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A B S T R A C T

Quick and reliable automatic detection of traffic accidents is of paramount importance to save human lives
in transportation systems. However, automatically detecting when accidents occur has proven challenging,
and minimizing the time to detect accidents (TTDA) by using traditional features in machine learning (ML)
classifiers has plateaued. We hypothesize that accidents affect traffic farther from the accident location than
previously reported. Therefore, leveraging traffic signatures from neighboring sensors that are adjacent to
accidents should help improve their detection. We confirm this hypothesis by using verified ground-truth
accident data, traffic data from radar detection system sensors, and light and weather conditions and show that
we can minimize the TTDA while maximizing classification performance by considering spatiotemporal features
of traffic. Specifically, we compare the performance of different ML classifiers (i.e, logistic regression, random
forest, and XGBoost) when controlling for different numbers of neighboring sensors and TTDA horizons. We
use data from interstates 75 and 24 in the metropolitan area that surrounds Chattanooga, TN. Our results
show that the XGBoost classifier produces the best results by detecting accidents as quickly as 1.0 min after
their occurrence with an area under the receiver operating characteristic curve of up to 83% and an average
precision of up to 49%. We describe limitations, open challenges, and how the proposed framework can be
used for quicker operational accident detection.
1. Introduction

The recent emergence of advanced information, communication,
and traffic monitoring technologies has increased the availability, spa-
tiotemporal resolution, and quality of transportation and mobility data
in many urban areas (Anda, Erath, & Fourie, 2017; Bibri & Krogstie,
2020). These technologies enable real-time and continuous collection
and integration of traffic-related data (e.g., vehicle volume, speed,
trajectories, and intersection performance) with large spatial coverage
in the United States. These solutions include a wide variety of sensing
technologies, such as radar detection systems, loop detectors, onboard
GPS, mobile sensing apps, and IoT-connected cameras. These devices
generate large amounts of urban mobility data, which creates op-
portunities for diverse, innovative, and big-data driven transportation
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management and smart city applications that can improve transporta-
tion efficiency, help investigate mobility dynamics, promote urban
livability and sustainability, and enhance traffic safety in cities (Berres,
LaClair et al., 2021; Xu et al., 2022, 2023).

Among these applications, the development of automatic incident
detection (AID) methods enable the accurate detection of traffic ac-
cidents to support time-critical emergency response (e.g., dispatch
medical and police resources to prevent fatality and severe infrastruc-
ture damage or reroute drivers to incident-free roadways to reduce
congestion) (Han et al., 2020). As the number of traffic accidents has
increased to represent a significant fraction of deaths among people
in the United States and around the world (National Highway Traffic
Safety Administration, 2021), there is a growing urgency to more
vailable online 18 December 2023
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rapidly detect their occurrences and learn patterns that might be useful
for predicting and preventing accidents. To that end, the AID methods
aim for quick accident detection and high-quality predictions.

Many recent AID applications depend on traffic sensors to capture
traffic conditions and accidents (Klein, 2001). Among them, a variety
of methods that aim to automatically detect accidents focus on the
use machine learning (ML) classifiers to mine traffic patterns from
vast amounts of traffic data (Lu, Chen, Wang, & Van Zuylen, 2012;
Motamed et al., 2016). Significant progress has been made to maximize
classification performance, which is usually measured through metrics
such as recall, false positive rate, and area under the receiver operating
characteristic curve (AUC-ROC). However, there is still significant room
for improvement for minimizing the time to detect accidents (TTDA)
while maintaining high classification performance. This is because
TTDA is not even considered in some studies (Li, Sheng, Du, Wang,
& Ran, 2020; Lin, Li, Jing, Ran, & Sun, 2020; Liu, Cai, Zhong, Sun,
& Chen, 2020; Xiao, 2019). When TTDA has been considered, the
suggested TTDA is around five minutes (Parsa, Taghipour, Derrible,
& Mohammadian, 2019), which can be too long for life-threatening
situations caused by traffic accidents (Loten, 2019). In fact, regulators
estimate that each minute saved in response time could save up to
10,000 lives annually in the United States (The Wall Street Journal,
2023).

In this paper, we investigate the feasibility of detecting traffic
accidents within a much shorter TTDA (i.e., as quickly as 1.0 min)
while maintaining high operational performance (i.e., AUC-ROC up
to 83% and an area under the precision and recall curve [AUC-PR]
or average precision up to 49%). In doing so, we use pervasive and
generic roadside traffic sensor measurements (e.g., speed, volume, and
occupancy) along with lighting and weather conditions. Specifically,
we present the design and development of an innovative ML-powered
framework that employs spatiotemporal data to automate the timely
detection of traffic accidents in large geographic areas. We propose a
workflow for efficient data mining and ML to optimize the analysis of
complex traffic data over spatiotemporal dimensions without the need
for costly high-performance computing infrastructure.

The key methodological contribution of our work is exploring the
impact that accidents have on traffic measurements at sensors near
the accident location. This means that we use the measurements of
immediate upstream and downstream sensors, as typically done in
previous research (Parsa, Movahedi, Taghipour, Derrible, & Mohamma-
dian, 2020; Parsa et al., 2019; Shang, Feng, & Gao, 2020), but we also
study how measurements from more distant sensors (i.e., from sensors
more than one hop apart from accidents) help inform ML classifiers
to reduce TTDA while maintaining high operational performance. Our
focus is on automatically detecting accidents as soon as possible after
they occur. That means that we do not focus on other types of traffic
incidents or non-recurrent events, such as disabled vehicles, spilled
loads, temporary maintenance and construction activities, signal and
detector malfunctions, or other unusual events that disrupt the normal
flow of traffic.

In this paper, we make the following contributions. First, we vali-
date our conjecture about the practical utility of using adjacent traffic
sensor measurements to reduce TTDA while maintaining high op-
erational performance. We show that using data from more distant
neighboring sensors (both upstream and downstream with respect to
the accident locations) helps achieve this objective. We observe that
the TTDA decreases and performance increases up to a threshold of
diminishing returns. To do so, we quantify the joint effect that more
distant sensors (i.e., more distant hops) along with different TTDA
horizons have on the classification task. We compare the classification
performance under similar conditions, using different ML classifiers,
including logistic regression, random forest, and XGBoost. Then, we
verify our hypothesis in more complex classification models such as
random forest and XGBoost as opposed to logistic regression. XGBoost
2

results exhibit the best trade-off between TTDA and other performance
metrics.

