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Executive Summary 
An overarching goal of the UNiversal Interoperability for grid-Forming Inverters (UNIFI) 
Consortium is to develop vendor agnostic specifications and guidelines that ensure 
interoperability of gridforming (GFM) inverter-based resources (IBRs) without requiring 
vendors or system operators to reveal proprietary information. These UNIFI principles and 
specifications are envisioned to apply to a wide range of technologies and systems. The initial 
work on the UNIFI principles and specifications has focused on performance requirements and 
high-level aspirational principles outlined in [1]. Going forward, a key question is how to 
translate such high-level requirements and principles into rigorous specifications that can be 
enforced and validated for a wide range of IBRs. 

A wide range of different GFM controls are available in the literature that use vastly different 
internal dynamics and control parameters (e.g., droop coefficients, virtual inertia constants, 
virtual oscillator gains). However, from a system-level viewpoint, these GFM controls 
implement a few universal GFM functions to various degrees of fidelity. This report summarizes 
work on universal GFM input-output dynamics (i.e., the dynamic response observable on the 
IBR terminals) through a universal reduced-order input-output model that is parameterized in 
generalized system-level control parameters (i.e., parameters that translate to different gains for 
specific GFM controls). Specifically, the input-output models presented in this work are suitable 
to capture the small-signal response under nominal operating conditions. After presenting the 
modeling approach and several examples of how standard GFM controls map to the universal 
input-output model, we present a first attempt to map UNIFI performance requirements for 
operation within normal grid conditions [1] to specifications on the input-output dynamics. 

We emphasize that the main purpose of the input-output models is not to develop models for 
simulation but rather to obtain low-dimensional models of the IBR terminal behavior that can be 
used to formulate and validate vendor and technology-agnostic unit-level specifications that 
ensure stability, interoperability, and performance. To this end, a crucial question is how to 
verify if a GFM IBR conforms to the universal input-output dynamics with given generalized 
system-level control parameters without detailed information of the internal hardware and 
controls. To this end, we discuss two methods for identifying the input-output (i.e., terminal) 
dynamic behavior of GFM converters from input-output data that can be obtained using 
hardware experiments or blackbox models. The results on input-output modeling form the basis 
for developing stability certificates that can be directly verified through (experimental) input-
output data. Moreover, we envision using the input-output modeling framework to develop and 
validate specifications that narrow down the class of interoperable GFM dynamics to obtain 
bounds on the unit-level dynamics within which vendors can innovate while interoperability and 
stability are ensured. 
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1 Universal input-output models 
A wide range of different GFM controls are available in the literature that use vastly different 
internal dynamics and control parameters (e.g., droop coefficients, virtual inertia constants, 
virtual oscillator gains). However, from a system-level viewpoint, these GFM controls 
implement a few universal GFM functions to various degrees of fidelity. We will first develop a 
class of common transfer function models that reveal the common features of various GFM 
controls and generalized control parameters that parameterize their dynamic response. 

1.1 Motivation and problem setup 
To better understand the common features of various GFM controls we first discuss models of 
GFM IBRs that arise as linearization of different GFM controls. To this end, we consider a two-
bus system of an IBR connected to an infinite bus. Conceptually, a GFM IBR is often modeled 
as a controlled voltage source (see Figure 1a) while a GFL IBR is often modeled as a controlled 
current source (see Figure 1b) [1, Sec. 1.1]. For the purpose of developing input-output models 
we will first consider models of IBRs that fall into this standard categorization. However, we 
emphasize that the methods for specifying and verifying performance objectives will not be 
based on this assumption. Instead, the proposed methods will rely only on characterizing the 
static and dynamic relationship between the signals at the IBR terminal in response to 
perturbations of the infinite bus voltage or IBR load. Notably, this approach does not require 
considering specific IBR signals as IBR control inputs but instead characterizes the IBRs closed-
loop response as seen from the system. 

   
(a) GFM IBR (b) GFL IBR 

Figure 1. Two-node system with prototypical GFM IBR modeled as controlled voltage source and 
prototypical GFL IBR modeled as controlled current source. We emphasize that θc and Vc denote 
the bus voltage phase angle and magnitude. We only use input-output signals at the IBR terminal 

that could be collected experimentally and do not consider internal voltages or voltage 
references. 

Broadly speaking the response of the IBR can fully be characterized by the response of the 
signals at the IBR terminal, i.e., the IBR bus voltage phase angle θc, voltage magnitude Vc, and 
IBR power injection Pc and Qc to perturbations of the infinite bus voltage phase angle  

 

θg ,Vg 

Pc ,Qc 

θc ,Vc 

Pl,c ,Q l,c 

 

θg ,Vg θc ,Vc 

P ,Q Pc ,Qc 
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θg, infinite bus voltage magnitude Vg, and perturbations to the IBR bus load Pl,c and Pl,c. Such 
a model is well suited to capture the dynamics of the IBR as seen from the system-level, while 
not requiring knowledge of the IBR internals or its controls. We emphasize that, in contrast to 
several other characterizations of GFM capabilities, we do not rely on the existence or access to 
an internal voltage phasor reference.  

Moreover, standard system identification methods can be used to recover such a model from data 
collected from detailed (blackbox) simulation models or hardware experiments. For example, 
under the status quo, a vendor that does not want to reveal its proprietary hardware or controls 
could apply the data-driven validation methods discussed in this deliverable to a detailed model 
(or replicate the setup from Figure 1 in a hardware experiment) and share the results of the data-
driven validation method in addition to sharing a blackbox simulation model when required1. 
Future work will investigate if data-driven verification methods can be leveraged to supplement 
or partially replace detailed time domain-simulations. 

This general line of inquiry leads to several questions that this deliverable attempts to answer. 
First, we attempt to map various controls proposed in the literature to input-output models to 
establish a baseline for the expected performance of standard GFM and GFL controls. Second, 
we use a few initial examples to illustrate how the UNIFI performance requirements for 
operation within normal grid conditions [1] can be mapped to formal and verifiable 
specifications on the input-output dynamics. Finally, we investigate how and to what level of 
accuracy the input-output dynamics can be identified using data-driven methods that only use 
measurement data from the setup in Figure 1 without access to internal IBR signals. 

