
Particle Count Fast Multipole Method Forward Mode Reverse Mode Implicit Reverse Mode
10 0.002 s 0.56 MB 0.003 s 0.84 MB 1.174 s 577.37 MB 0.030 s 13.52 MB

100 0.005 s 2.95 MB 0.010 s 3.54 MB 4.390 s 1,329.00 MB 0.130 s 67.61 MB
1,000 0.110 s 34.29 MB 0.240 s 43.93 MB Memory Overflow 2.122 s 878.18 MB

10,000 0.257 s 255.00 MB 0.425 s 279.76 MB Memory Overflow 30.820 s 8,398.00 MB
The general nature of our project and the extremely widespread use case of gradient calculation 
means that there are many avenues for collaboration and opportunities to use our methods in 
other research areas. We are particularly interested in physics-informed machine learning, 
uncertainty quantification, and extensions of this method to stochastic algorithms such as 
Monte Carlo algorithms and Bayesian optimization approaches.

The impact of this project is incredibly wide ranging: by enabling the algorithmic calculation of 
gradients across disparate models and arbitrarily constructed iterative solvers, we will unlock 
sensitivity and optimization studies of models and simulations that would otherwise be 
intractable. The derivatives provided by this framework will decrease the burden on 
computational scientists to painstakingly construct derivatives manually, reduce unnecessary 
memory usage, and scale to a new class of problems characterized by more controls and 
degrees of freedom than are possible with the current state of the art.

Reverse Mode
In Reverse mode, we have access to �𝑢𝑢, the 
local derivative of design variables with 
respect to the special node’s outputs, 𝑢𝑢. The 
goal of the special node is to compute �̅�𝑥 using:

�̅�𝑥 = 𝐽𝐽𝑇𝑇 �𝑢𝑢.
First, transpose the tangent system:

𝐽𝐽𝑇𝑇𝐴𝐴𝑇𝑇 = −𝐵𝐵𝑇𝑇 .
Next, multiply by an unknown vector, 𝑧𝑧:

𝐽𝐽𝑇𝑇𝐴𝐴𝑇𝑇𝑧𝑧 = −𝐵𝐵𝑇𝑇𝑧𝑧.
Solving the linear system 𝐴𝐴𝑇𝑇𝑧𝑧 = �𝑢𝑢, for 𝑧𝑧 allows 
for the following substitutions: 

𝐽𝐽𝑇𝑇𝐴𝐴𝑇𝑇𝑧𝑧 = −𝐵𝐵𝑇𝑇𝑧𝑧,
𝐽𝐽𝑇𝑇 �𝑢𝑢 = −𝐵𝐵𝑇𝑇𝑧𝑧,
�̅�𝑥 = −𝐵𝐵𝑇𝑇𝑧𝑧.

Now, �̅�𝑥 can be computed using the Jacobian 
vector product, −𝐵𝐵𝑇𝑇𝑧𝑧. 

In Forward mode, we have access to the dual 
input, �̇�𝑥, which is the local derivative of the 
special node’s input with respect to the design 
variables. The goal of the special node is to 
return �̇�𝑢, which can be computed using:

�̇�𝑢 =
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

�̇�𝑥 = 𝐽𝐽�̇�𝑥.

Multiplying both sides of the tangent system by 
�̇�𝑥, yields:

𝐴𝐴 𝐽𝐽�̇�𝑥 = −𝐵𝐵�̇�𝑥,
 𝐴𝐴�̇�𝑢 = −𝐵𝐵�̇�𝑥.

The RHS, −𝐵𝐵�̇�𝑥 = 𝑔𝑔, can be computed as a 
Jacobian vector product to get:

𝐴𝐴�̇�𝑢 = 𝑔𝑔
Solving this linear system for �̇�𝑢 allows the 
special node to output its gradient information. 