Second, we report results on the importance of individual features
in the accident detection task by using SHapley Additive exPlanations
(SHAP) (Lundberg & Lee, 2017). SHAP is a model-agnostic, game-
theoretic framework used to explain the output of ML models. We
report the SHAP results for XGBoost, which is the best performing
classifier.

Specifically, we show that traffic-related features (i.e., speed, vol-
ume, and occupancy) from both upstream and downstream distant
sensors, as opposed to only upstream sensors, are the most impor-
tant features that drive classification performance. This means that
they support the objectives of minimizing TTDA while maximizing
performance—at most 11% in AUC-ROC (from 72% to 83%) and 26%
in AUC-PR (from 23% to 49%). Following traffic-related features, we
show that weather- and lighting-related features have a less significant
impact on the likelihood of accident occurrence.

Third, we report results on two different datasets that correspond
to two major interstates (i.e., I-75 and I-24) in the Chattanooga, TN
metropolitan area. We apply the proposed framework to these datasets
and show that we can verify our hypothesis. Our framework allows
for verifiable results when using the extended neighborhood, which
includes measurements from more distant sensors, to minimize TTDA
and maximize performance. We detail the entire data processing work-
flow, including handling the unbalanced nature of the datasets by using
the Synthetic Minority Over-Sampling TEchnique (SMOTE) (Chawla,
Bowyer, Hall, & Kegelmeyer, 2002), which has some history of use in
the field (Parsa et al., 2020, 2019; Shang et al., 2020). In addition, we
compare classification performance by using AUC-PR, which copes with
unbalanced data.

We focus on better feature design guided by the intuition that
accidents affect regular traffic up to a certain distance from their
location. We apply the proposed framework to historical accident data
to understand basic conditions for quicker detection of future accidents.
We hope that our research will inspire more efforts to leverage this
novel understanding of the effect that accidents have on traffic, thereby
enabling quicker and more accurate accident detection. To enable oth-
ers to reproduce our findings, we provide access to the datasets (Berres
et al., 2023), which are described in our Data in Brief paper.

2. Related work

There are two broad categories of AID methods differentiated by
the type of models they use to represent traffic variables: (1) time
series analysis (TSA) and (2) ML. On the one hand, TSA-based AID
focuses on profiling the historic behavior of traffic variables to forecast
their future values (Ahmed & Cook, 1982; Wang, Li, Liao, & Hua,
2013). TSA methods raise an alarm to represent an anomaly when the
expected/predicted values are significantly different than the actual
values. In general, TSA methods focus on identifying anomalous traffic
changes, which means that incidents are usually identified as anomalies
in the traffic stream. On the other hand, ML-based AID frames the
problem of detecting incidents as a binary classification problem in
which each data sample is a feature vector derived from traffic variables
(e.g., speed, volume, occupancy). This is done for each segment of the
road at a particular time (i.e., each road segment is labeled as having
an incident or not). In general, ML methods are flexible and can find
complex patterns of traffic variables encoded in a representative dataset
that contains incidents. Our proposed framework employs ML.

2.1. Prior work closely related to the present study

Parsa et al. (2019) compared support vector machine (SVM) and
probabilistic neural network (PNN) classifiers to detect accidents by
using weather conditions, accident data, and loop detector data. They
found that the PNN tended to outperform the classification performance
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of the SVM. Specifically, the PNN had the best performance when using
training data from 4 min before to 5 min after accidents occur. They
used data from the Eisenhower expressway in Chicago, IL to compare
the classifiers.

Shang et al. (2020) proposed a hybrid method that uses a ran-
dom forest-recursive feature elimination algorithm and a long-short
term memory (LSTM) network optimized by Bayesian optimization for
incident detection. They focused on using traffic variables and their
combinations. They tested and compared their approach with other
state-of-the-art ML classifiers, including SVM, and showed that their
approach outperforms them in multiple evaluation criteria. They tested
their method with data from the I-880 freeway in California.

Parsa et al. (2020) used an XGBoost classifier to detect accidents
by using traffic, network, demographic, land-use, and weather fea-
tures. Additionally, they used SHAP to analyze the importance of each
feature. They found that that the most important feature was the
speed difference at the upstream location before and after accidents.
They tested their framework with data from Chicago, IL’s metropolitan
expressways.

Compared to the studies mentioned above, the present paper is
unique because it combines spatiotemporal features of traffic with
weather and lighting conditions to find the best sensor configura-
tion that minimizes the TTDA while maximizing classification results.
Building upon this idea, we compare the classification performance
of three distinct ML classifiers (logistic regression, random forest, and
XGBoost) and show how additional neighboring sensor measurements
(both upstream and downstream of the accident) help reduce the TTDA.
This is unlike previous work (Parsa et al., 2020, 2019; Shang et al.,
2020) that focused only on the temporal dimension.

We also use finer TTDA resolution (i.e., 30 s) to train and test the
classifiers. This allows for finer control and helps us better understand
the temporal conditions that minimize the TTDA as much as 1.0 min
while maximizing classification performance as much as 83% in AUC-
ROC and up to 49% in AUC-PR. In addition, in contrast with the
previous, closely related work, we detail and contrast results in two
different traffic and accident datasets, including two major highways
in the metropolitan area surrounding Chattanooga, TN (i.e., I-75 and I-
24). We share these datasets (Berres et al., 2023) with the community
in a separate Data in Brief paper to ensure the reproducibility of our
results.

2.2. Other prior work related to the present study

Cook and Cleveland (1974) used double exponential smoothing
(DES) to forecast traffic-related signals and report incidents when there
are significant deviations from the actual values. They used data from
the lodge freeway in Detroit, MI. Cheu and Ritchie (1995) compared
different neural network (NN) architectures to classify lane-blocking
freeway incidents by using simulated and field data from the SR-91
riverside freeway in Orange County, CA.

Dia and Rose (1997) used a multilayer feedforward (MLF) NN
trained and tested offline in a dataset from Tullamarine freeway in
Melbourne, Australia. They also investigated the model’s fault tolerance
under corrupt and missing data conditions.

Abdulhai and Ritchie (1999) introduced a Bayesian-based proba-
bilistic NN framework and explored its transferability without the need
for explicit offline retraining in the new location. They showed that
the performance of their method competes with the MLF while being
computationally faster in training. They tested their approach on a
large set of simulated incidents and real incident datasets from the
I-880 freeway in California and the I-35 W in Minnesota.

