
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uhvc21

Science and Technology for the Built Environment

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uhvc21

Multi-scenario Extreme Weather Simulator
application to heat waves: Ko’olauloa community
resilience hub

Daniel L. Villa, Sang Hoon Lee, Carlo Bianchi, Juan Pablo Carvallo, Illya
Azaroff, Andrea Mammoli & Tyler Schostek

To cite this article: Daniel L. Villa, Sang Hoon Lee, Carlo Bianchi, Juan Pablo Carvallo, Illya
Azaroff, Andrea Mammoli & Tyler Schostek (2024) Multi-scenario Extreme Weather Simulator
application to heat waves: Ko’olauloa community resilience hub, Science and Technology for
the Built Environment, 30:4, 375-393, DOI: 10.1080/23744731.2023.2279467

To link to this article:  https://doi.org/10.1080/23744731.2023.2279467

Copyright © 2023 The Author(s). Published
with license by Taylor & Francis Group, LLC.

Published online: 20 Dec 2023.

Submit your article to this journal 

Article views: 538

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uhvc21
https://www.tandfonline.com/journals/uhvc21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23744731.2023.2279467
https://doi.org/10.1080/23744731.2023.2279467
https://www.tandfonline.com/action/authorSubmission?journalCode=uhvc21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uhvc21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23744731.2023.2279467?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23744731.2023.2279467?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/23744731.2023.2279467&domain=pdf&date_stamp=20 Dec 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/23744731.2023.2279467&domain=pdf&date_stamp=20 Dec 2023


Multi-scenario Extreme Weather Simulator application to heat
waves: Ko’olauloa community resilience hub

DANIEL L. VILLA1� , SANG HOON LEE2, CARLO BIANCHI3, JUAN PABLO CARVALLO2, ILLYA AZAROFF4,
ANDREA MAMMOLI1 and TYLER SCHOSTEK5

1Sandia National Laboratories, Albuquerque, NM, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA, USA
3National Renewable Energy Laboratory, Boulder, CO, USA
4þLab Architect PLLC, Brooklyn, NY, USA
5Purdue University, West Lafayette, IN, USA

Heat waves are increasing in severity, duration, and frequency. The Multi-Scenario Extreme Weather Simulator (MEWS) models this
using historical data, climate model outputs, and heat wave multipliers. In this study, MEWS is applied for planning of a community
resilience hub in Hau’ula, Hawaii. The hub will have normal operations and resilience operations modes. Both these modes were
modeled using EnergyPlus. The resilience operations mode includes cutting off air conditioning for many spaces to decrease power
requirements during emergencies. Results were simulated for 300 future weather files generated by MEWS for 2020, 2040, 2060, and
2080. Shared socioeconomic pathways 2–4.5, 3–7.0 and 5–8.5 were used. The resilience operations mode results show two to six
times increase of hours of exceedance beyond 32.2 �C from present conditions, depending on climate scenario and future year. The
resulting decrease in thermal resilience enables an average decrease of energy use intensity of 26% with little sensitivity to climate
change. The decreased thermal resilience predicted in the future is undesirable, but was not severe enough to require a more energy-
intensive resilience mode. Instead, planning is needed to assure vulnerable individuals are given prioritized access to air-conditioned
parts of the hub if worst-case heat waves occur.

Introduction

Paleoclimate data, meteorological measurements, and global cir-
culation model results reveal unequivocally that Earth’s climate
is changing at unprecedented rates compared to the last millen-
nia (Hausfather 2018). Among other weather anomalies, climate
change is increasing the frequency, duration, and intensity (FDI)

of heat waves (HWs) (Keellings and Moradkhani 2020; Bekris,
Loikith, and Neelin 2023). World Weather Attribution (WWA)
found that HWs in southern Europe, the United States, and
Mexico in summer 2023 were “virtually impossible” without
anthropogenic warming (WWA 2023). Such extreme tempera-
tures severely stress critical infrastructure and jointly affect
mutually dependent systems such as the electric grid, gas pipe-
lines, and buildings (White et al. 2023; Lee, Maron, and
Mostafavi 2022). As a result, immediate action is needed to
mitigate greenhouse gases (GHG) emissions and to assure infra-
structure can adequately survive and protect humanity from
increased FDI of HWs.

Mitigation and adaptation through buildings

Buildings play an important role in mitigating GHG emissions
because they are responsible for almost 40% of energy- and pro-
cess-related GHG emissions globally (IEA 2019). If electric
loads are reduced and managed in optimal ways within build-
ings, less grid infrastructure and electricity-producing resources
are needed to support a larger load across the electric grid
(Munankarmi et al. 2021). Also, significant benefits can result
for building owners (Lokeshgupta and Ravivarma 2023). Hence,
many efforts have focused on increasing the energy efficiency of
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buildings to produce an energy transition to a carbon-neutral
world (Cabeza and Chafer 2020; De la Pena et al. 2022).

Buildings also have an important role in climate change
adaptation—especially for their performance under increased
FDI of HWs. Much of the global population relies on air
conditioning (A/C) and refrigeration for survival during
extreme heat. The likelihood of these systems failing under
the high stress of extreme temperature events depends on
availability of electricity. Power failures can therefore lead
to sickness and mortality during extreme heat (Sun, Specian,
and Hong 2020). Design of building performance during
power outages is therefore critical. Striking a balance
between competing needs for thermal resilience during
power outages and minimization of cost for normal condi-
tions is not easy. To be comprehensive, a Monte Carlo-type
study is needed to understand the relationship between
extreme outcomes (e.g., loss of life in a building due to
future HWs) and normal design issues (e.g., energy effi-
ciency, sustainable design, etc.).

Building energy modeling

A building energy model (BEM) can be based on statistical ana-
lysis of energy data (i.e., data-driven), physics-based, or hybrids
of data-driven and physic-based approaches (Chen et al. 2022).
For applications that require years of simulation time into the
future, physics-based modeling is the most effective approach.
Physics-based BEMs are inputs to software that solve the con-
vective, conductive, and radiative heat balance equations over
time. Ambient conditions outside a building provide boundary
conditions to these equations. Significant simplifications to three-
dimensional space–time are needed to make simulation of a
building’s thermal systems practical. As a result, one-dimen-
sional networks that connect at nodes in three-dimensional space
are used. Thermal and mass balances are computed at these
nodes with simplification for how fluid mixing and radiation
scattering and absorption occur.

Building energy simulation (BES) tools such as the U.S.
Department of Energy’s EnergyPlus software (DOE 2023a) and
DOE-2 (Hirsch and Associates 2023) can be used by modelers
to create BEMs through text inputs. Many software packages
leverage these and other BES tools to create graphical user inter-
faces for constructing BEMs efficiently. For this study, the
OpenStudio software, which leverages EnergyPlus, was used to
construct a set of BEMs (DOE 2023b; Brackney et al. 2018).