1.2 Reduced-order analytical models 
We begin by modeling the network in Figure 1. Using a standard linearized quasi-static power 
flow model, the power injection of the IBR is modeled by 

 
where X and R denote the reactance and resistance of the connection to the infinite bus, and V ⋆ 
denotes the nominal infinite bus and IBR voltage magnitude that is assumed to be identical. For 
brevity of the notation, all variables denote deviations from their nominal value in a synchronous 
reference frame with nominal frequency. Moreover, one may consider a dynamic model that 
arises from linearizing the dynamics of an inductive-resistive circuit element [2]. 

 
 
1 In North America, models do not have to be provided for generation sources below 75 MVA and generation 
sources connected lower than transmission. 
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where ρ denotes the inductance-resistance ratio ρ = R/L of the transmission line in Figure 1. For 
clarity of the presentation, we will focus on the model (2.1) for analytical derivations and only 
consider (2.2) if needed to explain the impact of network circuit dynamics. The reader is referred 
to [2] for a more in-depth discussion of the impact of the network circuit dynamics (2.2) on 
frequency stability of converter-dominated power systems. 

Given the network model, we model the GFM IBR dynamics as a transfer function from the 
power injection Pc and Qc to the phase angle θc and magnitude Vc of the voltage imposed by the 
GFM IBR at its bus. We emphasize that this modeling assumption is not a restriction for the 
input-output framework to be developed but merely accounts for the fact that, to the best of the 
authors’ knowledge, all GFM IBR controls discussed in the literature can be abstracted by this 
model. Specifically, we assume that 

 

i.e., a GFM IBR imposes a dynamic relationship between its power injection and its terminal 
voltage. Notably, the controller (2.3) does not induce any cross coupling between active power 
and voltage and reactive power and frequency. This approach is typically used in networks that 
are predominantly inductive. Various approaches for resistive networks or inductive-resistive 
networks have been proposed in the literature that induce cross coupling in (2.3) to cancel out the 
cross coupling in the power flow model (2.1). For inductive networks, all such controls reduce to 
a decoupled controller of the form (2.3). For brevity of the presentation, we will consider 
predominantly inductive networks in this deliverable for which both the power flow and 
controller can typically be assumed to be decoupled. Characterizing the impact of non-negligible 
network resistances on the input-output models, performance specifications, and data-driven 
validation methods is the focus of ongoing work. To ensure that the overall problem is well 
posed, we require the following assumption (see [2] for further discussion). 

Assumption 1. (Stable and realizable control)  
(Stable and realizable control) The transfer function GPc→ωc (s) has all its zeroes and poles in the 
open left half plane and relative degree greater than or equal to minus one. The transfer function 
GQc→Vc (s) has all its zeroes and poles in the open left half plane and relative degree greater than 
or equal to zero. 



4 

This model can capture the small-signal dynamics of various standard controls. The most 
prevalent grid-forming control is so-called droop control [3, 4]. The design of droop control 
typically neglects the internal dynamics of the VSC and imposes a linear power to frequency and 
reactive power to voltage droop characteristic 

 

where mp and mq denote the active and reactive power droop coefficients. Moreover, changing 
coordinates, virtual synchronous machine (VSM) control [5] with virtual inertia M and virtual 
damping D in proportion to the VSM rating is equivalent to (2.4) with, e.g., mp = 1/D and Tp = 
M/D (see [6]). Moreover, dispatchable virtual oscillator control for inductive networks also 
reduces to standard droop control near the nominal operating point [7]. Finally, so-called dual-
port GFM control of voltage source converters can also be modeled by (2.4), however in this 
case mp and the time constant Tp are related to the physical energy storage (i.e., the DC-link 
capacitor) and DC source of the voltage source converters (see [2, Sec.V-A] for further details). 
Similar equivalences can be obtained for a wide range of GFM controls and are summarized in 
Figure 2. The reader is referred to [8]. 

 

Figure 2. Conditions for equivalence of various GFM controls. 

On the other hand, a GFM control without steady-state droop response is given by 

 

This control imposes a well-defined voltage (i.e., phase angle and magnitude) at the IBR 
terminal, but in steady state always returns to its nominal power injection and does not provide 
primary frequency or voltage control. This control is an example for the GFM core functionality 
outlined in UNIFI deliverable A3.1.1.1, that can be implemented without significant energy 
storage. The proportional-integral (PI) droop control (2.5) also arises when linearizing standard 
droop control with CERTS power limiting [9] at an operating point for which regular droop 
control (2.4) would result in overload of the IBR. 
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Overall, it can be seen that the small-signal response of various GFM IBRs can be captured 
through relatively simple transfer function models. A key advantage of transfer function models 
is that, in contrast to state space models, they result in unique minimal representations of linear 
time-invariant dynamics. Moreover, they can easily be visualized using, e.g., Bode and Nyquist 
plots. 

1.3 Visualization using Bode plots and generalized GFM control 
parameters 

By combining (2.1), (2.3), and (2.4) or (2.5), and performing standard manipulations the closed-
loop transfer functions of the system shown in Figure 1 with inputs (θg, Vg, Pl,c,Ql,c) and outputs 
(ωc, Vc, Pc,Qc) can be obtained and intuitively interpreted through their Bode diagram. For 
example, the transfer functions related to active power and frequency are shown in Table 1. It 
can be seen that the transfer functions are largely redundant. Thus, conceptually, all 
specifications could be mapped back to the GFM transfer function GPc→ωc (s). However, as we 
will see next, the interpretation and validation of the specifications is often more straightforward 
for the input-output pairs in Figure 1. Moreover, mapping all specifications back to the GFM 
transfer function GPc→ωc (s) may require further restrictive assumptions on the controller transfer 
function. Instead, we aim to impose specifications directly on the relevant input-output pairs and 
largely leave the control implementation open. At the same time, we will use the GFM controls 
(2.4) and (2.5) as examples that illustrate how the specifications can be achieved. 