Srinivasan, Cheu, Poh, and Ng (2000) proposed a hybrid, fuzzy-logic
genetic algorithm technique that required less time to detect incidents
and provided higher detection rates than the MLF. They tested their
3

approach along the SR-91 riverside freeway in Orange County, CA. Jin,
Cheu, and Srinivasan (2002) proposed a constructive probabilistic neu-
ral network (CPNN) architecture for incident detection. Their model
is based on a mixture Gaussian model and trained by a dynamic
decay adjustment algorithm. Their model was trained and tested on a
simulated incident detection database from Singapore. They tested the
transferability of the CPNN on the I-880 freeway in California.

Yuan and Cheu (2003) introduced and applied support vector ma-
chine (SVM) classifiers for arterial roads and freeways. Overall, SVM
performed at least as well as the MLF when using data from the I-
880 freeway in California. Teng and Qi (2003) used cumulative sum
for change-point detection in traffic-related data. They tested their
approach on data from the I-880 freeway in California. Tang and Gao
(2005) proposed an improved non-parametric regression method to
forecast traffic flow and report incidents based on the standard normal
deviation (SND) rule. Their approach was validated by using traffic
simulations. Srinivasan, Sharma, and Toh (2008) proposed a reduced
multivariate polynomial-based NN to classify traffic conditions. Their
model was trained and tested with real traffic data from the I-880
freeway in California. Chen, Wang, and Van Zuylen (2009) proposed an
SVM ensemble to combine individual SVM classifiers based on certainty
to outperform a single SVM. Their ensemble methods were tested on
data from the I-880 freeway in California. Wang et al. (2013) proposed
a hybrid approach that uses TSA and ML. Specifically, they used DES to
model trends in the normal traffic and then to forecast normal traffic.
An SVM was then used to distinguish between normal and incident-
related traffic. This hybrid approach was tested with data from the
I-880 freeway in California.

Chakraborty, Hegde, and Sharma (2019) extended the SND rule to
account for robust univariate speed thresholds using historic traffic
data. They de-noised these thresholds by using the spatiotemporal
correlations of adjacent sensors and tested their approach with data
from interstates I-80, I-35, and I-235 in Des Moines, IA. Kalair and
Connaughton (2021) used kernel density estimates of raw density-flow
data to define a contour of typical behavior in which normal traffic
lies. They showed that deviations from this contour can be used to infer
the presence of significantly anomalous behavior in the segments of a
road associated with traffic incidents. They validated their approach
to detect labeled incidents on London’s M25 motorway. Taghipour,
Parsa, Chauhan, Derrible, and Mohammadian (2022) proposed a deep
ensemble framework to combine the prediction of deep learning tech-
niques, including long-short term memory, gated recurrent unit, and
deep learning networks, to detect accidents. They used traffic, accident,
and weather condition data and found that multilayer perceptron and
random forest classifiers perform best to create an ensemble of the
output of the deep learning techniques. They tested their method by
using data from Chicago’s metropolitan expressways.

3. Dataset

We focus on the highway system in the Chattanooga, TN metropoli-
tan area, including I-75, I-24, and US-27. The junction between inter-
states I-75 and I-24 is ranked 10th in the top 100 truck bottlenecks ac-
cording to American Transportation Research Institute (ATRI) (2023).
Additionally, the junction between I-24 and US-27 is ranked 29th.

In this section, we discuss the different data sources that constitute
our ML inputs and the methodology we used to distill an input dataset.
For more detailed information about our dataset, please refer to our
Data in Brief document submitted alongside this manuscript, as well as
the published dataset (Berres et al., 2023).

This study uses accident data, radar-based traffic data, and weather
and lighting condition data from an observation period of 6 months
from November 2020 to April 2021. Below, we describe the data
sources and how they were used to synthesize a dataset to train the
ML classifiers for accident detection.

An overview of the proposed framework is presented in Fig. 1. Our
method is composed of three main phases: (1) dataset generation, (2)
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Fig. 1. Proposed AID pipeline.
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training, and (3) testing. In the dataset generation phase, we build a
labeled dataset by combining accident data (see Section 3.1), radar
data (see Section 3.2), weather condition data (see Section 3.3), lighting
condition data (see Section 3.4), and sensor topology (see Section 3.5).
We combine these datasets to produce accident data samples based on
their proximity to radar sensors and non-accident data samples (see
Section 3.6). We finally fuse accident and non-accident data samples
to come up with a dataset ready for ML classification (see Section 3.7).
We detail the specifics of the dataset used in this study in Section 3.8.
During the training phase, we process the training data (see Section 4.1)
by conducting data preparation (see Section 4.1.1), model training (see
Section 4.1.2), and selection (see Section 4.1.3) on a subset of classifiers
(see Section 4.2). During the testing phase, we prepare the data and
feed it into the trained model (see Section 4.1.4). Predictions from
the classifiers are used to estimate the quality of the predictions (see
Section 4.3). We associated each step in the proposed method (and their
subsequent section numbers) with the corresponding phase in Fig. 1.

3.1. Accident data

We used accident data provided by the Tennessee Department of
Transportation (TDOT) through the Enhanced Tennessee Roadway In-
formation Management System (E-TRIMS) (Berres, Xu et al., 2021).
This dataset contains information from 518,660 accidents that occurred
throughout Tennessee from 2018 to 2021. We filtered this dataset
down to a subset of accidents from the area of interest. First, we
selected accidents along the main highways in the eight counties of the
Chattanooga metropolitan area: Bledsoe, Bradley, Hamilton, Marion,
McMinn, Meigs, Rhea, and Sesquatchie. This resulted in a total of 9644
accidents. Further specifying the time frame as November 2020 to April
2021 and focusing on I-75 (308 accidents) and I-24 (286 accidents)
netted a total of 594 accidents. Fig. 2 shows the distribution of accidents
(in each week day) during the observation period for I-75 (Fig. 2a) and
I-24 (Fig. 2b).

E-TRIMS is an extract of the Tennessee Integrated Traffic Analysis
Network (TITAN) dataset, which is a rich dataset published quarterly.
Unfortunately, TITAN contains personally identifiable information. On
the other hand, E-TRIMS is updated weekly and contains all the rele-
vant data for accident detection without the privacy concerns inherent
in the TITAN dataset. E-TRIMS is a rich tabular dataset with detailed
information on each recorded accident. In the following, we list the
information hat would be available in a real-time detection scenario, as
the goal of this work is to detect accidents. Additional fields available
in the data are discussed in the companion Data in Brief paper.