Multi-scenario Extreme Weather Simulator

Building energy modelers face a tremendous challenge to
include the effects of extreme events in their models. This has
motivated development of the Multi-scenario Extreme Weather
Simulator (MEWS). MEWS enables studies of the effects future
HWs will have on buildings (Villa et al. 2023). MEWS operates
in two stages. First, it reads 50 or more years of National
Oceanic and Atmospheric Administration (NOAA) daily sum-
mary data to characterize the FDI of historic HWs and cold
snaps (CSs). Second, it increases the FDI of HWs based on
mean surface temperature increase from 2014 by shifting and
stretching the historic HW distributions according to factors

obtained from the Intergovernmental Panel on Climate Change
(IPCC). Though CSs are naturally included in the MEWS algo-
rithms, this study does not shift CS statistics due to insufficient
scientific consensus on how CSs will change in the future
(Cohen et al. 2020). More recent studies have shown an increase
in severity of CSs, but information usable by MEWS is not yet
developed (Hong et al. 2023). This study therefore assumes CSs
are unaltered.

The results from MEWS are shifted statistical distributions of
HWs’ peak temperature and duration. These shifted distributions
can be used in building energy modeling to produce well-
informed risk assessments. The results can be used for scenario-
based resilience analysis or for stochastic methods. For a scen-
ario-based approach, the HWs distribution is integrated to a
desired level of risk such as a 1 in 50-year HW. The resulting
HW magnitude can then be added to a single year of down-
scaled future conditions to analyze worst-case heat conditions
for a future year. Several different risk levels could also be
assessed for a single study this way if a range of outcomes is
desired. The stochastic approach requires much more computa-
tion but enables full characterization of infrastructure systems
responses for the entire range of expected future heat outcomes.
MEWS is implemented to produce thousands of stochastic HW
and CS patterns that can be applied using Monte Carlo
approaches to simulations of infrastructure systems. MEWS is
set up to produce weather files that can be used by both
EnergyPlus and DOE-2.

Ko’olauloa Community Resilience Hub

In this study, a new community resilience hub being designed in
Hau’ula, HI, is analyzed using MEWS weather files. Primarily
serving as a community center, the Ko’olauloa Community
Resilience Hub (KCRH) is designed to “near absolute
protection” using Federal Emergency Management Agency
(FEMA) P-320 and P-361 guidance (FEMA 2021a, 2021b). The
need for the KCRH is driven by a history of isolation after
extreme weather events in Hau’ula. The KCRH therefore must
be designed with two operational modes: (1) normal operations
(NormOps), where the center serves to provide a vibrant atmos-
phere for community events, and (2) resilience operations
(ResOps), where space use, HVAC, and electric power are con-
figured to minimize danger and discomfort to the surrounding
communities after a disaster that has isolated Hau’ula.

The Hau’ula community can only be accessed via the
Kamehameha Highway (Highway 83), which often becomes
impassable after extreme weather events. Communities in the
area can be isolated for up to 30days with no grid power after
an extreme weather event. The current local community center
becomes a hub of resilience services under such conditions. In
major extreme events such as hurricanes, thousands of people in
the surrounding communities can become isolated. Emergency
preparedness therefore makes it desirable to build a larger com-
munity center that serves as a storm shelter and resilience hub to
the surrounding communities during both normal and emergency
conditions. This center must be designed to handle prolonged
resilience scenarios including a strike from a powerful hurricane.
The KCRH is designed to maintain operation in the event of a
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major hurricane where electricity, water, and lifeline medical
services may be compromised. It therefore will employ a micro-
grid to assure services to the surrounding community. The cli-
mate-aware community also desires to make the design highly
efficient and sustainable.

Research questions

This study uses MEWS and BEMs to address the following
research questions: (1) How much difference will stochastic
future extreme temperature events for 2040, 2060, and 2080
in Hau’ula affect energy loads and thermal resilience of both
the NormOps and ResOps of the KCRH? (2) Will occupant
thermal comfort issues become unacceptably high for
ResOps in the KCRH in the future? To answer these ques-
tions, we conduct a MEWS analysis with weather informa-
tion from Kane’ohe Bay, the closest coastal weather station
from which Typical Meteorological Year (TMY) data are
available. We take the Kane’ohe Bay hourly data and adjust
them using monthly climate variables to create a morphed
weather file that is more representative of Hau’ula for dry
bulb temperature, solar radiation, and ground temperatures.
We also create two BEMs of the KCRH for NormOps and
ResOps.

This article commences with a brief literature review of
stochastic weather generation and BEM climate change stud-
ies. It then provides the methods and procedure to quantify
HWs with a subsequent description of the BEM study. The
results are then presented for the specified metrics. followed
by conclusions of the study.

Literature review

Since this study uses MEWS and BEMs, the literature
review focuses on (1) existing models to produce synthetic
weather data and (2) impact of climate-change-induced HWs
on buildings.

Calibrated regional climate models such as the
Coordinated Climate Downscaling Experiments (CORDEX)
(CORDEX 2021; Sylla et al. 2011; Meehl et al. 2018;
Grossman-Clarke et al. 2014) have progressed enough to
make global estimations of increases in FDI of extreme wea-
ther events. Multiple recent studies have proposed statistical
models to capture the FDI of HWs due to climate change
(Cowan et al. 2014; Ragone, Wouters, and Bouchet 2018;
Abadie, Chiabai, and Neumann 2019). Methods to produce
stochastic synthetic weather data have been proposed to (1)
project current weather data, accounting for climate change
effects (Rastogi and Andersen 2016; Rastogi and Khan
2021; Semenov and Barrow 2002), (2) run sensitivity analy-
ses on BEM in the absence of complete historical weather
data for a given location (Aguiar, Camelo, and Goncalves
1999; Rastogi, Khan, and Andersen 2022), (3) simulate
extreme weather conditions respecting the realistic weather
patterns of the considered location (Adelard et al. 2012), and
(4) model typical weather conditions (Rastogi and Andersen
2015; Bass, New, and Wade 2022). Farah, Saman, and
Boland (2018) proposed a method to produce robust stochas-
tic weather data using only typical data, without needing

historical weather data. However, only a few of these meth-
ods and models are intended to be used directly for building
performance simulation, including the need to produce con-
sistent weather inputs for BEMs. Further review of this topic
is available in the literature (Zeng et al. 2023).

