
 

Table 1. Summary of data sources 

 Data Source Variables Locations Spatial 
Resolution 

Data 
Points 

Duration 

A
tm

os
. 

M
od

el
 

D
at

a 

WIND Toolkit [8] Wind speed, 
direction, 
temperature, 
pressure 

19 2 km 1.1 M for 
sites, 613 
k for bias 

7 years (2007–
2013) 

O
bs

er
va

tio
na

l D
at

a 

Bergey Wind 
Power Production 
and Excel 10 
Power Curve 

Power (kW) 19 N/A 67 k 
(daily), 
6.4 M (5-
minute) 

13 years, 
beginning in 
2010 

Northern Power 
Systems Nacelle 
Anemometer 

Wind speed 
and direction 

131 N/A 63.5 
million 

Varies by site 
between 2010 
and 2023 

USGS 3DEP 
Lidar Point Cloud 
[11]  

Intensity 
(elevation) 

1-km 
radius 
around 
each 
turbine 

0.34–1.4 m Billions Collection date 
varies by site 
2017–2021 

USGS 3DEP 
Topobathymetric 
Digital Elevation 
Model [11] 

Elevation 1-km 
radius 
around 
each 
turbine 

Derived 
from lidar 

Billions Collection date 
varies by site 
2017–2021 
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IS

 D
at

a 

3DBuildings.com 
Vector Building 
Data [10] 

Polygonal 
buildings 

1-km box 
around 
each 
turbine 

N/A 2,463 
objects, 
17,063 
vertices 

Downloaded 
March 2023  

Google Satellite 
Orthoimagery 

Polygonal 
buildings, 
computed 
heights 

Obstacles 
within 
100-m 
radius 

+/- 5 m 187 Coded March–
April 2023 

2.  Data 
Table 1 provides a summary of the data sets used in this study grouping by data category. In the 
following subsections, we will discuss each data set in detail. 

2.1 Reanalysis Mesoscale Atmospheric Data 
Wind source data from mesoscale atmospheric models are essential to both drive the obstacle deficit 
models and for understanding the long-term wind resource and temporal (seasonal and interannual) 
variability. Prior studies have shown significant differences in the performance of both publicly 
available and commercial models for DW siting and resource assessment [6]. In this study, we use and 
evaluate the popular, well understood, and publicly available Wind Integration National Dataset 
(WIND) Toolkit (WTK). Studies have shown that these data are best used in tandem with vertical and 
spatial interpolation, and when augmented with a priori bias correction from fitted measurements [7]. 
Thus, we use these methods in tandem with WTK. 

The WTK provides wind resource data at relatively high horizontal (2-km), vertical (generally every 
20 m up to 200 m), and temporal (5-min) resolution. The WTK meteorological data set, a product 
collaboration between the National Renewable Energy Laboratory and 3Tier, was created using the 
Weather Research and Forecasting (WRF) model version 3.4.1. The WRF model was initialized and 
forced at the boundaries using the European Centre for Medium-Range Weather Forecasts Interim 
Reanalysis data set with the model terrain, roughness, and soil properties sourced from the U.S. 
Geological Survey (USGS) GTOPO30 data. The model physics included the Noah land surface model, 
the Yonsei University boundary layer parameterization, and topographic wind enhancement [8]. 

2.2 Production Data from Turbines 
Production data for the Bergey Wind Power Excel 10 turbines are accessed through a portal created by 
APRS World, LLC [9]. The Bergey production collection includes daily turbine generation data (kWh 
energy) along with turbine diagnostics that provide insight into turbine availability and fault 
occurrences. Beginning in July 2018, the Bergey energy generation and fault timeseries switch to 10-
second resolution. Data used in this study are aligned to the corresponding highest-resolution wind 
resource data available, hourly for the WTK. 
      Bergey turbines report various error codes including curtailment for grid conditions (“soft grid”), 
reset, manual stop, and general fault. We exclude those days from this study with >1% error or 
curtailment, requiring no cumulative error greater than 15 minutes. We choose to include those days 
with 0 kW production but no reported errors, which we assume are days where the wind is below the 
cut-in. The Excel 10 turbines used in this study have a maximum power output of 12.5 kW (at 
approximately 16 m/s) and a cut-in wind speed of 2.5 m/s. 