• Date and time the accident was reported
• Geographic location of each accident: county, route name, and
4

geo-coordinates W
• Type and severity of crash: property damage, suspected mi-
nor/major injury, fatality

• Lighting and weather conditions: These will be discussed in more
detail in Sections 3.3 and 3.4

3.2. Radar data

The Tennessee highway system has TDOT-maintained and operated
radar detectors placed at intervals of roughly 1 mile along the major
highways in each of Tennessee’s four metropolitan areas, as Fig. 3.

The Tennessee highway system has TDOT-maintained and operated
radar detectors placed at intervals of roughly 1 mile along the major
highways in each of Tennessee’s four metropolitan areas, as Fig. 3.
These radar detectors emit low-energy microwave radiation that is
reflected by the vehicles (Xu et al., 2022) and can be captured by the
sensor at lane-by-lane resolution. For each lane, the sensors capture the
number of vehicles passing by, their speeds, and the lane occupancy,
with each aggregated to 30-s intervals. The specific radar sensors used
in this study are SmartSensor V by Wavetronix. These radar sensors
provides true eight-lane detection of vehicle speed, volume, and oc-
cupancy. These sensors are an important component of the SmartWay
highway traffic information system enabling situational awareness and
travel time estimation (TDOT, 2022). Their typical accuracy per di-
rection for speed, volume, and occupancy is in the range of ±5 mph,
96%–98%, and ±10% respectively.1

We hypothesize that when an accident occurs, it will affect mea-
surements of neighboring radar detectors. Fig. 4 illustrates the impact
that we observed in traffic and how we hypothesize it translates to
sensor measurements. We consider data from sensors upstream and
downstream of the accident location in addition to the data from the
nearest sensor.

For I-75, we focused on 41 radar detectors on a northbound stretch
and 46 radar detectors on the southbound stretch. These sensors divide
p this I-75 stretch into 40 northbound segments (average length of
.9 miles) and 45 southbound segments (average length of 0.8 miles).
or I-24, we focused on 28 radar detectors on an eastbound stretch
nd 25 radar detectors on the westbound stretch. These sensors divide
p this I-24 stretch into 27 eastbound segments (average length of
.5 miles) and 24 westbound segments (average length of 0.5 miles).
ig. 3 shows the locations of all radar detectors in this region, including
he sensors placed along I-75 and I-24.

1 The full list of technical specifications of the radar sensors used in this
tudy can be found at: http://www.signalcontrol.com/products/wavetronix/
avetronix_SmartSensor_V.pdf.

http://www.signalcontrol.com/products/wavetronix/Wavetronix_SmartSensor_V.pdf
http://www.signalcontrol.com/products/wavetronix/Wavetronix_SmartSensor_V.pdf
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Fig. 2. Number of accidents (in both directions) during the observation period. (a) 302 accidents on I-75 and (b) 280 accidents on I-24.
Fig. 3. Radar detectors in the Chattanooga metropolitan area stretch along I-75, I-24, SR-153, and US-27. They cover areas with heavy traffic on each roadway all the way to
the Georgia state line.
3.3. Weather condition data

Weather has an impact on driving behavior and traffic safety, as
reported by the US DOT Federal Highway Association (FHWA) (2023a).
E-TRIMS provides weather condition data as one of its variables. This
5

gives us information on conditions when accidents occurred, but it
does not tell us what weather conditions were like when there was no
accident. To obtain this information, we used meteorological data to
augment the feature space and aid in accident classification. Specifi-
cally, we used data from the Prediction Of Worldwide Energy Resources
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Fig. 4. Schematic of traffic impact from an accident, which is marked by a spiky red symbol. Sensor placement is illustrated with circles next to the road, and vehicle data is
epresented by small vehicle symbols. The extent of traffic impact is visualized by using dark yellow for strong impact, light yellow for some impact, and light blue for little to no
mpact. In the illustration, nearby vehicles upstream from the accident are affected most. Upstream vehicles that are farther away and have just passed the accident and sometimes
earby vehicles in the opposing traffic direction may experience some impact (e.g., slowing down or speeding up). Vehicles even farther away continue at their usual travel speed.
POWER) project funded by the National Aeronautics and Space Admin-
stration (NASA) to supplement weather information for non-accident
raining data (NASA, 2023). For the sake of consistency, we decided to
se this data as a source of weather conditions for both accident input
ata and non-accident input data.

The original E-TRIMS weather condition information has the fol-
owing categories: clear, cloudy, rain, fog, sleet/hail, snow, blowing
now, severe crosswinds, blowing sand/soil/dirt, smog/smoke, other,
nd unknown.

As a first step, we simplified these categories to rain, snow (snow,
leet/hail, blowing snow), wind (severe crosswinds, blowing sand/
oil/dirt), and unknown (clear, other, unknown). When multiple cat-
gories were possible (e.g., blowing snow could be wind or snow in
his scenario), we chose the category with a bigger traffic impact based
n FHWA’s report.

We then used POWER data to reproduce these categories from
he hourly measurements. We used the following variables from this
ataset:

• Temperature (C): Average air (dry bulb) temperature at 2 m above
the surface

• Precipitation (mm/h): Average of total precipitation at the sur-
face, including water content in snow

• Wind Speed (m/s) at 2 m: Wind speed at 2 m above the surface

We used these basic measurements to synthesize weather conditions
omparable to the E-TRIMS weather conditions.

First, we determined precipitation. According to the United States
eological Survey (USGS) (2023), a ‘‘heavy (thick) drizzle’’ is defined
s 1 mm of precipitation per hour, and it can impair visibility. We
herefore used 1 mm as our threshold for a precipitation classification
nd we used temperature to distinguish between snow and rain. Next,
e used the definition from the National Weather Service (NWS) (2023)

or wind advisories to determine when to use the wind classification.
inally, if the category was neither rain, snow, nor wind, we set it to –

(unknown).

3.4. Lighting condition data

Lighting has a big impact on traffic accidents. Only 25% of travel
occurs after dark; however, about 50% of all fatalities occur at night.
Although drowsy driving and intoxication account for some of these
accidents, decreased visibility can also contribute to this problem be-
cause drivers are more likely to have an accident if they cannot see a
hazard (US DOT Federal Highway Association (FHWA), 2023b). Studies
have shown that drivers often do not adjust their speed to lighting
conditions (Jägerbrand & Sjöbergh, 2016). In addition to full darkness,
dusk and dawn are also hazardous due to the glare from sunrise and
6

sunset, and the sharp contrast between bright sky and dark roads and
environment can make it difficult for drivers to see.