Multiple studies in the literature have confirmed how his-
toric typical weather data fail to capture the effects of a
changing climate on buildings (Siu and Liao 2020;
Yassaghi, Mostafavi, and Hoque 2019). Studies concerning
buildings and climate change have focused on (1) how
energy retrofits are affected by climate change (De Masi
et al. 2021; Akkose, Akgul, and Dino 2021; Hosseini,
Tardy, and Lee 2018), (2) clear trends in increased energy
demand using current weather data compared to typical
meteorological data based on the last couple of decades
(Koci et al. 2019; Hosseini, Tardy, and Lee 2018; Bianchi
and Smith 2019), (3) energy use intensity (EUI), heating,
and cooling demand changes in entire regions (Yang,
Javanroodi, and Nik 2021; Fonseca, Nevat, and Peters
2020), (4) future typical meteorological conditions (Bass and
New 2023), and (5) how net-zero energy buildings will per-
form in the future (D’Agostino et al. 2022).

Power outages due to HWs are also an important aspect
of analysis of future resilience. A good review of resilience
metrics in terms of HWs and power outages in the built
environment is provided by Attia et al. (2021). Studies of
resilience measures with regard to extreme heat or cold
include loss of productivity due to power outages correlated
to extreme heat conditions (Mathew et al. 2021), thermal
comfort and survivability (Sun, Specian, and Hong 2020;
Rahif, Amaripadath, and Attia 2021), and changes in peak
load and energy consumption (Villa 2021). Resilient cooling
strategies critical for buildings to provide resistance, robust-
ness, and recoverability during power outages are explored
by Zhang et al. (2021). Zhang et al. (2021) also provide a
critical review of resilience measures to mitigate high indoor
air temperature during HWs. ASHRAE 55-2017 provides the
standard effective temperature metric to evaluate human
response to heat stress during HWs (ASHRAE 2017; Zhang
et al. 2023).

Our search of the literature indicates that application of
MEWS for Monte Carlo studies applied to BEM analyses
has been mostly addressed by our own work. This study is
unique because it enables trade-offs that fully develop joint
distributions between energy efficiency and thermal comfort
for future HW conditions.

This study is an extension to resilience analysis of the
original SimBuild conference paper on MEWS (Villa et al.
2022). A more extensive review of MEWS and of stochastic
weather generation techniques is provided in our recent pub-
lication (Villa et al. 2023). Since the SimBuild paper,
MEWS has undergone significant updates. It was found that
accuracy using algebraic methods could not be achieved past
2060. The assumption that variables were uncorrelated no
longer held. As a result, an optimization technique is used.
Also, the Sixth Coupled Model Intercomparison Project
(CMIP6) data are automatically used by MEWS, making
analysis at any NOAA station with daily summaries for
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more than 50 years and climate normals feasible. This also
makes application of various shared socioeconomic pathway
(SSP) scenarios straightforward.

Methods

Methods for MEWS are first discussed, followed by a
description of the case study and BEMs used.

MEWS overview

For extreme temperature events in MEWS, a minimal com-
plexity process was sought that (1) characterizes the histor-
ical statistics and (2) can extrapolate increasing FDI as
defined by the IPCC. Figure 1 shows the steps used by
MEWS.

Starting with NOAA climate normals (NOAA 2021b) and
daily summaries (NOAA 2021a), FDI histograms for CSs
and HWs are calculated. The initial values for optimizing
the MEWS stochastic model described in Villa et al. (2023,
section 2.1) are then calculated. Previously, these values
were the final values for a MEWS analysis such as in the
first MEWS study (Villa et al. 2022). The results were inad-
equate for projections past 2060, though. This led to the
development of the third step that involves use of a genetic
algorithm to optimize 14 parameters of the MEWS model
for each month. A postprocessing step after this involves

calculation of the Kolmogorov–Smirnov test statistics to
evaluate whether the historic histograms match the MEWS
model with 95% confidence. Step 5 entails fitting polyno-
mials to CMIP6 surface temperatures so that increases in
FDI can be estimated using IPCC increase factors shown in
Table 1. The rest of the steps moving upward are then
repeatedly applied using the stochastic model for different
years, scenarios, and confidence intervals on FDI factors
from Table 1. Step 6 sets thresholds for 10- and 50-year
events for future years by shifting the historic 10- and 50-
year events using the polynomials from step 5 and IPCC
factors. These thresholds are then used in step 7 to produce
new MEWS model distributions that have least-squares opti-
mal fit thresholds to the shifted historic thresholds. These

new distributions then either can be used directly to assess
worst-case peak temperature for constructing a resilience
scenario or can be sampled to form synthetic HW and CS
histories that can be added to TMY temperatures.

MEWS model

MEWS uses a three-by-three right-handed state transition
stochastic matrix Mm for each month m: The first row repre-
sents nonextreme temperatures and includes the probability
of entering a CS in month m in the next time step, Pcs,m,
and the probability of entering an HW in the next time step,
Phw,m: These are the first two of 14 total parameters that are
optimized to fit historical HW and CS distributions.

Mm Dtð Þ ¼
1 − Phw,m − Pcs,m Pcs,m Phw,m

1 − Pscs,m Dtð Þ Pscs,m Dtð Þ 0

1 − Pshw,m Dtð Þ 0 Pshw,m Dtð Þ

2
6664

3
7775
(1)

Here, Dt is the total time steps since a CS or HW began.
The second row contains probabilities of sustaining a CS,
Pscs,m Dtð Þ, in the next time step after Dt time steps. The third
row contains the probability of sustaining HWs, Pshw,m Dtð Þ:
Rather than being constant like the first row, the Ps terms
are functions of the following form where w is the event
index (w ¼ fcs, hwg):

This functional form gives eight more parameters (four
for CSs and four for HWs) out of the 14 model parameters.
P0w,m is the initial probability of sustaining a wave, Dtpw,m is
the time to peak probability Pmaxw,m , and Dtcw,m is a cutoff
time at which probability is immediately reduced to zero.
Figure 2 shows a nondimensional view of this function’s
form for three ratios of Pmax=P0: The use of this function
was found to be critical to enable realistic characterization
of HW and CS dynamics. The capacity for probability to
increase, decrease, and then cut off greatly improved fits
to HW and CS distributions. A constant probability tends to
enable too many overly short and long events. The func-
tional form of Equation 2 enables centering on actual dura-
tions more accurately.