2.3 Obstacle Data 
To curate obstacle data for our models to use for each site, we combined a commercial building footprint 
data set from 3dBuildings.com with height data calculated using recently released USGS 3DEP lidar 
point cloud data [10,11]. The process for creating the final obstacle model for each site is as follows: 
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1. Footprints: Building footprints are obtained for a 1 km x 1 km bounding box around each 
turbine using a commercial service. These data are downloaded as a GeoJSON file using the 
API. 

2. Lidar: The USGS 3DES lidar data index is used to identify lidar data availability at the turbine 
location. If this data is at least QL2 or better (approximately 0.7-m accuracy), we download the 
corresponding metadata and point cloud data from the associated server location. All tiles whose 
extent overlaps with a 1-km diameter circle around the turbine are downloaded.  

3. DEM: Using the same index, raster topobathymetric Digital Elevation Model (DEM) data are 
downloaded. These data are derived from the lidar data and serve as an estimate surface model 
from which the obstacles in the point cloud lidar data can be separated.  

4. Annotation: Google satellite orthoimagery is used to identify missing obstacles from the 
building footprint files, and these are manually annotated. In addition, large vegetative objects 
(trees, shrubs, hedgerows, and forested areas) are added at this time. These manual annotations 
are done on a best-effort basis. Polygons are drawn around each apparent obstacle interactively 
using the QGIS tool within a 100-m diameter area around each turbine [12]. 

5. Zonal Statistics: Heights of all obstacles are calculated using the lidar data, which is rasterized, 
aligned with the DEM and zonal statistics are calculated for each polygon (building or 
vegetation footprint). As our models assume constant height obstacles, we utilize the median 
point cloud height for buildings and the maximum point cloud height above the surface for trees.  

 
While this method works well, there are boundary cases that are worth mentioning. Because 

orthoimagery is from the current year (2023) and the lidar data may have been collected years earlier, 
and at a different year for each site, there is the possibility that obstacles will be identified that are not 
present at the time of lidar scanning. In practice, any obstacle with a calculated height less than 2 m is 
excluded. Relatedly, because each GIS data source is collected at a singular point in time, it is impossible 
to fully understand how changes in obstacles over the course of several years may have impacted a 
turbine differently, e.g., construction, demolition, or simply the growth of trees and vegetation. We 
ignore this possible impact, assuming that point-in-time obstacle assessment is close enough for 
practical purposes and represents a realistic use case. 
 
Table 2. Summary of Validation Sites providing wind rose and simplified obstacle maps. The obstacle 

maps show vegetation in green and built obstacles (buildings primarily) in blue. The location of the 
turbine is at the center of each image. 

ID State 

Hub 
Height 

(m) Land Use 

Obstacles Within  
500-m Radius of 

Turbine 

Obstacles Within  
100-m Radius of 

Turbine Wind Rose 
t034 NY 31 Forest 

   
t041 IA 37 Cropland 
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t133 IL 37 Cropland 

   
t139 IA 31 Cropland 

   
t140 NY 37 Cropland 

and 
suburban 
residential 

   
t169 IN 37 Suburban 

residential 

   
t170 MI 24 Forest, 

cropland, 
and rural 

residential 

  
 

t182 NY 37 Forest, 
cropland, 
and rural 

residential 

  
 

t192 VT 43 Cropland 
and forest 

   

t207 IL 37 Suburban 
residential 

   
 

3.  Methods 
The design of our validation experiment is as follows: 
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1. Select candidate validation sites in representative locales and obtain obstacle data. For this 
study we identified 10 sites with sufficient data, metadata, and representing a diverse cohort for 
analyses. Details including obstacles, wind rose, and terrain type are provided in Table 2. 