The original E-TRIMS lighting condition data contains the categories
daylight, dusk, dawn, dark (lighted, not lighted, unknown lighting),
other, and unknown. Applying the same reasoning we used for weather
data, we augmented the feature space with solar data to aid in acci-
dent classification and to have consistent data for both accidents and
non-accidents. We chose the sunrise-and-sunset (Sunrise Sunset, 2023)
dataset as our external data source for light. We used the times for civil
twilight start, sunrise, sunset, and civil twilight end to aggregate the
lighting conditions to dawn, daylight, dusk, and dark.

We did not consider artificial lighting in this study because informa-
tion on lighting along highways is not always available. Furthermore,
artificial lighting along the highway remains the same throughout the
study’s time frame; therefore, the presence or absence of artificial
lighting along the highways should not affect the results of our ML
classifiers. As we will discuss in Section 3.8, the non-accident data we
produce mirrors the times and locations of the accident data.

3.5. Sensor topology

Along each highway, radar detectors are placed at intervals between
0.5 to 1.0 mile for each travel direction. We split the highway into
segments at the mid-point between each pair of adjacent sensors such
that each sensor corresponds to the highway segment that is closer to
this sensor than any other sensor. In areas with highway junctions,
we cross-reference the sensor name (which contains the name of the
highway it relates to) to ensure that close proximity does not result in
incorrect assignments. Fig. 5 demonstrates the necessity of such a step.

In this step, we produce two datasets which are needed for further
processing. First of all, we create a topological representation of the net-
work of sensors, which stores each sensors upstream and downstream
neighbors. Second, we produce a geometry file consisting of polygons
which allow us to determine the nearest sensor for any given accident
location. A more detailed description of these datasets can be found in
the companion Data in Brief paper.

3.6. Synthesizing non-accident data

The ML algorithm needs examples of accidents and non-accidents.
To synthesize non-accident data, we must first determine which sensors
are affected by accidents throughout all times within the entire 6-month
study. We saved this information as a matrix of (Number of time steps)
× (Number of sensors) to enable fast lookup. We then checked the data
to see which of the similar time frames (same location, same day of
the week, same times) are free of accidents and created a list of non-
accidents. Within the given time frame (27 weeks), we can have a
maximum of 26 non-accidents for any given accident. This ensures that
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Fig. 5. Sketch of a highway junction, where one highway (vertical) branches off of another highway (diagonal). Road-side radar sensors are represented as circles, and their
orresponding range is represented by a colorful overlay. An accident (marked in red) occurs near the junction point on the diagonal highway. Based on the range assigned to
ach sensor, it should be assigned to the blue sensor. A purely proximity-based approach would assign a sensor that overlooks the opposite traffic direction (dark yellow). Other
earby sensors which are closer than the blue sensor are shown in light yellow. The potentially affected road segments are highlighted in blue and yellow respectively.
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e account for factors that are specific to a location (e.g., speed limits,
rtificial lighting), day of the week (e.g., different traffic patterns on
eekdays vs. weekends), and time of day (e.g., rush hour). We mirror
ll properties for the accident data with the exception of the type,
hich we set to None.

Moving forward, we refer to data that can be either an accident or
non-accident as an event.

3.7. Data fusion

The goal of this work is to train an ML algorithm to detect accidents.
The input for this ML algorithm is fused data, which combines event
data with traffic data. For each event, we produced dedicated machine
learning input by fusing the different data sources into a single tabular
format with the following columns:

• Time steps (rows): We begin data collection 15 min prior to the
accident time and end 15 min after the event time.

• Event data (columns):

1. A boolean signifies whether the event is an accident (i.e., 1)
or a non-accident (i.e., 0).

2. The road that the original accident occurred on and the
mile marker it occurred at (e.g., 00I75S and 4.8 if the
original accident occurred near mile marker 4.8 on I-75
southbound).

3. The type of event (e.g., Prop Damage [over]) for an accident
with property damage over a predefined threshold. If the
event is a non-accident, we set this column to None.

4. The event’s date, time (e.g., 18:35) and hour (e.g., 18).
These columns have the date/time/hour of the accident
recorded in E-TRIMS, and they remain the same value for
the entire file.

5. The sensor data’s time. This column contains the times-
tamp of the sensor data contained in each row.
7

6. Triplets of speed(i), volume(i), and occupancy(i) for each
sensor from 5 sensors upstream to 5 sensors downstream
(e.g., speed(i-5), volume(i-5), occupancy(i-5) . . . , speed(i),
volume(i), occupancy(i), . . . , speed(i+5), volume(i+5),
occupancy(i+5)) from the data.

7. Weather and lighting conditions (e.g., Rain and Dusk).

.8. Final dataset

To train the ML classifiers used in this research, we randomly
elected non-accident samples during the same observation period.
pecifically, we selected non-accident events by looking at the day and
ime of accident events and randomly sampling 24 non-accident events
er accident with similar date, time, and day of the week given the
trong temporal component of traffic data. After filtering missing data
aused by gaps in radar data (e.g., missing windows of several hours),
he full dataset consists of 302 accidents and 7455 non-accident events
n I-75 and 280 accidents and 6916 non-accident events on I-24.

We used a subset of this data that focuses on accidents in which the
earest radar detector could be one of up to five available upstream or
ownstream sensors. This subset also has an accident type of either sus-
ected minor/major injury or fatality because they have greater impact
n traffic conditions. With those parameters, the dataset consists of 24
ccidents and 3039 non-accident events on I-75 and 31 accidents and
852 non-accident events on I-24.

The dataset we share with the community in our Data in Brief sub-
ission includes all accident and non-accident data, including property
amage (Berres et al., 2023).

Table 1 details the set of explanatory variables used in this research,
ncluding their description. They include traffic data (i.e., speed, vol-
me, and occupancy) and environmental data (i.e., weather and light).
e focused on using traffic variables from neighboring radar detectors

nstead of leveraging predictions based on historical data. Specifically,
e used up to five neighboring sensors in upstream and downstream
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Table 1
Explanatory variables used in this research along with their description. 𝑛 differs from
0 to 7 min in 30-s intervals.