DOE ASCR Computational Science Principal Investigators Meeting
Atlanta, GA. February 4-7, 2024

NREL/PO-2C00-88610

Handling Iterative Solvers in an Algorithmic 
Differentiation Framework using Implicit Methods

Jeffery M. Allena, Olga Doroninaa, Jon Maacka, Ethan Younga, Andrew Ningb, Adam Cardozab, Eric Greenb 

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. DOE Office of Science, Advanced 
Scientific Computing Research, Exploratory Research for Extreme-Scale Science program under DE-FOA-0002717. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the 
publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

aComputational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
bMechanical Engineering, Brigham Young University, Provo, UT 84602, USA

Abstract

References
[2] Charles C. Margossian, “A review of automatic differentiation and its efficient implementation,” WIREs Data Mining and Knowledge Discovery, 

9(4):e1305, 2019.
[3] Andrew Ning and Taylor McDonnell. Automating Steady and Unsteady Adjoints: Efficiently Utilizing Implicit and Algorithmic Differentiation. arXiv. 2023.
[4] J. D. Eldredge, “A method of immersed layers on Cartesian grids, with application to incompressible flows,” Journal of Computational Physics 448: 

110716, 2022.
[5] Olga A. Doronina, Zachary J. Grey, and Andrew Glaws. “G2Aero: A Python Package for Separable Shape Tensors,” Journal of Open Source Software 

8, no. 89 (September 20, 2023): 5408

This project fills a gap in simulation and optimization research by developing solutions to (1) 
propagate AD gradients between very disparate simulations and (2) maintain problem tractability 
even when long sequences of such operations are necessary (e.g., time stepping or iterative 
solves)

Motivation

If AD is used to natively compute gradients 
with respect to a solve, the resulting 
computational graph will be unnecessarily 
complex. Instead, the solve is treated as a 
special node on the graph, which relies on 
the fact that the solution of a system does not 
depend on the solver path. This results in 
trading a complex computational graph 
with an additional linear solve. 

Approach

We are currently focused on verifying the scaling and timing performance of the Implicit AD 
approach relative to commonly-used alternatives—including finite differences and direct 
forward/reverse mode—for benchmark problems and test cases like those shown below.

Preliminary Results

Potential Impact

Collaboration Opportunities

We are currently working on applying these computational and theoretical advances to more 
domain-specific problems from aerodynamics and physics. This demonstrates the broad 
applicability of the Implicit AD tools while motivating further developments.

Future Work

The Implicit AD package significantly outperforms other state-of-the-art methods for 
calculating derivatives across a variety of different use cases. These performance increases are 
evident for benchmark examples of root finding, ODE solvers, and an application for vortex 
particle methods over a wide range of degrees of freedom. As we begin to apply these tools to 
domain problems in earnest, we will focus on coupling fluid and structural solvers to 
demonstrate the ability to efficiently and accurately compose complicated derivatives across 
models and continue to advance our applications to stochastic models to further refine how 
similar computational steps can be aggregated and accessed for efficient memory usage. 

Conclusion

Explicit/Implicit ODEs Benchmark

Unsteady Loads for Turbine Blades

Vortex Particle Method

Stochastic Simulations

Airfoil Optimization
The benchmark ODE problem is a 
simple 2D heat transfer analysis on a 
thin plate with convection and 
radiation. For the explicit case, the 
Tsitouras 5/4 Runge-Kutta method is 
used, and the implicit case uses the 
Backward Euler method. In both 
cases, the number of inputs (states) is 
much greater than the number of 
outputs, so reverse mode AD should 
perform better. For the full details of 
the problem setup and results, see [2]. 

Comparing the loading forces on the tip of the blade computed 
using OpenFAST (OF) and our new method using Rotors.jl (R). 

The vortex particle method (VPM) is a mesh-
free, Lagrangian method in which particles 
representing vorticity at a point are used to 
solve the Navier-Stokes equations in their 
velocity-vorticity form. We use the fast 
multipole method (FMM) to calculate particle-
particle interactions and their associated 
derivatives in a scalable manner as the 
number of particles increases.

Snapshot of particles released from the trailing edge of a blade after 
40 time steps; as the simulation proceeds and more particles are 
introduced, enabling efficient inter-particle calculations becomes 
increasingly important.