Table 1. Closed-loop transfer functions from external inputs to IBR terminal signals. 

 

The Bode magnitude plot of the two transfer functions that are crucial to specify performance 
objective with respect to active power and frequency and typical parameters are shown in Figure 
3. 
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Figure 3. Bode magnitude plots of the transfer function from infinite bus frequency to IBR bus 

frequency and IBR active power injection. 

The Bode magnitude plot models the amplitude amplification between inputs and outputs at 
various frequencies ωp of the perturbation signal. In other words, if a sinusoidal perturbation of 
frequency ωp is added to the input signals (e.g., ωg) the bode plot shows the magnitude of the 
resulting sinusoidal response in the output (e.g., ωc) relative to the amplitude of the input 
perturbation. Therefore, the Bode plots in Figure 2.3 have a straightforward interpretation. The 
fact that the magnitude of the transfer function Gωg→ωc (s) approaches one (i.e., zero dB) for ωp 
→ 0 shows that the IBR bus frequency synchronizes to the infinite bus frequency in steady-state. 
Moreover, the fact that the plot stays close to unit gain for low perturbation frequencies implies 
frequency synchronization at low frequencies. However, at two hertz, the gain of GFM droop 
control exceeds one (i.e., zero dB) and infinite bus frequency oscillations are amplified at the 
IBR terminal. Beyond this perturbation frequency, the bode magnitude plot for both controls 
exhibits a high frequency roll off that implies that high frequency perturbations of the infinite 
bus frequency are suppressed at the IBR bus. It can be seen that the transfer functions and bode 
plots from infinite bus frequency to IBR bus frequency do not significantly differ. In fact, one 
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can easily re-tune the controls to achieve a perfectly matching Bode magnitude plot despite one 
of the two controls not providing steady-state droop. This missing information can be recovered 
from the second Bode magnitude plot from infinite bus frequency to IBR active power injection. 
The fact that the magnitude of the transfer function Gωg→Pc (s) approaches 1/mp for ωp → 0 and 
GFM droop control shows that the IBR injects active power in proportion to the system 
frequency deviation. In contrast, the Gωg→Pc (s) approaches zero for ωp → 0 and GFM PI 
droop control, illustrating that GFM PI droop control does not provide a steady-state droop 
response. Nonetheless, both controls provide high-frequency oscillation damping. 

Similar arguments can be used for the transfer functions from infinite bus voltage magnitude to 
IBR bus voltage magnitude and reactive power injection to interpret the main features and 
functions of GFM IBRs. In particular, for all the transfer functions the DC gain (i.e., for ωp → 0) 
reveals the steady-state characteristics, a cut-off frequency emerges beyond which perturbations 
are suppressed by GFM IBRs locally, and resonances or disturbance amplifications manifest 
themselves as magnitude gains larger than one (i.e., zero dB). 

2 Specification of GFM functions 
The observations in the previous chapter enable us to formalize and validate the UNIFI 
performance requirements for operation within normal grid conditions [1] as further defined 
in Deliverable A3.1.1.1 - UNIFI Control Area Basic Terminology and Definitions.  

2.1 GFM Functions 
2.1.1 Droop on average frequency and average voltage 
Droop on the average frequency and average voltage is commonly understood as the prototypical 
mechanism that governs (steady-state) transactive active and reactive power sharing. In the 
context of the models discussed in the previous chapter this simply translates to the specification 
that 

 
and 

 

for s → 0 and droop gains mp and mq. This result highlights that, similar to the droop response of 
synchronous generators, droop control may not necessarily be an instantaneous mechanism. 
However, at the same time droop on slow timescales is the basis for power-sharing and 
synchronization between resources. The proposed characterization clarifies that a droop is a 
steady-state characteristic from which IBRs or machines may deviate during transients. 
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2.1.2 Fast frequency response 
In contrast to steady-state droop on average frequency and voltage fast frequency response seeks 
to provide a fast droop response with maximum response time requirements. Given a maximum 
response time Tdr and droop gain, this can be encoded in the present framework by imposing the 
specification that 

 

in other words, that the bode magnitude plot for the IBR active power injection in response to an 
infinite bus frequency perturbation is above a reference plot determined by a minimum droop 
coefficient and response time. This constraint ensures that the IBR meets at least the minimum 
droop coefficient and responds at least as fast as the maximum response time.  

2.1.3 Inertia & frequency smoothing 
Within the context of input-output models, the equivalent function of synchronous machine 
inertia can be understood as the IBRs ability filter out any frequency perturbations introduced at 
the infinite bus, i.e., to attenuate system frequency oscillations at the IBR terminal. This 
capability is identical to a high-frequency roll off of the Bode magnitude plot |Gωg→Pc (jωp)|. In 
particular, given a time constant Tω (i.e., generalized inertia constant), this requirement can be 
encoded as 

 

in other words a larger generalized inertia constant Tω requires the IBR to suppress frequency 
perturbations of lower frequency similarly to a machine with larger inertia. This requirement has 
also been described as frequency smoothing capability [10]. 

2.1.4 Passivity, damping, and interactions with other devices 
Passivity and damping are specified in Deliverable A3.1.1.1 - UNIFI Control Area Basic 
Terminology and Definitions as the ability to 

• Provide damping under all conditions, including to prevent resonances, oscillations, 
and instabilities, even when detailed system topology and control algorithms are 
unknown. 

• Present passive characteristics to the grid and all its devices at all frequencies so 
as to prevent interactions with other grid elements. 

Both of these conditions can be directly encoded using the Bode plot. In particular, the 
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second requirement to present passive characteristics can be encoded as an upper bound on 
the transfer functions from perturbation inputs to IBR terminal quantities that is less or equal 
than one, e.g., 

 

This condition is sufficient to ensure that oscillations are never amplified and hence prevent 
resonances with other devices. Similarly, the requirement to provide damping to actively 
prevent resonances, oscillations, and instabilities can be encoded as a passivity constraint 
on the transfer function that, e.g., forces the transfer function to be positive real or meet a 
passivity requirement up to a multiplier [11]. These conditions can typically no longer be 
expressed solely on the Bode magnitude plot, but can be expressed, e.g., using a Nyquist 
plot obtained from magnitude and phase information (see [11] for further information). 