Variable Description

Traffic data

Speed Speed of up to five neighboring radar detectors in
upstream and downstream directions.

We used speed measurements from 4 min before up to 𝑛
min after an accident/non-accident.

Volume Volume of up to five neighboring radar detectors in
upstream and downstream directions.

We used volume measurements from 4 min before up to
𝑛 min after an accident/non-accident.

Occupancy Occupancy of up to five neighboring radar detectors in
upstream and downstream directions.

We used occupancy measurements from 4 min before up
to 𝑛 min after an accident/non-accident.

Environmental data

Weather One hot encoded representation of clear, cloudy, and
rain/snow weather conditions.

Light One hot encoded representation of daylight, dark, and
dawn light conditions.

directions on each roadway. We also trained our classifiers to detect
accidents by using different TTDA from 0 to 7 min after the occurrence
of accidents.

4. Methods

This section describes the mathematical foundation of the algo-
rithms used to perform this research.

4.1. Study setup

We trained each classifier on 70% of the data and tested on the
remaining 30%. The testing data is only used once for computing the
performance of the classification task. We implemented the proposed
framework with the scikit-learn (Pedregosa et al., 2011), imbalanced-
learn (Lemaître, Nogueira, & Aridas, 2017), and SHAP (Lundberg & Lee,
2017) APIs. As detailed below, after the train/test split, we prepare
the data (Section 4.1.1), build the model (Section 4.1.2), optimize the
model (Section 4.1.3), and then finally apply the optimized accident
models to the test dataset (Section 4.1.4).

4.1.1. Data preparation
We first standardized the independent variables. Given that our

dataset is highly imbalanced—24 accidents vs. 3039 non-accident
events (≈0.8%) on I-75 and 31 accidents vs. 4852 non-accident events
on I-24 (≈0.6%), we over-sampled the minority class because this
tends to perform better than under-sampling in severely imbalanced
datasets (García, Sánchez, & Mollineda, 2012). Specifically, we used
SMOTE to handle the imbalance (Chawla et al., 2002). SMOTE pro-
cesses each sample in the minority class to generate new synthetic
samples by joining them to their 𝑘-nearest neighbors. We used reg-
ular SMOTE with 𝑘 = 5 because of its simplicity and high perfor-
mance (Parsa et al., 2019).

4.1.2. Build model
We trained classification models by using the labeled training

dataset. We describe each of the classifiers we used in Section 4.2.
8
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4.1.3. Optimize model
To achieve optimal performance, we tuned each classifier to find

the optimal set of hyperparameters that maximizes the AUC-ROC.
We used grid search to test a small combination of parameters with
reasonable values and performed a 5-fold cross validation with the
training data (see Section 4.2). The training data was randomly split
into five subsamples, and four of these subsamples were used for
training, and the remaining subsample was withheld for validation.
This procedure was repeated five times until each subsample was used
once for validation purposes. This allowed us to measure the classifier
performance consistently across the entire training dataset.

4.1.4. Apply model
The optimized accident classification models are applied to the

testing dataset. For each traffic sample in the testing dataset, the
proposed classification model predicts whether the traffic sample is
likely to represent an accident and then outputs a binary label.

4.2. Classification models

We used three different classifiers that have shown promising results
in AID. Specifically, we include (1) logistic regression (a regression-
based classifier) (Kitali, Alluri, Sando, & Wu, 2019); (2) random forest
(an ML-based classifier) (Ozbayoglu, Kucukayan, & Dogdu, 2016); and
extreme gradient boosting (XGBoost) (an ML-based classifier) (Parsa
et al., 2020). Here, we assume that for each road segment in a given
direction, accident detection can be viewed as a binary classification
problem. Without loss of generality, suppose that the accident data
has 𝑛 samples (𝒙𝑖, 𝑦𝑖), 𝑖 ∈ 1,… , 𝑛, where 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑑 ) con-
tains 𝑑 explanatory variables or features (as described in Table 1),
and 𝑦𝑖 is a dependent variable that represents an accident indicator
(i.e., where 1 means that an accident is caused by the explanatory
variables, and 0 means that no accident occurred). We detail each of the
classifiers we used below: logistic regression (Section 4.2.1), random
forest (Section 4.2.2), and XGBoost (Section 4.2.3).

4.2.1. Logistic regression
Logistic regression is an extension of linear regression for classifica-

tion problems with binary outcomes (Hosmer, Lemeshow, & Sturdivant,
2013). Logistic regression represents class-conditional probabilities by
using a linear combination of the explanatory variables as below:

log
(

𝑃𝑟(𝑦𝑖 = 1)
𝑃𝑟(𝑦𝑖 = 0)

)

= 𝛽0 + 𝛽1𝑥𝑖1 +⋯ + 𝛽𝑑𝑥𝑖𝑑 = 𝛽0 + 𝒙⊤𝑖 𝜷,

here 𝜷 = 𝛽1 + 𝛽2 +⋯ + 𝛽𝑑 is a vector of coefficients to be estimated,
nd 𝑃𝑟(𝑦𝑖 = 1) and 𝑃𝑟(𝑦𝑖 = 0) are the probabilities of class labels 1
nd 0, respectively. We performed a grid search over the inverse of the
egularization strength parameter: 𝐶 ∈ [0.01, 0.1, 1.0, 10, 100], and we
ound that the optimal value is 100.

.2.2. Random forest
Random forest is an ensemble method based on bagging (or boot-

trap aggregation) that trains a 𝐵 number of decision trees from sub-
ets of the original dataset with the same size sampled with replace-
ent (Breiman, 2001). Thus, each of these trees focuses on a random

ubset of features. To make a prediction on a new sample, 𝒙𝑖, let 𝐶̂𝑏(𝒙𝑖)
e the class prediction of the 𝑏th random-forest tree. The random forest
hen aggregates each of the results from the trees to make a final
ecision by using the majority vote method as

̂𝐵
rf (𝒙𝑖) = majority vote {𝐶̂𝑏(𝒙𝑖)}𝐵1 .

e performed a grid search of trees in the forest parameter:
_estimators ∈ [10, 100, 1000], and we found that the optimal value

s 100.
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4.2.3. XGBoost
XGBoost is an implementation of gradient-boosted decision trees

designed for speed and performance (Chen & Guestrin, 2016). Boosting
is an ensemble method in which 𝐾 models are added iteratively to
predict a dependent variable:

𝑦̂𝑖 =
𝐾
∑

𝑘=1
𝑓𝑘(𝒙𝑖), 𝑓𝑘 ∈ F ,

where 𝑓𝑘 is an independent tree structure with a continuous score in
each leaf, and F is the space of trees. We performed a grid search
of the learning rate parameter, learning_rate ∈ [0.001, 0.01, 0.1],
and of the number of trees in the forest parameter, n_estimators
∈ [10, 100, 1000]. We found that the optimal set of values is 0.01 for the
learning rate and 1000 for the number of trees.

