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Motivation:

Wind Loading on Parabolic Troughs

Background

* Wind loading is one of the primary drivers of structural
design costs of concentrating solar power (CSP)
collector structures.

* To date, the design of these structures has relied on
data from wind tunnels that do not adequately capture
the dynamic effects observed at scale.

* Field measurements at a full-scale operational power
plant will help us better understand dynamic wind
loading on collector structures.

Parabolic Trough Measurement Campaign

Over 2 years, the NREL team collected a detailed
characterization of prevailing wind and turbulence
conditions and resulting operational loads on

Parabolic trough rows at the Nevada Solar One (NSO) solar power plant with

pa ra bo I ic troughs i n a fu I |-Sca Ie CSP p I a nt, damaged mirrors on the outer edge of the field. Photos by Ulrike Egerer, NREL
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Methods: Wind and Turbulence Measurements

Wind and turbulence measurements at the Nevada Solar One (NSO) power plant
November 2021-June 2023.
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Methods: Structural Loads Measurements

Structural loads measurements at NSO: November 2022—June 2023.

Drag force coefficient: Torque moment coefficient:
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Dataset Published on OEDI Along With a Data Paper

Wind and Structural Loads on Parabolic Trough Solar Collectors WI nd and StrUCtural loads data measu red on parabOhC

ét Nevada Sclar Une _ o trough solar collectors at an operational power plant
Description DOK 10.2568477001081 Publicly acconsitio Licensn X [ Suscte 7 S T —
x < sep 14,202
Ulrike Egerer E, Scott Dana, David Jager, Geng Xia, Brooke J. Stanislawski & Shashank Yellapantula
Crganization
rinbiergi Scientific Data 11, Article number: 98 (2024) | Cite this article

162 Accesses | Metrics

https://doi.org/10.25984/2001061 https://doi.org/10.1038/s41597-023-02896-4

Current analysis work published as preprint:
https://arxiv.org/abs/2401.13089
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Results: Trough Rows Impact the Wind Field in Multiple Ways

1. Wind shielding
2. Directionality change
3. Turbulence modification

— Impacted by wind speed, wind
direction and trough angle.

Graphic by Besiki Kazaishvili, NREL
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Vertical Wind and Turbulence Profiles Ahead and Between Rows
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Power spectral density (g2Hz"1)

Spectra Show Vortex Shedding After the First Row
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Admittance Functions Relate Turbulent Wind to

Load Fluctuations

Load spectrum
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Blume et al. 2023. Jafari et al. 2019.
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NSO Spectra and Admittance Functions for Row 1
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NSO Admittance Functions: Differences Between Rows
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Summary

Key Messages

Our data show how a field of parabolic troughs impacts the
incoming wind field and how turbulence creates dynamic structural
loads.

In some conditions, vortex shedding after the first row generates
additional loads on the subsequent rows.

Admittance functions help us understand wind-load interactions;
more research is necessary to understand admittance at complex
geometries and translate to fatigue damage/efficiency losses.
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