2. Gather data from the WTK and perform vertical and spatial interpolation as appropriate 
following the methodology in [7]. 

3. Bias-correct the WTK data using site-proximal measurement data. We evaluate scenarios 
both with and without bias correction. 

4. Assess obstacle impacts with each model using resource data inputs (wind speeds and 
directions) and obstacle data. We evaluate scenarios both with and without these models. 
 
 

3.1 Bias Correction 
Bias correction is the process of a priori adjustment of the input wind resource data using data from 
nearby meteorological tower data that overlaps temporally with the resource data. To provide a bias 
correction for our sites, we consulted with Northern Power Systems (NPS) to utilize a data set of 93 
nacelle-mounted anemometers (see Table 1) having at least one year of continuous data. These data are 
broadly distributed across the central and eastern US, Alaska, and Hawaii with a temporal resolution of 
10 minutes and height of 30–37 m. For each validation site, we select those NPS data within a 200-km 
radius. The availability of data for bias correction is a significant factor in the selection of validation 
sites, limiting our study to the 10 sites selected. While we have evaluated the inclusion of meteorological 
data from diverse sites (including airports), we believe these data to be best-in-class, both for broad 
spatial distribution and consistency in instrument and measurement quality. 

We follow the same method of multivariate least squares linear bias correction proposed and 
evaluated in our prior work in the Northern Netherlands [5]. This involves fitting a multiple linear 
regression with the following form (Equation 1): 
 

𝑤!"# = 𝑥$ +𝑤%&'𝑥( + 𝑑%&'𝑥) + ℎ𝑥* +𝑚𝑥+, 
Equation 1: Multivariate least squares linear bias correction. 

 
Where 𝑤!"#  is the observed wind speed at the meteorological tower, 𝑤%&'  is the WTK estimate for the 
wind speed, 𝑑%&' is the direction of the model data in degrees, h is the hour of the day (0-23), and m is 
the month of the year (1-12). Values for the coefficients x0, x1, x2, x3, and x4 are fitted with least squares 
regression. We have found in repeated experiments that the wind speed and direction contribute the 
greatest information to this fit. However, the hour and month do slightly improve the fidelity of the fit 
overall. Similarly, nonlinear and nonparametric methods have not shown a meaningful performance 
improvement compared to this linear approach. For each meteorological tower, we fit this model using 
spatially and vertically interpolated WTK data at that site. Finally, we apply this model to wind resource 
data at the site of the nearby wind turbine producing the bias corrected estimates. 

3.2 Obstacle Models 
We evaluate four obstacle models in this study—three from the literature and two of novel design: 

1. Perera: This classic model provides a closed form equation for the deficit in velocity that occurs 
behind a thin (in wind direction), infinite-length obstacle of a given porosity such as a fence or 
hedgerow. This model, designed in 1981 from wind tunnel experiments, was tailored to the 
scenario in which the wind was perpendicular to the length of the given obstacle [2]. 

2. Shelter and Shelter+: In addition to the classic Perera model, a variety of extensions exist, one 
of which is the SHELTER model proposed as part of the WaSP toolkit [13]. This model allows 
for finite obstacle lengths to be added, which can better model buildings and vegetation. 
Shelter+ improves Shelter by allowing rotation in the simplified obstacles. Within this study, 
implementation of these models was performed following the literature descriptions.  
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3. PILOWF: As a potential improvement using more modern methods, we developed the Physics-
Informed Low Order Wake Flow (PILOWF) model for predicting wake characteristics behind 
buildings. To train the model, we used an extensive data set obtained from Reynolds-averaged 
Navier-Stokes (RANS) simulations, focusing on the flow structure in the wake of buildings [3].  