Forward Mode

In this problem, we seek to maximize the 
simulated lift-to-drag ratio [3] by 
controlling airfoil shape. In this preliminary 
study, we restrict ourselves to modifications 
of 4 shape parameters [4], which capture 
the principally important modes of airfoil 
shape change, that is:

Tower
Joint probability distribution of position and momentum of 
optimized state (left). Parameter values through the 
optimization (top right). Position and Momentum marginal 
probability distributions (middle and bottom right).

Source: https://github.com/byuflowlab/ImplicitAD.jl
Docs: https://docs.juliahub.com/ImplicitAD/KnMWN/0.2.2/tutorial/

1. Propagating AD Gradients
For coupled approaches, we are developing 
a framework to pass AD gradients between 
different algorithms with different structures, 
e.g., a partitioned fluid-structure interaction 
simulation using the concept of algorithmic 
differentiation and unsteady adjoints.

2. Managing Iterative Simulations
Iterative solution methods pose a unique, 
related challenge in that many such 
couplings must be recorded, requiring 
prohibitive amounts of memory—custom 
rules to re-use repeated operations can 
eliminate this barrier [1].

Fluid Structure

Coupling Function

Maximize Lift-to-drag ratio (CL/CD)
with respect to t = [t1, t2, t3, t4]

subject to LB ≤ t ≤ UB constraints

Differentiable programming is a powerful concept as it enables the seemly propagation of 
gradients through functions, algorithms, and/or whole physics simulations. These 
gradients are useful for a wide variety of applications, including sensitivity studies and machine 
learning, but one of particular interest is optimization. Gradient-based optimization, enabled 
through automatic/algorithmic differentiation (AD), can be used on predictive physical 
models to efficiently optimize a set of design variables. AD methods are a particularly promising 
approach to complex physics simulations because they can be shown to scale well with an 
increasing number of design variables; however, care must be taken when coupling between 
different models or different states of a single model.

1. Define residual
𝑟𝑟 𝑥𝑥,𝑢𝑢 𝑥𝑥 = 0

2. Apply chain rule:
𝑑𝑑𝑟𝑟
𝑑𝑑𝑥𝑥

=
𝜕𝜕𝑟𝑟
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑟𝑟
𝜕𝜕𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

4. Since 𝑟𝑟 = 0 at the solution, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, yielding:
𝜕𝜕𝑟𝑟
𝜕𝜕𝑢𝑢

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

= −
𝜕𝜕𝑟𝑟
𝜕𝜕𝑥𝑥

3. Set 𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕

= A, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝐽𝐽, and 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑

= 𝐵𝐵:
𝐴𝐴 𝐽𝐽 = −𝐵𝐵

We want the action 
of this Jacobian!

These can be found using Forward or Reverse AD

The tangent system

Software Information:

In this problem, we seek to design a tower with minimal cost. The tower is subject to stochastic 
forces due to wind, and we want it to remain close to neutral while large magnitude displacement
and momentum is heavily 
penalized.

Simulation Time Time Steps Finite Diff Implicit Rev
14.0 s 250 621.7 s 24.8 s

Computation time and memory usage of the fast multipole method and the gradient calculation using various AD methods.

One of the preliminary test cases involves 
computing load forces on a turbine blade or, 
more specifically, the gradients of these forces 
for use in optimizations of turbine blades. We 
use Rotor.jl (built in Julia) to compute the 
gradients and have compared the resulting 
forces with OpenFAST. Using reverse 
unsteady adjoint method takes only 24.8 
seconds, which is 25 times faster than finite 
differences. 

Time to compute gradient for the explicit (left) and implicit (right) ODE 
problems as a function of the number of states for finite differencing, forward 
AD, reverse AD, and implicit reverse AD applied over each time step. 

Explicit ODE Performance Implicit ODE Performance

A table showing the performance of computing these derivatives.

A meshed turbine blade used for computing loads. 

https://github.com/byuflowlab/ImplicitAD.jl
https://docs.juliahub.com/ImplicitAD/KnMWN/0.2.2/tutorial/