Psw,m Dtð Þ ¼

P0w,m 1þ Dt
Dtpw,m

� �2
e2

Pmaxw,m

P0w,m
− 1

 !
e
−2 Dt

Dtpw,m

 !
Dt � 2Dtpw,m

P0w,me
−e

−2 Dt
Dtpw,m

−2
� �2 Pmaxw,m

P0w,m
−1

��� ���

1þ Dt
Dtpw,m

� �2
e2

Pmaxw,m

P0w,m
− 1

 !
e
−2 Dt

Dtpw,m

 ! Dt � Dtcw,m

0:0 Dt > Dtcw,m

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(2)
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The transition matrix shown in Equation 1 defines the
duration of events. The severity of events is correlated to the
duration but also contains a random sampling of both total
energy of an HW and peak temperature. In MEWS, a linear
regression of duration versus extreme temperature and total
energy are obtained from the historic data. The random vari-
ation of both terms is modeled as a truncated Gaussian dis-
tribution that is duration normalized and scaled to the
interval −1:1: Only the mean lqw,m and standard deviation
rqw,m of the truncated Gaussian distributions are parameters
because the lower boundary aqw,m ¼ −1 is the historic least

severe event and the upper boundary bqw,m ¼ 1 is the historic
most severe event. Here the q index represents total energy
and peak extreme temperature (q ¼ f�, sg). The energy terms
are kept constant. The peak temperature’s truncated
Gaussian distribution mean and standard deviation form the
last four parameters over HWs and CSs.

Historic optimization
For each month of the year, a genetic evolutionary algorithm
is used by MEWS to fit historic histograms of HW and CS
events using the 14 parameters already described. The

Fig. 1. Overview of MEWS and BEM study process. Ovals portray analysis inputs and boxes indicate steps. The left-hand-side process
is only executed once for historical fits, while the right-hand-side process is executed over SSP scenario, future year, HW FDI confi-
dence interval, BEM model, and realization number.

Volume 30, Number 4, April 2024 379



definitions of HW and CS events are given in section 2.2.1
of Villa et al. (2023). A least-squares sum of differences
between histograms for the MEWS model and historic histo-
grams at a daily scale (i.e., compare results at 1 day, 2 days,
etc.) is then computed as the objective function for the
optimization. The MEWS model is run for millions of time
steps for each month to form a histogram of the stochastic
model’s outputs.

Shift to future conditions
The same ensemble of CMIP6 model’s output of surface tem-
perature DTS was used as for Villa et al. (2023). MEWS takes
in latitude and longitude of the site being analyzed to fit a
polynomial of DTS versus future year. Specific years are then
chosen and the polynomial is evaluated to quantify the shift
in peak temperature, DT , and multiplier on frequency, Df , in
Table 1 by linear interpolation below 4.0 �C or extrapolation
up to 6.05 �C. This value must be adjusted because the prein-
dustrial period 1850–1900 implied by Table 1 is not the same
period as the NOAA climate normal or NOAA daily summa-
ries (see Figure 3 of Villa et al. 2023).

For this study, SSP 2–4.5, 3–7.0, and 5–8.5 were used,
which required three polynomial fits. These SSPs represent
both the most likely outcomes and worst case outcomes for
global surface temperature. SSP2–4.5 is a “middle-of-the-
road” pathway where trends do not change from historic
ones, SSP3–7.0 emphasizes regional rivalry characterized by
“resurgent nationalism,” and SSP5–8.5 assumes that much
of the world’s new development will be fossil fuel depend-
ent (O’Neill et al. 2017). The 4.5, 7.0, and 8.5 in the second
half of the SSP nomenclature all represent the expected level
of radiative forcing in W/m2 in the year 2100.

For each SSP and future year, six values of DT and Df
are obtained from Table 1 for 10- and 50-year events and
for 5% and 95% confidence interval (CI) levels from Table
1. Newton’s method is then used to shift (i.e., change the
mean by Dlsw,m) and stretch (i.e., change the standard devi-
ation by Drsw,m) MEWS’s temperature-truncated Gaussian
distribution until the 10- and 50-year historically shifted
events are least-squares optimally fit. The boundaries of the
truncated Gaussian distribution are translated according to
the following linear functions:

Dasw,m ¼ Dlsw,m −
1þ lsw,m
� �

rsw,m
Drsw,m (3)

Dbsw,m ¼ Dlsw,m þ
1 − lsw,m
� �

rsw,m
Drsw,m (4)

Table 1. IPCC HW intensity and frequency multiplying factors from Masson-Delmotte et al. (2021, Figure SPM.6).

Event DTS (⁰C) 5% DT (⁰C) 50% DT (⁰C) 95% DT (⁰C) 5% Df 50% Df 95% Df

HW 10-year event 1.0 0.7 1.2 1.5 1.8 2.8 3.2
1.5 1.3 1.9 2.3 2.8 4.1 4.7
2.0 1.8 2.6 3.1 3.8 5.6 6
4.0 4.3 5.1 5.8 8.3 9.4 9.6

HW 50-year event 1.0 0.7 1.2 1.6 2.3 4.8 6.4
1.5 1.3 2 2.4 4.3 8.6 10.7
2.0 1.8 2.7 3.2 6.9 13.9 16.6
4.0 4.4 5.3 6.0 27 39.2 41.4

Surface temperature change is the shift from 1850 to 1900 mean.

Fig. 3. Major locations and geology of Oahu, Hawaii, adapted
from Dores and Lautze with permission (Dores and Lautze
2020).

Fig. 2. Time-dependent probability function for HW and CS
events.
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Hau’ula KCRH case study

We conducted a study of the proposed KCRH in Hau’ula,
HI, using MEWS weather files for extreme heat events. The
planned site for the KCRH is near latitude of 21.6113 and
longitude of 202.0851 (i.e., −157.9149), as seen at the green
star in Figure 3. First the model was created to represent
business as usual (BAU), where energy efficiency is code
compliant but extra measures to reduce consumption are not
taken and thermal sharing between systems is not used. We
then reconfigured the model to a high-efficiency (HE) con-
figuration to reduce energy use and to build in capacity to
use even less energy for HVAC when a disaster occurs. The
BAU and HE cases’ design attributes are given in Table 2.
The BAU case was only used to verify how much more effi-
cient the HE mode was.

The KCRH HE BEM was then reconfigured to represent
how the center will be operated during resilience events
(ResOps) in comparison to normal operations (NormOps).
The differences between these two modes of operation is
provided in Table 3. The objective of the ResOps is to min-
imize energy use while maximizing medical, water, and
food-service capabilities of the center for the surrounding
communities. The differences reflect priorities and goals set
by the community. For example, cutting all hot water has
been an accepted strategy used in the current community
center. Also, the occupancy is expected to be 1,500 persons
during the sheltering phase of a hurricane, but we assume
here that the center will only house critical cases in the 30-
day aftermath. Finally, plug loads will have to be rationed
during an emergency, with the objective to avoid an increase
in plug loads between NormOps and ResOps. Though not

Table 2. KCRH design cases used to quantify energy efficiency.

Design aspect BAU HE

A/C Direct expansion (DX) coils for single-
duct air terminals with dampers and
reheat.