An illustration of the various bounds on the Bode magnitude plot for GFM droop and GFM 
PI droop can be found in Figure 4. Moreover, Figure 4 also contains the Bode magnitude 
plots for a reduced-order synchronous machine (SM) and synchronous condenser (SC). 

 
Figure 4. Bode magnitude plots of the transfer function from infinite bus frequency to IBR bus 
frequency and IBR active power injection as well as the corresponding transfer functions for a 

synchronous machine and synchronous condenser. The bounds correspond to the performance 
requirements discussed in this section. 
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2.1.5 Limitations and further specifications 
The specifications so far are performance requirements during nominal and balanced operation. 
To formalize specifications on, e.g., power quality, the proposed framework would have to be 
extended to not only consider positive sequence voltage phase angles and magnitudes but voltage 
phase angles and magnitudes for every phase or in symmetrical components. Moreover, 
specifications for fault ride through and the response to large transients cannot directly be 
captured using the small-signal models used in this report. Nonetheless, partially encoding 
specifications on fault ride through is the topic of ongoing work. To this end, we first note that 
the proposed framework for formulating specifications does not prescribe a fixed linear time-
invariant dynamic but simply prescribes bounds on the dynamics of system that are given by 
linear time-invariant dynamics. Moreover, the underlying dynamics may change from one 
operating point to the next. In other words, the proposed framework allows for nonlinear 
responses as long as their linearization at various operating points lies within the prescribed 
bounds. Moreover, a promising specification is to minimize the distance to the desired linear 
time-invariant dynamics (i.e., bounds) during large transients during which the IBR can no 
longer remain within the specified class of input-output dynamics. 

2.2 Case study: GFL and GFM frequency droop control 
To illustrate how the proposed framework can be used to discern different implementations 
of droop control and their system-level response, we consider the GFM droop control (2.4), 
the GFM PI droop control (2.5) and a standard grid-following implementation of droop 
control that relies on a Synchronous reference frame phase locked loop (SRF-PLL). The 
grid-following droop control is modeled using small- signal models of a phase locked loop 
(PLL) and corresponding filters to extract the PLL frequency. 

Specifically, we model a GFL IBR as a power source (e.g., a voltage source converter with 
proportional- integral vector current control) that injects a controllable amount of active 
power. We consider a GFL IBR with frequency-watt function that uses a phase-locked 
loop (PLL) shown in Figure 5 to estimate the bus voltage phase angle. The power injection 
of the GFL IBR with frequency-watt function is given 

 
Figure 5. Phase-locked loop (PLL) used to establish a synchronous reference frame for GFL IBRs. 

by Pc = −DωPLL, where D = ηcD0 and ωPLL is an estimate of the frequency of the bus 
voltage obtained by passing the PLL angle estimate θPLL through a realizable 
differentiator with time constant Td > 0: 
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To obtain the linearized reduced-order model of a GFL IBR with frequency-watt function, 
we solve (2.1) for θc, linearize the PLL dynamics shown in Figure 5, and use Pc = 
−DωPLL to determine the power injection of the GFL IBR. The resulting linearized 
reduced-order model of a GFL IBR with frequency-watt function is shown in Figure 6. We 
emphasize that the true frequency at the bus ωc differs from the PLL estimate ωPLL that is 
generated through a second-order system (i.e., the PLL) and realizable differentiator with 
time constant Td. The bode magnitude plots for the three controls (i.e., GFM droop, GFL 
droop, and GFM PI droop) are shown in Figure 7. 

 
Figure 6. Linearized reduced-order model of a GFL IBR with frequency-watt function. 

 
Figure 7. Bode magnitude plots for GFM droop control, GFM PI droop, and GFL droop. 

It can be seen that the GFM droop control meets all the requirements outline above except 
for the mild resonance in |Gωg→ωc (jωp)| that does not satisfy the passivity requirement. 
This can be mitigated by retuning the GFM droop filter time constant and typically occurs 
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in GFM control if the grid coupling becomes too stiff. Otherwise, GFM droop satisfies the 
requirements for steady-state droop on the average frequency (with 5% droop), fast frequency 
response (with a cutoff frequency of 1 Hz), and an inertia-like response that attenuates 
frequency oscillations beyond 2 Hz at the IBR node. This corresponds to the specifications 
for a GFM IBR in deliverable A3.1.1.1. 

Moreover, it can be seen that the GFM PI droop meets the same requirements as the GFM 
IBR except for the fact that it does not provide steady-state droop on the average frequency 
(i.e., |Gωg→Pc (jωp)| → 0 as ωp → 0). This corresponds to the specifications for GFM 
core IBR in deliverable A3.1.1.1. 

Finally, the GFL IBR with droop meets the requirements for steady-state droop on the average 
frequency  

 

and fast frequency response (with a cutoff frequency of approximately 0.3 Hz). However, the 
GFL IBR does not meet the inertia and frequency smoothing requirement as |Gωg→ωc (jωp)| does 
not reduce at high frequencies. In other words, perturbations to the infinite bus frequency also 
appear at the IBR terminal except for some attenuation in the medium frequency range. A 
parameter sweep and analytical computation of the cutoff frequencies of |Gωg→ωc (jωp)| for GFL 
droop have been used to confirm that the inertia & frequency smoothing requirement cannot be 
met with a standard GFL IBR with reactive power control, active power droop based on a SRF-
PLL and realizable differentiator with realistic parameters, and no explicit power oscillation 
damping control. 