4.3. Detection evaluation

The comparison of different classifiers and conditions is based on
counting the number of samples that are labeled as follows. True
positive (TP) indicates that an accident instance is correctly detected.
False positive (FP) indicates that a non-accident instance is incorrectly
detected as an accident. False negative (FN) indicates that an accident
instance is missed. True negative (TN) indicates that a non-accident
instance is correctly classified as non-accident.

We used these classifiers to compute widely accepted metrics for
accident detection. Detection rate (DR), or recall, indicates the actual
proportion of accidents that have been detected. False alarm rate
(FAR), or FP rate, indicates the proportion of non-accidents detected
over the total number of non-accidents. The AUC-ROC indicates the
overall performance of a classifier based on the variation of DR with
respect to FAR at various thresholds. Due to the overly optimistic view
provided by AUC-ROC estimates in highly imbalanced scenarios, such
as accident detection, we also report the AUC-PR, or average precision,
to indicate the overall performance of a classifier based on the variation
of correctly identified accidents out of the total (precision) with respect
to recall (or DR) at various thresholds. AUC-PR changes with the
ratio of positive and negative instances capturing the susceptibility of
classifiers to imbalanced datasets, thereby placing more importance on
the detection of the minority class (accidents) (Davis & Goadrich, 2006;
Saito & Rehmsmeier, 2015). Because of that, we used AUC-PR as a
single metric to compare classifier performance. Notably, the baseline
of the AUC-PR is given by the proportion of accidents: 0.8% for I-75 and
0.6% for I-24 (Section 4.1.1). We did not report accuracy to indicate the
proportion of correctly predicted accident and non-accident instances,
given the imbalanced nature of the dataset. We used the following
definitions for each of the above metrics:

DR =
Number of true accident reports

Total number of accidents = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

FAR =
Number of false accident reports

Total number of accidents = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

Precision =
Number of true accident reports

Total number of predicted accidents = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

4.4. Feature importance analysis

Feature importance refers to computing a score for all predictors of
a given classifier. Scores quantify the importance of each feature for
the prediction task. Thus, the higher the score, the larger the effect
that a particular feature has on a classifier that is used to predict a
certain variable. In this study, we used SHAP to estimate feature impor-
tance (Lundberg & Lee, 2017). SHAP is a game theoretic approach used
to explain the output of any ML classifier. SHAP focuses on connecting
optimal credit allocations with local explanations (Ribeiro, Singh, &
Guestrin, 2016) through Shapley values from game theory (Štrumbelj
& Kononenko, 2014). In SHAP, feature values of a data sample act as
9

players, and Shapley values indicate how to fairly distribute predictions
among features. Thus, the contribution, 𝜙𝑖 ∈ R, of an individual
feature, 𝑖, is based on their marginal contribution (Nowak & Radzik,
1994). It specifies the explanation through a linear function of binary
functions, 𝑔, defined by:

𝑔(𝑧′) = 𝜙0 +
𝑀
∑

𝑗=1
𝜙𝑗𝑧

′
𝑗 ,

here 𝑧′ ∈ {0, 1}𝑀 is the coalition vector (i.e., equals 1 when a feature
s observed and 0 otherwise), and 𝑀 is the number of input features.

In this study, we compute feature importance for the best perform-
ng classifier (XGBoost) and focus on AUC-PR. Note that this procedure
oes not reflect the intrinsic predictive value of the features themselves
ut rather how important the features are for a particular classifier.
his means that the most important features may differ depending on
hich classifier is used. Other methods to compute feature importance

nclude mean decrease impurity (MDI) (Louppe, 2014) and permutation
eature importance (Breiman, 2001). We did not use these two meth-
ds because MDI tends to be strongly biased toward high cardinality
eatures (Strobl, Boulesteix, Zeileis, & Hothorn, 2007), and because
ermutation feature importance may produce misleading values on
trongly correlated features (Nicodemus, Malley, Strobl, & Ziegler,
010).

. Results

In this section, we present our results of the impact of neighboring
easurements on accident detection. We conduct two different but

omplementary analyses.
First, we perform a spatiotemporal sensibility analysis on the impact

hat neighboring sensor measurements and TTDA have on the accident
etection task (Section 5.1). We do this for each classifier considered in
his research: logistic regression, random forest, and XGBoost. Specif-
cally, we compare classification results by computing the effect that
eighboring sensors have under two settings. In Setting 1, we use up
o five neighboring sensors located upstream from the accident. In
etting 2, we use symmetric sensors located upstream and downstream

from the accident location (up to five sensors in each direction). We hy-
pothesize that accidents significantly affect upstream and downstream
traffic up to a certain distance, so using these features helps to design
better classifiers. To study the effect of the number of sensors and their
settings, we trained classifiers and report results on the test data by
controlling the influence of neighboring sensors placed at incremental
distances from accidents. In each of these settings, we also computed
results when using different TTDAs, from 0 min to 7 min at 30 s
intervals.

We found an optimal combination of neighboring sensor arrange-
ments and TTDA for achieving the best classification results (using the
AUC-PR metric). Specifically, the classification performance increases
as we consider more distant sensors, but it starts reaching a point of
diminishing results. Adding more sensors (upstream and downstream
for Setting 2) produces marginal improvements at 4–5 hops. In ad-
dition, along with a specific neighboring sensor configuration, TTDA
matters. In particular, we found that using traffic data up to 1 min
after accidents produces reasonably good results for the best performing
classifier in the richer dataset (i.e., I-24). In our analysis, XGBoost
classifiers produce the best results over logistic regression and random
forest.