Centralized chilled water coils. Same duct
configuration as BAU. High-efficiency variable-
speed fans, an outdoor air economizer, and heat
exchange between exhaust air and incoming
outdoor air. The control includes a supply air
temperature reset ranging from 10 to 12�C based
on the warmest thermal zone temperature.

Cooling source DX packaged rooftop unit for heating and
cooling with humidity control. No
special considerations in efficiently
servicing critical loads.

Connected systems: two water source chillers with a
ground heat exchanger (GHE) and air-to-water
heat rejection. Redundancy for critical loads is
provided with either chiller being able to serve
them. Also the GHE can reject heat of critical
loads without air-to-water heat rejection.

Refrigeration 16 m2 walk in refrigerator with air-source
heat rejection

Connected system: 16-m2 walk-in refrigeration with
water-source heat rejection connected to chiller
cooling water (CW) loop

Ventilation 1 common ventilation system, mechanical
ventilation in gym

Two ventilation systems fully separating critical and
noncritical loads, natural ventilation in gym

Lighting 5 W/m2 (normal LED performance) 3 W/m2 (high light-emitting diode [LED]
performance with well-coordinated daylighting)

Fans 61% efficiency 80% efficiency
Pumps 90% efficiency 95% efficiency
Walls 1.35 m2K/W average R value 2.79 m2-K/W average R value—also interior walls

surrounding critical load spaces given exterior
insulation for all surfaces

Roof ASHRAE 189 climate zone 1 exterior roof
with 3.9m2K/W

Cool roof (solar absorptance of 0.45) with 6.97 m2-
K/W resistivity

Windows Average U-factor of 4W/m2/K, solar heat
gain coefficient (SHGC) 0.3, visible
light transmittance (VLT) 0.3

Average U-factor of 1W/m2-K, SHGC of 0.23, and
VLT of 0.4

Doors 25-mm insulation board R18 (3.2m2K/W) þ 25mm insulation board
Waste heat exchange None Outside air to exhaust air heat exchanger and sewage

water heat recovery
Hot water Electric element Heat pump water heater (HPWH) with backup

electric element and thick insulation. The HPWH
cools mechanical space and indirectly draws waste
heat from other equipment.

To obtain both of these models, go to https://github.com/sandialabs/MEWS. Then navigate to “examples,” then to “example data,”
then to “HuiOHauula.” The BAU case is in “ep_models” and the HE case is in “ep_models.”
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analyzed in this study, the minimization of energy is driven
by a desire to keep services available via a microgrid with
no support from other power sources for up to 30 days.

Hau’ula climate and weather files
The climate of the Hawaian Islands is very diverse, ranging
from dry desert coast land to rainforest climate zones.
Hau’ula is directly north of Honolulu on the northeast coast
of island of Oahu, as seen at the green star in Figure 3. The
northern coast of Oahu is cooler, cloudier, and rainier than
the southern coast. The closest coastal NOAA station is the
Kane’ohe Bay Marines base, 40 km to the south-east of
Hau’ula. Wheeler Airfield is closer but has significantly dif-
ferent climate due to altitude change and being inland. The
weather files for Kane’ohe Bay were therefore adjusted for
temperature, radiation, and ground temperatures to recon-
struct a weather file representative of the local Hau’ula cli-
mate. Other important differences including humidity and
precipitation do not have sufficient influence on the BEM to
require adjustment.

The more recent Typical Meteorological Year Version X
(TMYx) 2004–2018 weather file for Kane’ohe Bay was used
as the start point for a weather file for Hau’ula (Crawley

and Lawrie 2023). Bre et al. (2021) give a thorough descrip-
tion of this newer set of TMY files. Using TMYx files
makes more recent climate conditions the baseline for the
MEWS analysis. in comparison to Typical Meteorological
Year Version 3 (TMY3) files (Wilcox and Marion 2008).
This psychrometric file was then adjusted for four variables
for which local information was available, as described in
Table 4. Though some psychometric radiation/precipitation
discrepancies may exist from these adjustments, the shifts
were relatively small and the resulting weather patterns are
improved to better reflect Hau’ula’s climate.

The climate norms and daily summaries required by
MEWS used the Kane’ohe Bay information. We therefore
assume that the historic HW characteristics are similar for
the two locations. This is justified since no other record of
temperature exists that allows sufficient information to char-
acterize historic HWs for Hau’ula. Table 5 provides details
for the NOAA data.

The Kane’ohe Bay daily summary data had several large
gaps, outliers, and many missing values. The outliers were
eliminated by cutting out any data that were outside the all-
time records for Hawaii temperature range of 10 �C to 38 �C.
A seasonal autoregressive integrated moving average

Table 3. Differences between NormOps and ResOps.

Design aspect NormOps ResOps

A/C All spaces cooled except gym, side stairs,
mechanical room, and freight elevator

Only cool the following critical spaces: Level 1: kitchen,
food storage; Level 2: medical, security; Level 3: staff
area, conference room.

Hot water Available None
Refrigeration Walk-in, two stand-alone refrigerators and

two stand-alone freezers
Only walk-in

Occupancy Peak occupancy of 70 people each day
with a daily average of 38 people

Four times the occupancy with peak of 282 people and
daily average of 153. Gym and critical spaces are
occupied at night

Plug loads 11.38 W/m2 Same amount. This implies rationing of plug loads to a
larger group of people but with no increase.

Medical Medical center without dialysis Medical center þ 3 Tablo hemodialysis systems (Tablo
2023) being used during the day (intensive but not
24/7)

Table 4. Changes added to Kane’ohe Bay TMYx 2004–2018 EPW file.

Variable Change description

Dry-bulb temperature Optimized offset and multiplicative parameters to match monthly climate average maximum
and minimum values from Weather Spark’s webpage for Hau’ula to hourly Kane’ohe Bay
TMYx (WeatherSpark 2023).

Dew-point temperature Changed values to be consistent with updated dry-bulb temperature and unchanged relative
humidity.

Radiation (direct and diffuse) Adjusted Kane’ohe Bay TMYx 2004–2018 hourly values so that monthly average, hour-of-day
global horizontal radiation values from University of Hawaii (Giambelluca et al. 2014) match
for the latitude and longitude of the site.

Ground temperatures Shifted ground temperatures down by 3.03 �C to make the average of 3-, 4-, and 5-m-deep
readings in the TMYx file match ground water temperature of 21.7 �C reported by Dores and
Lautze (2020) for Hau’ula
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(SARIMA) (1,1,1)(1,1,1,12) model (i.e., all terms first order
with monthly seasonality) was used to fill these gaps.