4. QUIC: The Quick Urban & Industrial Complex (QUIC) dispersion modeling system was 
designed to compute wind fields in dense built-up urban areas [4]. QUIC can run on a laptop 
with one simulation, requiring only seconds to minutes, and has been demonstrated to predict 
wind fields that were comparable to CFD modeling results for practical applications [14]. To 
support DW applications, we improved QUIC with a diffusive wake model that extends both 
laterally from the sides and vertically above the top of the building using machine-learning 
techniques on time-averaged high-fidelity Large Eddy Simulation.  

Each obstacle model is evaluated with four different sets of obstacles: (1) bldgsonly: all buildings 
within 1 km, (2) bldgsonly_100m: all buildings within 100 m, (2) treesasbldgs_100m: buildings and 
vegetation within 100 m, (3) treesasbldgs: all buildings within 1km and vegetation within 100 m. 

3.3. Error Metrics 
To support consistent and comparable evaluation of model performance across diverse sites, we propose 
the nomenclature in Table 3. The metric, f, selected here is normalized to daily production, allowing 
comparability between sites with different performance. We also require error metrics that can be 
averaged without canceling error. Thus, we define the following quantities: 
 

Table 3: Variable Definitions and Error Metrics 

Name Notation Description 
Predicted 

energy 
𝑒 Daily energy production estimates obtained by running input wind 

speeds through the turbine’s power curve and aggregating hourly.  
Energy 

measurements 
𝑒∗ Daily energy production observed. These values are treated as 

“ground truth” for validation purposes. 
Performance 

factor, 𝑓 𝑓 =
∑𝑒
∑𝑒∗

 
Energy estimates scaled by measurements for a given time frame. 𝑓 =
1 would occur when estimates perfectly match observations. Values 
below 1 indicate a net underestimation, whereas values above 1 
suggest overestimation of the wind speed (resource).  

4.  Results 
To evaluate the performance of the models, we begin by defining the baseline performance of the 
mesoscale (WTK) data alone and with the addition of bias correction. Figure 1 shows these results. For 
the sites studied, the uncorrected WTK shows a positive bias (overestimation) for most sites. Applying 

Figure 1: Baseline performance for WTK at each site, with and without bias correction. Bias 
correction shows improvement in all but two cases and an average improvement of 55%.  
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bias correction improves the accuracy of the WTK at nearly all sites. Notably, sites t034 and t140 are 
coastal sites—the former on the coast of Lake Ontario, the latter on the Atlantic seashore. At these sites, 
the WTK significantly overestimates windspeed, presumably due to the grid including the water, but 
bias correction significantly improves the result. Similarly, t170 and t169 are sites in suburban areas and 
all happen to be on college campuses with appreciable surrounding infrastructure. These results suggest 
that on average a 55% improvement in performance may be achieved with bias correction, and at some 
sites (e.g., t034 or t170) the gain can be much greater (e.g., 150-200%).  
     Figure 2 provides results for the addition of obstacle modeling in overall performance for each of our 
sites, and Table 4 provides aggregate results for the bias-corrected case. For brevity, Shelter and Shelter+ 
have been excluded but show performance very similar to Perera. We can see that the more advanced 
obstacle models are very conservative in their calculation of velocity deficit, suggesting very minor 
adjustments that make little impact on the overall performance. The Perera family of models make larger 
adjustments, improving the performance for some sites, but worsening it for others. While the Perera 
model is the best-performing overall, we suspect that this may be due to it having benefitted from the 
typical overestimate of the wind resource in the source WTK data, whereas the use of a different 
mesoscopic data may lead it to underestimate in these same conditions. 

Figure 2: Performance for the obstacle models studied: (top) QUIC, (middle) Perera, and 
(bottom) PILOWF.  
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Table 4: Results for all obstacle models with bias correction. 