3 Data-driven verification methods 
Besides the ability to formalize performance requirements in a framework with intuitive 
graphical interpretation, a key advantage of the input-output models considered in the previous 
chapter is that they are directly amenable to various data-driven methods for analysis and 
verification. So far, we have considered two methods. The first method uses a basic frequency 
sweep in the perturbation inputs to directly con- structs the Bode plots used in the previous 
chapter from input-output data that can be collected from a high-fidelity simulation or a 
hardware experiment. Moreover, standard system identification methods can be used to recover 
such a model from data collected from detailed (blackbox) simulation models or hardware 
experiments. For example, conceptually, a vendor that does not want to reveal its proprietary 
hardware or controls could apply either of the two data-driven validation methods discussed in 
this deliverable to a detailed model (or replicate the setup from Figure 1 in a hardware 
experiment) and share the results of the data-driven validation method to supplement blackbox 
simulation model when required. 
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3.1 Frequency sweep 
Conceptually the simplest approach is to initialize a simulation model or hardware experiment 
that replicates the setup shown in Figure 8. Compared to the setup shown in Figure 1 used for the 
analytical results, a transformer has been added and detailed EMT models or actual hardware can 
be used. In this setting, sinusoidal perturbations are added to the system inputs (e.g., infinite bus 
frequency and voltage magnitude) to perturb the IBR and the response of the IBR terminal 
signals is recorded at various frequencies. The amplification and phase shift of the signals can be 
directly computed and plotted to obtain the Bode plots used in the previous chapters without 
access to the model or hardware internals. 

 

Figure 8. System model of an IBR connected to an infinite bus. 

In this setup the only complication is to measure the frequency at the IBR terminal. We emphasize 
that the AC voltage waveform at the IBR terminal (i) does not have a well-defined frequency at all 
times and, (ii) that the time derivative operator is not realizable. Therefore, one can, in general not 
expect to compute an instantaneous frequency signal at the IBR terminal. The proposed method 
works around this limitation by computing the Bode magnitude plot from infinite bus angle 
perturbation to IBR terminal voltage phase angle perturbation by determining the magnitude of the 
resulting IBR terminal voltage phase angle oscillation. Specifically, at the converter AC terminal 
(i.e., the LCL filter capacitor) the IBR voltage phase angle relative to a rotating frame with the 
nominal frequency (i.e., a fictitious unperturbed infinite bus voltage phase angle). Due to the 
assumed linearity of the system near the nominal operating point the transfer functions from 
infinite bus voltage phase angle perturbation to IBR phase angle perturbation is identical to the 
transfer function from infinite bus frequency perturbation to IBR bus frequency. 

Finally, at high perturbation frequencies additional filtering may be required to isolate the 
response of the GFM IBR from other modes associated with the circuit dynamics and, e.g., 
converter switching. If this is the case additional post-processing through, e.g., band pass filters 
can be used. However, we observe that the frequency sweep method is rather insensitive to these 
problems in the frequency range of interest while the system identification approach discussed in 
the next section may require more careful post-processing of the data. 

3.1.1 Case study: 1 MVA IBR 

To illustrate identifying the bode magnitude plot directly from a frequency sweep an EMT 
simulation of the system shown in Figure 8 with parameters given in Table 2 has been used. This 
simulation has been used to implement the frequency sweep method described in the previous 
section. 
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Table 2. System Parameters. 

Grid-forming units 1 

Unit base power 1 MVA 

Unit base voltage 480 V 

Filter parameters [L,C,R] 0.1 p.u., 0.05 p.u., 0.01 p.u. 

Base frequency 60 Hz 

Transformer voltages 480 V to 4.16 kV 

Transformer configuration Delta-WyeGND  

Transformer [L,R] 0.16 p.u., 0.004 p.u. 

4.16 kV line parameters [L,R,C] 0.0017 H/km, 0.21 Ω/km, 1e−8 F/km 

4.16 kV line length 1 km 

The simulation contains: 

1. A standard grid-following droop implementation using a SRF-PLL and current loop 
2. Grid-forming control with standard proportional droop control 
3. Grid-forming droop control with CERTS power limiting 
4. Grid-forming control with proportional-integral droop 

Moreover, for all grid-forming controls, one can select between a (i) single-loop setup in which 
the reference voltage phase angle and magnitude from the outer grid-forming control is directly 
provided to the inverter modulation scheme, and (ii) a dual-loop setup with cascaded inner 
current and voltage control that is used to track the voltage phase angle and magnitude reference 
from the outer grid-forming control at the converter AC terminal. 

The resulting Bode magnitude plot for frequency and active power are shown in Figure 9. It can 
be seen that the Bode plots obtained from the frequency sweep agree with the analytical 
predictions at low frequencies but start to deviate from the reduced-order models at higher 
frequencies. This observation can be explained by the fact that the simulation uses far more 
detailed models both of the network circuit (e.g., line and transformer) and IBR (i.e., LCL filter, 
discrete-time controls). 

Nonetheless, the results show that the two GFM controls again satisfy the performance 
requirement as predicted by the analytical models in Section 2.2 up to a frequency of about 40 
Hz. At this point the impact of the additional circuit dynamics and more detailed control 
implementation with limited sampling rate becomes apparent and limits the performance of the 
GFM IBRs with respect to their ability to attenuate infinite bus frequency perturbations at the 
IBR bus. Moreover, the detailed implementation of GFL droop control not only does not satisfy 
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the requirement of frequency smoothing but amplifies high-frequency perturbations and 
therefore does not meet the performance requirements outlined in Chapter 2. 

 
Figure 9. Bode magnitude plots for single-loop GFM droop control, single-loop GFM PI droop, and 
GFL droop. 

Finally, we note that the response of GFM PI droop and GFM droop with power limiter coincide 
when the power limiter of GFM droop is active. This highlights that the small signal response of 
GFM droop with power limiter can be accurately modeled around two standard operating points 
(e.g., with and without active limiter). In particular, Figure 9 correctly shows that the IBR no 
longer provides steady-state droop on the average frequency once it becomes power limited but 
continuous to ensure a passive response with frequency smoothing in line with the GFM core 
functionalities defined in deliverable A3.1.1.1. 