Energy plus model details
The KCRH EnergyPlus model space layout is shown in
Figure 4. The model was created in SketchUp with the
OpenStudio plug-in and OpenStudio (Trimble 2023;
OpenStudio Coalition 2023; DOE 2023b). The center con-
sists of three levels plus an unoccupied ground floor. The
ground floor houses covered parking and has stairwell and
elevator access to the upper levels. The floor above the
ground floor contains a gym, cafeteria, and locker rooms.
The main floor contains the entrance, a balcony above the
gym, medical area, security/registration area, and classrooms.
The uppermost floor has more classrooms, a staff area, and
a mechanical room for equipment. Preliminary design draw-
ings provided byþLab Architect PLLC were used to con-
struct a BEM with 31 thermal zones as seen in Figure 4
(Azaroff 2023). All major features and shading surfaces

were included. The plans include a gym, a freight elevator,
and a side stairwell that are not air-conditioned. The rest of
the building is air-conditioned. Many details for shading
were found to have minimal effects on results and were
dropped since they significantly increased run time by an
order of magnitude.

The model was given a range of space type designations,
with most of the spaces having an “open office” type space
for ASHRAE standard 189.1-2009 for a medium office type
(ASHRAE 189.1 2009). All spaces were left with these
default space types from OpenStudio except that the kitchen
and cafeteria spaces were given schedules and occupancy
characteristic of the DOE-prototype full-service restaurant,
with some customizations for equipment use (DOE 2023c).

All equipment was kept electric to keep local carbon
emissions to zero. A 16-m2 walk-in refrigerator was installed
in the level 1 food storage to enable mass storage of perish-
able foods. Figure 5 shows how all heat rejection applica-
tions are tied into a single loop for the HE model. Details of
the equipment size, piping layout, and duct layout were left
to EnergyPlus’s inference since design details are not yet
complete.

An OpenStudio measure was used to alter the number of
people being served by the building (Roth, Goldwasser, and
Parker 2016). Two EnergyPlus models of the KCRH were
therefore created to represent the two modes of operation.
The default OpenStudio design days for the Honolulu
International Airport were used for all cases. This provides
design to hotter conditions (i.e., about 1.0 �C hotter on aver-
age) than Hau’ula, adding some conservatism for equipment

Table 5. NOAA data characteristics.

Input Value

Station location Kane’ohe Bay
Station ID USW00022519
Climate norms 1991–2020
Daily summaries 1942–2023
Filtering Daily summaries required gap filling

using a SARIMA model

Fig. 4. KCRH in Hau’ula, HI, EnergyPlus model with three levels: (A) isometric view showing covered parking, (B) lower floor, (C)
main entrance floor, and (D) upper floor. The design is byþLab Architect PLLC (Azaroff 2023).
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sizing. This conservatism decreases as temperature increases
in the future. The Honolulu design days are reasonable aver-
age design conditions in Hau’ula during the next four
decades.

The settings of the model are too extensive to elaborate
in full detail here. The models can be downloaded from the
MEWS repository example folder in examples/example data/
HuiOHauula if the reader desires to use or investigate the
model configurations (Villa 2023).

Ground-source heat exchanger
The work of Dores and Lautze (2020) was used to character-
ize a ground heat exchanger (GHE) for the KCRH. Hau’ula
is one of the sites listed as favorable for GHEs. The actual
site is marked in Figure 3 and most likely has a subsurface
mixture of alluvium, fill, basalt, and igneous material. We
used alluvium, to be conservative. We used scenario C (see
Tables 3 and 5 of Dores and Lautze [2020]), which repre-
sents year-round operation with a lower thermal resistance in
the piping. For the alluvium case this leads to an estimated
ratio of pipe length to cooling power needed of 0.1374m/W
with 250 kW of cooling needed. We therefore gave a total
GHE length of 214 80-m boreholes with supplemental air-
source heat rejection for high-temperature periods. This
design enables the GHE to fully absorb waste heat during
ResOps conditions, while the air-source heat rejection seen
in Figure 5 is needed for NormOps.

Results

The MEWS analysis was conducted for the Kane’ohe Bay
weather station and the resulting model was applied to the
adjusted weather file outlined in the previous section for
SSP2–4.5, SSP3–7.0, and SSP5–8.5. EPW files for 2020,
2040, 2060, and 2080 were generated. The extreme values
for confidence intervals for HWs (5% and 95%) were
included, neglecting the 50% case. The aggregate use of
these extreme cases serve as an importance sampling
approach to the Monte Carlo study that assures the outer
extremes of future HWs are accurately captured. The result-
ing set of 7,200 files was run on the two operations modes
of the KCRH for a total of 14,400 EnergyPlus runs.

MEWS fit

The Kane’ohe Bay daily summary of filtered minimum and
maximum temperatures with gaps filled by the SARIMA
model is shown in Figure 6. Table 6 shows the

Kolmogorov–Smirnov test results on the MEWS fit. The
MEWS HW fit values for duration have 95% confidence for
all months except July, August, and November. On the other
hand, the temperature distribution fits were not as good as in
our previous study (Villa et al. 2023) and only meet 95%
confidence for CS in March, May, and December. None of
the months for both CSs and HWs meet 95% confidence for
both temperature and duration.

Due to the poor Kolmogorov–Smirnov confidence test
results shown in Table 6, each month’s fit was inspected
manually. Figure 7 visualizes this manual inspection for the
worst-case p-value month for HWs, June. A graphical view
of this month in Figure 7a shows that the fit in June captures
the majority of most extreme heat events. Similarly for the
other months, none of the poor results disqualified use of
the MEWS fit.

Though not captured by the MEWS fit, the absolute
extreme event of 11 �C is the basis for the IPCC shift from
historical 10- and 50-year events which causes HWs to
greatly exceed historic HWs by 2080 as seen in the distribu-
tion for 95% IPCC HW confidence interval (CI), SSP 5–8.5
in Figure 7b. Figure 7b shows results for the shift procedure.
The arrows show the temperature offset from the historic
10-year (purple-dashed) and 50-year (green-dashed) events
to new future targets (blue- and red-dashed). The orange dis-
tribution is the future MEWS distribution with 10- and 50-
year events that are least-squares optimally fit via Newton’s
method to occur Df more times with DT greater temperature
from the historic value (both from Table 1). The gap
between the dotted and dashed blue lines is the temperature
error for the 10-year event, and the gap between the dotted
and dashed red lines is the 50-year event error. Figure 7c
shows the duration fits for June, which passed the
Kolmogorov–Smirnov test with 95% confidence.

The polynomial fits to CMIP6 surface temperature that
drive the HW intensity and frequency change parameters in
Table 1 are shown in Figure 8. It is notable that Hawaii
does not have nearly as much increase in temperature as our
previous Worcester, MA, study (Villa et al. 2023). This is
expected since Hawaii is at a much lower latitude and global
warming rates are much greater to the north. Table 7

Fig. 5. Shared heat rejection.