Wind 
Source 

Obstacle 
Model 

Obstacle Group Avg. 
Performance 

Factor f 
Bias-

Corrected 
WTK 

None none 1.27 
PILOWF bldgsonly 1.27 

bldgsonly_100m 1.28 
treesasbldgs 1.28 

treesasbldgs_100m 1.28 
QUIC bldgsonly 1.30 

bldgsonly_100m 1.31 
treesasbldgs 1.29 

treesasbldgs_100m 1.31 
Perera bldgsonly 1.05 

bldgsonly_100m 1.26 
treesasbldgs 0.97 

treesasbldgs_100m 1.16 
Shelter bldgsonly 1.27 

bldgsonly_100m 1.27 
treesasbldgs 1.23 

treesasbldgs_100m 1.23 
Shelter+ bldgsonly 1.27 

bldgsonly_100m 1.27 
treesasbldgs 1.26 

treesasbldgs_100m 1.26 
 
 Evaluating the choice of which obstacles to include does not lead to appreciable differences 
for most of the models. Indeed, the PILOWF model shows almost identical performance, regardless of 
which obstacles are included, and does worsen the performance on average when vegetation is included. 
QUIC behaves similarly, making only very minor adjustments, yet worsening the performance overall. 
We suspect this may be due to the QUIC model overemphasizing the diffusive wake (wind speed 
acceleration over obstacles) and this combining with the starting overestimation of the WTK. QUIC 
may perform better with resource data exhibiting lower starting positive bias. Shelter and Shelter+ 
appear to make more cautious adjustments compared to the baseline Perera model, but do not make a 
significant improvement in doing so.  As mentioned above, the performance of Perera is best on average, 
but the high degree of variability in performance with differing obstacle input sets suggest caution 
should be advised when using this model in practice. Simply put, the Perera model reduces the wind 
speed proportionally to the number of obstacles included, which works here due to the positive bias of 
the WTK but may not in other scenarios. 

5.  Conclusions 
In this study, we performed a first-of-its-kind evaluation of current best-effort methods to estimate 
performance of distributed wind turbines in realistic environments in the continental US. Despite the 
observation that smaller turbines are disproportionately impacted by wake turbulence from terrestrial 
obstacles, our findings show that much greater gains in performance estimation can be obtained by 
improving atmospheric, mesoscopic inputs, as compared to modeling obstacle impacts. In alignment 
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with this finding, measurement-based bias correction appears to offer consistent gain in performance 
estimation and siting. Including detailed obstacle models, however—whether modern and advanced, or 
staid examples from the literature—appears to decrease accuracy as often as it improves it and 
demonstrates a concerning sensitivity to the size and composition of the obstacle specifications used. 
Taken together, these results suggest necessary caution in application of these models, additional work 
to understand where they are best applied, and renewed and ongoing investment in measurement. 
     Although this study is the most comprehensive of its kind, there are limitations that merit discussion. 
All turbines used in this validation were presumably sited to minimize impact from surrounding 
obstacles. Because of this, we can assume the apparent impact due to obstacles is minimized a priori, 
putting the obstacle models at a disadvantage in creating a meaningful impact. Secondly, our study data 
set has some limitations in terms of spatial diversity due to our inability to locate suitable turbines or 
meteorological towers—this is especially true for the western US. Lastly, we chose to use the WTK due 
to its popularity for applications in this area and high fidelity despite it being a 7-year data set (not 20, 
as is industry standard). While we cannot practically address the first concern, we intend to address the 
latter two in future work by incorporating additional bias correction data and comparative re-analyses 
data sets (e.g., WTK-LED, WTK’s forthcoming successor, and ERA5). 
 Based on these findings, installers of distributed wind turbines are best advised to combine the 
highest-accuracy long-term wind resource data they can obtain with statistical bias correction using 
either nearby meteorological tower data or, ideally, short-term measurement deployment. If no nearby 
observations exist to perform bias correction, it is recommended to consult multiple wind resource data 
sets to obtain a range of estimates. Based on our findings here, we cannot advocate for one obstacle 
model over another, but we advise comparing multiple models if choosing to include obstacle 
assessment in resource estimation. In future work, we expect to further evaluate obstacle models for the 
purpose of automated turbine siting and sizing, which may be an application better suited to their 
abilities. 
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