The proposed approach can also be used to discern the differences of single-loop and dual-loop 
GFM controls from a system-level perspective. To this end, the numerical experiments have 
been repeated for GFM controls with cascaded inner control loops (dual-loop) and without inner 
loops (single-loop) and a different set of control and network parameters. The results are shown 
in Figure 10. It can be seen that the results of GFM droop control without inner loops match the 
analytical results up to a resonance of the circuit dynamics (at 50Hz and 800Hz) that have not 
been considered in the simplified models used to obtain the analytical results in Section 2.2. In 
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contrast, the GFM with inner control loops suppresses the LCL filter resonance but is subject to a 
resonance at 30Hz that is attributed to a resonance of the PI controls that can be removed by re-
tuning the inner controls. Similarly, the GFL control is approximately in line with the analytical 
results but is subject to resonance and poor damping at higher frequencies, most likely caused by 
interactions of the PLL dynamics with the circuit dynamics. 

 
Figure 10. Bode magnitude plots for single-loop GFM droop control, single-loop GFM PI droop, 
and GFL with and without frequency droop. 

3.1.2 Case study: Comparison of GFM controls 

In a parallel effort EPRI has used the frequency sweep method to compare various GFM 
controls with a baseline GFL control and validate that the performance requirements 
formulated on the Bode magnitude plot are meaningful and not overly restrictive. 

For a preliminary analysis, an average model of an inverter model is used. Perturbations 
are applied to the inverter terminals to the quantities of infinite bus voltage magnitude/phase 
angle in polar coordinates, and infinite bus voltage in rectangular coordinates. The inverter 
model that is used implements the full dual-loop control structure. Four types of GFM 
control have been included along with the cascaded voltage and current control loops. The 
intention of this task is to identify similarities and differences (if any) between the frequency 
domain characteristics of the various grid forming control structures. Each inverter resource 
also has a step-up transformer at its terminal. The input/output characteristics are evaluated 
on the high voltage winding of the inverter. The frequency domain characteristics for the 
following six different types of control have been evaluated: 

1. Pure grid following inverter - the inverter operates on stiff P and Q control 
2. Grid following with only frequency droop - the inverter provides frequency droop 

response but also operates on stiff Q control 
3. Four different types of grid forming control have been evaluated with two types of droop 

control, one virtual synchronous machine control, and one virtual oscillator control 
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The first set of frequency domain comparisons, as shown in Figure 11, are carried out by 
obtaining the transfer function between (i) inverter reactive power (Q) as the output and 
infinite bus voltage magnitude (|Vinf|) as the input, and (ii) inverter active power (P ) as the 
output and infinite bus voltage angle (θinf) as the input. It can immediately be seen that the 
characteristics of the grid following inverter technology with stiff P and Q injection stands 
out from the rest of the characteristics. Once the grid following resource starts to provide 
frequency support, its characteristics may align with the rest of the grid forming inverters. 
However, this is only so because the grid following inverter is providing frequency support 
at the inverter level, and as a result, its response is fast. If the frequency response was 
provided at the plant controller level instead of the inverter level, the response characteristics 
would not align. But only providing frequency support does not make a grid following 
inverter a grid forming inverter. The presence of fast voltage support is also critical and 
crucial. 

The difference between fast voltage control and slow voltage control at the inverter level is 
observable from the frequency domain characteristics shown in Figure 12. With slower 
voltage control, the response has a drop off at a much higher frequency. 

The frequency domain transfer functions shown in the previous two figures also show the 
similarity in characteristics across different grid forming structures. This similarity is 
important to identify as it indicates that transmission planners do not need to necessarily 
know the type of control architecture used within the grid forming inverter as long the 
required characteristics are obtained. 
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Figure 11. Comparison of frequency domain transfer functions across different types of 

inverter controls. 

The difference in frequency domain characteristics for change in frequency droop 
percentage and voltage droop percentage are shown in respectively in Figure 13 and Figure 
14. Here, the intent of showing these curves is to showcase the information that could be 
obtained from the frequency domain characteristics to complement time domain 
requirements and specifications. 

These curves however do not address the relationship between the network frequency and the 
inverter frequency. Essentially for robust grid forming behavior, it would be beneficial if 
the inverter controls react to changes to grid frequency only when the change is in a low 
frequency range. If the inverter controls react to grid frequency changes over a high 
frequency range, then there is a chance of the inverter contributing to an instability in the 
network. This is because since inverter controls usually have a small time constant, their 
reaction to higher frequency changes can give rise to mismatches between their injection 
into the network and the needs of the network. 

The frequency domain characteristics of the various inverter control types are shown in 
Figure 15. Here, the transfer function that is used is the inverter terminal voltage angle 
(θIBR) as the output and the infinite bus angle (θinf) as the input. Since both input and 
output quantities denote phase angle, the transfer function can be used as a proxy for a 
frequency transfer function. The curves show that a pure grid following inverter would 
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not attenuate the higher frequency disturbance and would instead react to it. However, as 
frequency support and grid forming properties are added to the inverter control, the control 
starts to attenuate higher frequency disturbances thereby improving the stability margin of 
the network. 

Moreover, GFM Type A does not provide the same level of high-frequency disturbance 
attenuation as GFM Type B to GFM Type D. As is GFM Type A does not have the high-
frequency roll off characteristic specified in Section 2.1.3 and instead shows a similar 
response to the analytical model of a GFL IBR with frequency droop. 

Now, a question arises as to the stability that can be provided by GFM-Type A. Broadly 
speaking, all four types of GFM control have a similar time domain response for events that 
result in the formation of a 100% IBR system and for subsequent faults in the network. To 
further evaluate the performance of the control, the performance of GFM Type A and GFM 
Type B are compared in a test system containing a synchronous generator, a synchronous 
condenser, a load model consisting of different types of three- phase induction motors, 
static load, and single phase DER. Further, two GFM IBRs each of 100 MVA are used. 
The objective here is to bring about the formation of a 100% IBR network by tripping the 
synchronous condensers and tripping the synchronous generator at t = 11 s. 

 

Figure 12. Comparison of frequency domain transfer function with slow voltage control 
on Type A grid forming inverter. 
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Figure 13. Comparison of frequency domain transfer function with various values of 

frequency droop gain, at fixed 5% voltage droop. 

 

Figure 14. Comparison of frequency domain transfer function with various values of 
voltage droop gain, at fixed 5% frequency droop. 
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Figure 15. Comparison of frequency domain characteristics of across different inverter 

control types to assess ability to ride through high frequency disturbances in the network. 