Fig. 6. Gap-filled NOAA daily summaries.
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provides the coefficient values for all four polynomial fits
with a higher order polynomial required for the historic fit
back to 1850.

The histograms of the statistical moments for the 7,200
weather files produced by MEWS are shown in Figure 9.
The maximum temperatures exceed Hawaii’s record of
38 �C for quite a few cases.

EnergyPlus model verification

The EUI calculated for the adjusted TMYx weather file for
the HE case against the BAU configuration of the model is
shown in Table 8. Table 9 provides a comparative basis
with EUI benchmarks for several categories of buildings in
Hawaii that share attributes with the KCRH.

Thermal resilience

The thermal resilience of the KCRH is highly dependent on
the mode of operation. The NormOps and ResOps modes
provide a trade-off between thermal resilience and energy
savings. Figure 10 shows how thermal resilience decreases
into the future for ResOps on the left and NormOps on the
right. The x axis portrays the average percent of hours
across all 31 BEM thermal zones for four thermal ranges of
indoor air temperature (C¼ caution, 32.2 �C < T� 26.7 �C;
D¼ danger, 32.2 �C < T� 39.4 �C; EC¼ extreme caution,
39.2 �C < T� 51.7 �C; ED¼ extreme danger, T> 51.7 �C).
Here, the average is applied across the 31 thermal zones in
the KCRH BEM. The violin plot shows how gradual tem-
perature rise from 2020 to 2080 affects the thermal resili-
ence through the different color probability distributions that
shift to the right. It also shows how extreme events spread
out the average outcome via the minimum and maximum
bars to the left and right of each distribution.

Figure 11 shows EUI as a function of year, mode of
operation, and SSP. Figure 12 combines these two issues

with average dangerous hours versus total cooling electrical
energy.

Discussion

The MEWS approach is important because dynamic down-
scaling methods (CORDEX 2021) would require prohibi-
tively large numbers of climate model runs to adopt a
stochastic methodology within BEM analysis. Keeping a
regional climate model in the loop for such analysis is not
practical. Our approach therefore enables stochastic extreme
temperatures for BEM such that resilience can be fully
assessed given an uncertain future. This is especially true if
events such as power outages need to be evaluated alongside
weather changes. Alternative approaches to ours exist, such
as that of Yassaghi, Gurian, and Hoque (2020), where
energy modeling results for future climate are extrapolated.
This approach has some advantages over ours because it
does not require a full Monte Carlo analysis and a stochastic
weather generator like MEWS. It cannot capture the kinds
of changes in operations to the buildings that we have ana-
lyzed, though, and does not consider FDI changes to
extreme heat. Another approach, given by Zhuang,
Choudhary, and Mavrogianni (2023), investigates the effi-
cacy of energy retrofits with a hybrid of (1) selected Global
Circulation Model (GCM) results closest to historic data and
(2) morphing (Belcher, Hacker, and Powell 2005) to future
conditions. This approach contains uncertainty across GCMs
but does not systematically consider uncertainty. Additional
stochastic approaches to climate uncertainty in energy mod-
els are abundant in the literature and are not discussed here
in detail. A good review of this subject is available by Plaga
and Bertsch (2023).

A better fit from MEWS is desirable, but the visual
inspections performed via figures like Figure 7 clearly show
that the analysis is conservative with respect to projected

Table 6. Kolmogorov–Smirnov test statistics for MEWS Kane’ohe Bay fit.

Duration Temperature

Month

HW CS HW CS

Statistic p Value Statistic p Value Statistic p Value Statistic p Value

1 0.023092 0.999775 0.115327 0.001477 0.200695 7.456524e-08 0.157785 0.000003
2 0.078382 0.230246 0.114468 0.004146 0.137200 2.811642e-03 0.124873 0.001286
3 0.070624 0.379734 0.094384 0.008577 0.170377 1.474030e-04 0.076134 0.057162
4 0.086225 0.192003 0.070097 0.069220 0.138662 4.877060e-03 0.114668 0.000255
5 0.068583 0.403028 0.092746 0.006257 0.112478 2.867868e-02 0.059037 0.190783
6 0.093537 0.159609 0.070157 0.078387 0.250759 2.765237e-08 0.139464 0.000006
7 0.131092 0.002089 0.059334 0.181783 0.196401 4.047055e-07 0.096573 0.003609
8 0.111761 0.011250 0.127836 0.000047 0.199154 1.443825e-07 0.123753 0.000091
9 0.120070 0.062826 0.084999 0.009526 0.173652 1.478366e-03 0.136081 0.000002
10 0.078358 0.172331 0.089130 0.005178 0.138592 9.849804e-04 0.123505 0.000022
11 0.103622 0.021321 0.045475 0.481458 0.100676 2.746377e-02 0.105592 0.001085
12 0.087386 0.072944 0.090776 0.023918 0.142417 3.144755e-04 0.074269 0.102565

Ninety-five percent confidence is equivalent to the p value being greater than 0.05. Values failing the test are shown in red. The
“Statistic” columns give the maximum difference in cumulative distribution functions of the historic distribution versus the MEWS fit.
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extreme HWs according to IPCC (Masson-Delmotte et al.
2021). Even so, these are only projections based on the best
information available today. The actual changes in climate
for Hawaii could exceed the interval analyzed.

Though no calibration target was set by the design team,
the data in Tables 8 and 9 indicate that the KCRH
EnergyPlus models have reasonable levels of energy con-
sumption. The KCRH has a combination of office space,
conference rooms, and classrooms that should be expected
to perform similar to office buildings. A slight increase in
EUI is expected though because of the cafeteria, kitchen,
and walk-in refrigeration that make it a hybrid of the four
building types in Table 9. The presence of facilities without
A/C in Hawaii makes the minimum values for the HEUB
data good comparisons for the ResOps mode of operation.

The results of the Monte Carlo study shown in Figures
10–12 enable quantifiable trade-offs that can answer our
research questions. There is a clear increase in loss of ther-
mal resilience for both modes of operation. Cutting A/C for
the ResOps mode amplifies this loss of thermal resilience on
average by a factor of five. The sensitivity of thermal resili-
ence outcomes is especially pronounced for SSP 5–8.5.
Conversely, the EUI is negligibly sensitive to future condi-
tions since the A/C is cut for the ResOps mode. The
NormOps mode has a clear trend but the increase is at max-
imum 0.8% change in EUI. The climate trends are not pre-
sent for the ResOps mode, as seen on the left-hand side of
Figure 11. This is evident in Figure 12, where the spread in
thermally dangerous hours increases with later years but the
cooling load does not increase. This indicates that most of

Fig. 7. June MEWS fits to temperature (a) and duration (c) and shift and stretch for SSP 5–8.5 for 2080 and 95% HW CI (b).
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the change in thermal resilience is in spaces not air-condi-
tioned. Increased A/C load from climate change in Hau’ula
is therefore not very large for our study. A combination of
the mild climate, less sensitivity to climate change at
Hawaii’s latitude, and the fact that equipment simply cannot

sufficiently cool the facility for extreme events with the con-
stant design day used leads to the minor differences in cool-
ing energy. On the other hand, the consequence of not
having more cooling capacity for extreme events is increas-
ing the hours of exposure to dangerous conditions with
much more sensitivity.

Though the decrease in thermal resilience is not desirable,
dropping A/C loads to save energy for ResOps is still
acceptable. Several factors support this: (1) The most impor-
tant climatic shock event is a hurricane, which brings signifi-
cant cooling, making extreme heat less relevant for a couple
of weeks. (2) Appropriate contingency planning can over-
come thermally hot conditions in the facilities. There is still
air-conditioned space in the KCRH. In worst-case scenarios
where dangerous temperatures exist, staff in charge of the
KCRH can prioritize access to this air-conditioned space for
individuals who are heat stressed. In addition, the walk-in
refrigeration capacity is supported for the ResOps mode and
chilled drinks and ice can be available onsite for aiding ther-
mal comfort of the surrounding population that is not in dis-
tress. (3) External conditions in Hawaii are hot and humid
but seldom dangerously hot for healthy resting individuals.
Even the most extreme futures generated by MEWS seen in
Figure 9 are survivable. We therefore conclude that all ther-
mal resilience concerns for the ResOps mode of the KCRH
can be overcome if (1) thermally distressed individuals can
be given prioritized access to A/C and (2) the microgrid-sup-
ported, 16-m2 walk-in refrigeration unit includes capacity to
cool drinks for up to 1,500 people for 3 days and for 282
people for 30 days. It is likely that the same conclusion

Fig. 8. CMIP6 polynomial fits to surface temperature at the KCRH site.

Table 7. CMIP6 polynomial coefficients t ¼ year − 2014.

t6 t5 t4 t3 t2 t 1

Historical −1.8231e-12 −7.0498e-10 −7.2341e-08 2.6166e-06 8.2021e-04 4.4934e-02 −4.7280e-06
SSP2-4.5 0 0 0 −5.9508e-06 5.2949e-04 9.5840e-03 −2.2866e-07
SSP3-7.0 0 0 0 −2.3118e-06 3.5316e-04 1.5495e-02 −2.2594e-07
SSP5-8.5 0 0 0 7.1558e-07 1.6873e-04 2.7302e-02 −7.8113e-08

Fig. 9. Statistical moments of dry-bulb temperature (�C) for
7,200 weather files. The x axis is �C or D�C for all plots.
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Table 8. EUI results for all four models.

EUI (1915 m2), kWh/m2/yr Business-as-usual configuration (BAU) High-efficiency configuration (HE) Energy savings (%)

NormOps 189.95 118.92 37.39
ResOps 122.20 90.32 26.07

Table 9. Hawai’i Energy Utility Benchmarking (HEUB) data (HEUB 2023).

EUI, kWh/m2/yr Minimum Average Maximum Number of samples

Grocery stores 129 530 690 33
Office buildings 86 170 290 60
Restaurants 48 350 650 14
Hotels 21 110 200 27

Fig. 10. Average percent hours within four temperature ranges. C¼ caution, 32.2 �C < T� 26.7 �C; D¼ danger, 32.2 �C <
T� 39.4 �C; EC¼ extreme caution, 39.2 �C < T� 51.7 �C; ED¼EXTREME Danger, T> 51.7 �C. Rows vary by SSP and columns by
operation type.
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concerning thermal resilience of buildings can be drawn for
other locations of similar climate and building characteris-
tics. In short, increases in FDI for HWs for the KCRH
design do not sufficiently affect outcomes to make building-
wide A/C a requirement for future survival. Hau’ula’s pre-
sent and future climates therefore leave room for gaining the

significant benefits of the ResOps mode as defined in Table
3. This will result in a smaller microgrid than would be
needed for only having the NormOps mode. The cost bene-
fits from needing a smaller microgrid may cover a signifi-
cant amount of the additional cost needed to support the HE
design that specializes A/C for ResOps.

Fig. 11. EUI by operation mode, year, and SSP (colors according to legend in Figure 9). The y axis is probability density.

Fig. 12. Cooling energy vs. average dangerous hours by operation mode, year, and SSP.
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Conclusions

MEWS algorithms for HWs and a case study for the future
KCRH in Hau’ula, Hawaii have been presented in this article.
The results show that decreased thermal resilience is signifi-
cant due to global warming and increased FDI of HWs.
Regardless, Hau’ula’s future worst-case HWs produced by
MEWS to 2080 do not produce conditions that make A/C
mandatory for healthy individuals. The decreased thermal
resilience for the KCRH can therefore be overcome through
other means than providing A/C to the entire KCRH. The
decreased energy consumption provided by the ResOps mode
is therefore worth gaining. Even so, there are five times more
average percent hours above temperature ranges of concern
within spaces in the KCRH. The decreases in energy use
gained by cutting A/C in the KCRH must therefore be bal-
anced with planning to ensure air-conditioned space is given
to anyone in thermal distress. Our study gives an example of
how multi-operations-mode building systems can become part
of assuring adaptation to climate change and extreme weather
events in humanity’s future. Further research is needed to
show how well multi-operations-mode building systems
enable adaptation to climate change and other design basis
threats besides heat waves such as hurricanes and earthquakes
(Villa and Quiroz 2023). This needs to be done in a broad
region-wide context to provide stronger conclusions about
what scenarios are the most important and what adaptation
measures are most effective.

The MEWS tool has been enhanced since our previous work
through a parameter optimization scheme that handles changes
to FDI of HWs to 2080 (Villa et al. 2022, 2023). Continued
development of MEWS could further enhance its capabilities.
The most important next step is to show how MEWS analyses
produce nearly equivalent results when temperature histories
from climate model reanalysis of historic conditions are used
instead of the NOAA data. If this is established, then climate
model reanalysis could be used to create a much more compre-
hensive weather alteration than the dry-bulb temperature alter-
ation made in this study. Stochastic models of humidity, solar
radiation, cloud cover, and other variables could be constructed
based on signals for each extreme heat event. Regardless, the
current MEWS approach captures most of the variation for
boundary conditions for BEM and provides a good assessment
of building energy usage and thermal comfort performance
evaluation for changes to FDI of future HWs.
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