 
Figure 16. Comparison of GFM Type A and GFM Type B behavior for the formation of a 

100% IBR network with a variety of different dynamic devices. 

Both GFM devices have the same control settings and values of gains. The active power 
output of one GFM IBR is shown in Figure 16. It is seen that while GFM Type B is able 
to successfully remain stable in the system following the trip of the synchronous generator 
at t = 11 s, GFM Type A is unable to maintain stability in the network. Now suppose GFM 
Type A controls are re-tuned to provide an increased stability margin for high frequency 
disturbances, the transfer function response is obtained as shown in Figure 17. The 
improvement in stability margin is brought about by tuning the voltage control loop in the 
control structure. It should be mentioned here that this re-tuning is not necessarily the 
optimal settings of the control. However, the application of the concept of the transfer 
function and frequency domain characteristics is showcased. It can be seen from Figure 18 
that now, GFM-Type A is also able to bring about stable operation of the network once a 
100% IBR system is formed. 
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Figure 17. With re-tune of GFM Type A controls, comparison of frequency domain 

characteristics of across different inverter control types to assess ability to ride through 
high frequency disturbances in the network. 

 
Figure 18. After re-tuning of GFM Type A control, comparison of GFM Type A and GFM 

Type B behavior for the formation of a 100% IBR network with a variety of different 
dynamic devices. 

3.2 Subspace system identification 
An alternative approach to the frequency sweep considered in the previous section are system 
identification methods that use a sequence of input and output data to directly identify a linear 
state space model or transfer function model that captures the input-output dynamics of the 
system. The most widely used method are so-called subspace identification methods. In the 
context of the problem at hand, the key advantage of system identification methods in general is 
that no frequency sweep is required but any sufficiently rich excitation signal can be used to 
perturb the inputs to the system and obtain a dynamic model either as a linear state space system 
or transfer function. Typically, this significantly reduces the amount of data that needs to be 
captured. Moreover, the system identification approach directly produces a model that could be 
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used to simulate the IBR response (i.e., in a small-signal sense), produce the Bode plots used in 
the previous chapter to formalize performance specifications, or to apply any other linear system 
analysis method. On the other hand, a key difficulty of using system identification methods is 
that one needs to select the order of the system to be identified in advance. This requires a priori 
knowledge about the system and its controls. A particular risk is so-called overfitting that occurs 
when a model is identified that is of higher order than the plant, faithfully represents the data 
used for identification, but fails to interpolate or extrapolate the system response to inputs not 
used for system identification. 

For this work, a rough estimate of the plant order can be obtained from the reduced-order models 
developed in Section 1.2. Nonetheless, as the following examples show typically the system 
identification process needs to be repeated iteratively for models of different order until a 
sufficiently low dimensional model is found that represents the original system well. Thus, 
overall this process is more involved than the simple frequency sweep discussed in Section 3.1 
but also provides output (e.g., a linear model) that can be more easily used for analysis than the 
graphical model (i.e., Bode or Nyquist plot) obtained from the frequency sweep method. The 
remainder of this section uses two cases studies to illustrate the results that can be obtained using 
system identification methods. 

3.2.1 Case study: low-order transfer function model 

To illustrate the system identification approach, we first revisit the case study used in 
Section 3.1.1 and consider an implementation of standard GFM droop control. Input-output 
data is collected for a pseudorandom binary sequence (PRBS) input signal using the same 
EMT simulation as in Section 3.1.1. The MATLAB system identification toolbox is used to 
apply a bandpass filter (0.1 Hz to 500 Hz) and subspace identification method. For brevity 
of the presentation, we are focusing on the transfer function from infinite bus frequency 
(angle) to IBR bus frequency (angle). Based on the analytical models derived in Section 1.2 
using a quasi-static network model one would expect the transfer function to have at least 
two poles and no zeros. Using a model that captures the inductive-resistive dynamics of the 
line, transformer, and filter one would expect the transfer function to have at least four poles 
and no zeros. Additional poles and zeros arise due to, e.g., inner control loops and the LCL 
filter of the GFM IBR. Indeed, the transfer function model estimated for two poles and no 
zeros, and four poles and no zeros do not fit the time domain data or bode plot (obtained 
using a frequency sweep) well. 

The bode plot for the transfer function identified from infinite bus voltage phase angle to 
IBR bus voltage phase angle (on the low voltage side of the IBR transformer) and four poles 
and two zeros is shown in Figure 19. It can be seen that the bode plot of the identified transfer 
function approximates the bode plot obtained from the frequency sweep well, except for a 
small peak at 60 Hz. Further increasing the model order to six poles and two zeros also 
allows to capture the peak at 60 Hz (see Figure 20). 
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While these results are encouraging, they also highlight the difficulty in selecting an 
appropriate model order in the system identification process. This aspect will be discussed 
further in the next case study that considers identification of a more detailed multi-
input/multi-output model. 

 

Figure 19. Bode plot from infinite bus frequency to IBR bus frequency for GFM droop 
control from a frequency sweep (grey) and for a transfer function model with four poles 
and two zeros obtained using a subspace identification method. Phase is not plotted for 

the frequency sweep. 

 

Figure 20. Bode plot from infinite bus frequency to IBR bus frequency for GFM droop 
control from a frequency sweep (grey) and for a transfer function model with six poles and 

four zeros obtained using a subspace identification method. Phase is not plotted for the 
frequency sweep. 
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3.2.2 Case study: detailed model using N4SID in MATLAB 
To evaluate the performance of subspace system identification a case study using a blackbox 
model of an IBR plant has been conducted. The aim is to develop an input-output model of 
GFM inverters. It is assumed that the IBR resource has a blackbox model and the aim is to 
carry out a set of tests that allow for determination of grid forming capability. The first step 
in the creation of an input-output model will be to assess the overall shape of poles and zeros 
of a generic GFM IBR. For this case study, a system of a single inverter connected to an 
infinite bus has been prepared (see Figure 21). 

 
Figure 21. System model of a GFM IBR connected to an infinite bus. 

The GFM IBR is represented by a PV plant with 80 inverters of 2.5 MVA rated capacity. The 
plant parameters are described in Table 3. 

Table 3. System Parameters. 

Grid-forming units 80 

PV plant unit base power 2.5 MVA 

Inverter Series reactance 0.1 p.u. 

Transformer [L,R] 0.11 p.u., 0.001 p.u. 

Line impedance [L,C,R] 0.037 p.u., 0.10 p.u., 0.003 p.u. 

By linearizing the model response around a stable operating point of PGFM = 0.5 p.u., it 
is possible to obtain small signal model of the system. The Pole-zero representation of such 
the system is shown in Figure 22. 

Inspecting the lower frequency range of the pole-zero map plot allow us to observe two sets 
of conjugated poles (green and blue pairs in the figure) which are dominating the dynamic 
response. A third cluster of poles in the red circle will have faster transient with less impact 
on the response due to a lower real part value. Additionally, the dynamic of poles located 
closer to the origin are mainly canceled by the proximity of zeros and thus showing no 
meaningful impact in the dynamic response. 
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Figure 22. Pole-zero map of the reference system. 

 

Figure 23. Input-Output response of the averaged and detailed PSCAD model of the PV plant. 

In the upper frequency range of the plot, it is possible to observe two conjugated pole pairs 
that might play a role in the system response, however, due to its higher frequency they 
might be not relevant for power system studies, which is the focus of this task. The outcome 
of this task will concentrate on replicating the most important modes of the system driving 
the higher energy content of the dynamic response, focusing on those poles that are relevant 
for power system studies. 

To reproduce fictitious data from a hypothetical black box model, a PSCAD model has been 
prepared using all relevant information of the GFM-IB system described previously. This 
model has been prepared in two different versions: 1) a detailed model of the converter, 
including IGBTs and DC link boost converter; 2) a simplified averaged response model of 
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the converter. The reason for considering these two variants is that the black box model can 
be derived from any of these two sources. 

To produce measurement data, a response from the GFM is induced by a series of random 
voltages steps that are imposed by the IB at its point of connection. The result of this 
excitation can be observed in the following figure. From this, it can be observed that the 
response from both models is the same expect for the high frequency components introduced 
by the converter in the detailed model (blue line in Figure 23). 

The first step towards the construction of an input-output model is the system identification 
of the model formed by the GFM and the IB. This task will allow us to construct the 
mathematical model that will describe with a certain degree of precision all the dynamics 
associated between inputs and outputs of the unknown system. 

For this implementation, the algorithm numerical subspace state space system identification 
(N4SID) has been selected. Although the description of this algorithm will not be covered 
in this report, it has been selected due to its iterative approach which represents a powerful 
alternative to classical system identification techniques. To use N4SID, a larger algorithm 
has been coded which in-turn calls N4SID internally. The objective of this is to search for 
the best combination of two parameters: the system order and frequency threshold for a low 
pass filter. The resulting block diagram of the algorithm is shown in Figure 24. 

The algorithm receives as input to parameter arrays which are: 

• System order: array of integer values for possible system orders to be use in N4SID. 
• Filter thresholds: array of real values for all frequency thresholds to be used in a 5th 

order butter- worth preconditioning filter. 
• Additional hyperparameters: The N4SID frequency fit search area can be limited to a 

desired value. 
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Figure 24. Overall system identification algorithm. 
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Figure 25. Pole-Zero map of the Average Model system identification. Dominant poles circled in 
red. 

 

Figure 26. Simulated Response of the reference model and model obtained using N4SID. 

The algorithm starts-up by normalizing the imported data. Normalization is a crucial step as the 
model is only valid in a very well-defined region of operation. This means that start sequence, 
mean values and trends need to be removed. Finally, all input-output values are scaled to be in 
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the range of [0, 1]. Next, a fitting Matrix is constructed by crossing all possible combinations of 
the previously defined parameters and sending them to N4SID. The outcome of the algorithm is 
a Matrix with all fitting percentages for all possible parameter combinations. Finally, the best 
result can be simply selected from this matrix. This algorithm has been applied to both models 
(Averaged and Detailed models) with the aim of obtaining the best possible system within the 
search horizon of those two parameters. 

The best fitting results are shown for the averaged model. To account for identification precision, 
the results are later compared against the linearized small signal model obtained previously. 
Figure 25 shows that, despite having a slightly higher damping, the dominant poles have been 
correctly identified. Despite this, the time domain simulation of the input-output model obtained 
shows a good fit (Figure 26). 

The system identification algorithm applied to the detailed model produced the following Matrix 
of fit percentages (see Figure 27). In this case, the combination of system order eight and 
preconditioning filter with threshold of 339.4105 rad/s results in the best fit. 

Similarly, as with the previous result, the poles identified are more damped than the reference 
system prediction (see Figure 28). However, examining the time domain simulation, it can be 
seen that the model response closely approximates the mean value of current output (see Figure 
29 and Figure 30). As can be seen from the results, the System Identification approach can 
provide an accurate representation of the dynamics of the system for both the averaged and 
detailed models. However, the algorithm’s output is highly dependent on the parameter 
boundaries that were chosen for the algorithm. When the boundaries are too broad, the system 
tends to become overfitted and exhibit undesirable behaviors by concentrating on faster 
transients while ignoring crucial information in the lower frequency spectrum. 

A number of techniques can be used to isolate the GFM transfer function from the identified 
closed GFM IB system. This approach will be pursued in future work to close the loop on the 
results in the previous chapters of this report. Future work will focus on efforts to overcome 
these limitations by, e.g., using a moving average with various preconditioning filters, use of 
optimization techniques to implement a search algorithm that is more reliable than the algorithm 
shown in Figure 24. The goal of these improvements is to deliver a result that is more reliable 
and no longer dependent on the initial search boundaries of parameters proposed. 
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Figure 27. Colored table with fit percentages. 

 

Figure 28. Pole-Zero map of the Detailed Model obtained by system identification. 
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Figure 29. Simulated Response of the reference model and identified model. 

 

Figure 30. Detailed view of the simulated Response of the reference model and identified model. 
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