Second, we perform feature importance analysis to better under-
stand the most influential features that drive the results, (i.e., how
much each feature contributed to the prediction) (Section 5.2). We did
this for the best performing classifier (XGBoost) under Setting 2 (i.e., up
to five upstream and downstream sensors) at 1.5 min TTDA for I-75
and 1.0 min TTDA for I-24. The most influential features contributing
to the predictions are traffic-related variables, (e.g., speed, volume, and
occupancy) from locations farther from the accidents, including those
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Fig. 6. The I-75 classification results with a logistic regression classifier under Setting 1: (a) is DR, (b) is FAR, (c) is AUC-ROC, and (d) is AUC-PR.
up to five sensors apart. This supports our hypothesis that adding fur-
ther sensors improves classification results and reduces TTDA. Overall,
features related to weather and lighting seem to be less important to
the classification results. Although weather and lighting conditions can
contribute to the occurrence of accidents, they are expected to factor
in more significantly in general predictions of how likely accidents
are to occur, and this can help better allocate local law enforcement
and emergency response services (Roland, Way, Firat, Doan, & Sartipi,
2021). In contrast, our work focuses on detecting accidents that have
already happened and are actively affecting traffic measurements.

5.1. Spatiotemporal sensitivity analysis

Figs. 6–17 visualize different classification metrics for DR (a), FAR
(b), AUC-ROC (c), and AUC-PR (d), as defined in Section 4.3. Each cell
of the heat maps depicts a single performance metric value for a specific
combination of neighboring sensors (i.e., Setting 1 or Setting 2) and
TTDA. The results are rounded at two decimal places. The horizontal
axis represents the TTDA (from 0 to 7 min at 30 s intervals). The
vertical axis represents the number of neighboring sensors included for
training and testing the classifiers in each of the settings: using sensors
upstream from an accident (Setting 1) and using sensors upstream and
downstream from an accident (Setting 2). We organize the results by
road (I-75 and I-24) and classification algorithm (logistic regression,
random forest, and XGBoost).

5.1.1. I-75 analysis
Figs. 6 and 7 show the classification results for a logistic regression

classifier under Settings 1 and 2, respectively. Note that two things
happen. First, for Setting 1, there are no important differences in
performance when accounting for more upstream sensors (vertical
axis) and different TTDAs (horizontal axis) for DR, FAR, and AUC-
ROC. Additionally, AUC-PR remains constant at 1%, which reflects no
significant increase over the baseline of 0.8%. Second, for Setting 2, we
observed no significant performance increase when considering both
10
upstream and downstream sensors, and AUC-PR plateaus at around 1%.
Interestingly, in Setting 2, FAR is lower by up to 16% (from 44% to
28%) than in Setting 1.

Figs. 8 and 9 show the performance results when using a random
forest classifier under Settings 1 and 2, respectively. Note that under
Setting 1, considering more upstream sensors improves classification
results across all metrics. In particular, there is an increasing trend
in DR, AUC-ROC, and AUC-PR and a decreasing trend in FAR. The
highest AUC-PR is 13%, which is achieved at 7 min. Similarly, for
Setting 2, considering more sensors (both upstream and downstream)
helps improve detection metrics. Specifically, the AUC-PR can be as
high as 33% and can be achieved at 7 min. Leveraging Setting 2 on a
random forest classifier represents an increase of as much as 20% (from
13% to 33%) in AUC-PR over Setting 1. Remember that the baseline for
AUC-PR in the I-75 dataset is 0.8%.

Figs. 10 and 11 show the performance of the XGBoost classifier
under Settings 1 and 2, respectively. For Setting 1, the DR degrades
as we start using more neighboring upstream sensors. This is the
opposite of what we observe with logistic regression and random forest
classifiers. The remaining metrics, including FAR, AUC-ROC, and AUC-
PR, show a trend of performance improvement as we use data from
more upstream sensors. Here, the 27% peak AUC-PR is achieved when
using data up to 5.5 min. On the other hand, for Setting 2, we see an
improvement in every performance metric. Here, the performance can
be as good as 45% in AUC-PR (including 82% in AUC-ROC and almost
negligible in FAR) and is achieved at 5.5 min. This peak in performance
represents an increase of as much as 18% over the same metric in
Setting 1.

5.1.2. I-24 analysis
The I-24 analysis is similar to the I-75 case study. Figs. 12 and 13

show performance results when using a logistic regression classifier
under Settings 1 and 2, respectively. Under Setting 1, there is no par-
ticular advantage to using more upstream sensors in the classification
task. In terms of AUC-PR, the metric plateaus at 1% regardless of how
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Fig. 7. The I-75 classification results with a logistic regression classifier under Setting 2.
Fig. 8. The I-75 classification results when using a random forest classifier under Setting 1.
many sensors are used and the TTDA. This agrees with the results for
I-75. We also find similar results under Setting 2: when using a logistic
regression classifier, we see an improvement when including more
11
sensors (upstream and downstream) or when considering extensive
TTDA for training, but the improvements start stagnating as we increase
the number of neighboring sensors.
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Fig. 9. The I-75 classification results when using a random forest classifier under Setting 2.

Fig. 10. The I-75 classification results when using an XGBoost classifier under Setting 1.
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Fig. 11. The I-75 classification results when using an XGBoost classifier under Setting 2.

Fig. 12. The I-24 classification results when using a logistic regression classifier under Setting 1: (a) is DR, (b) is FAR, (c) is AUC-ROC, and (d) is AUC-PR.
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Fig. 13. The I-24 classification results when using a logistic regression classifier under Setting 2.
Figs. 14 and 15 show classification results for a random forest
classifier under Settings 1 and 2, respectively. Under Setting 1, using
more upstream sensors helps improve every classification metric. Addi-
tionally, the 19% performance peak in AUC-PR (with a corresponding
76% in AUC-ROC and 1% of FAR) is reached 5 min after an accident
occurs. Under Setting 2, the random forest classifier consistently pro-
duces better results after incorporating more sensors. The earliest/best
performance for AUC-PR is 44% (with a corresponding 76% in AUC-
PR and negligible FAR), which is reached at 2.0 min after an accident
occurs.

Figs. 16 and 17 show classification results for an XGBoost classifier
under Settings 1 and 2, respectively. Under Setting 1, using more up-
stream sensors improves classification metrics. Specifically, the earliest
performance peak for AUC-PR is 23% (with a corresponding AUC-
ROC of 72% and negligible FAR) reached at 1.0 min. In agreement
with experiments for I-75, under Setting 2, adding mores sensors (up-
stream and downstream) improves the overall detection of accidents
vs. adding only upstream sensors. In Setting 2, the earliest performance
peak for AUC-PR is 49% (with a corresponding AUC-ROC of 83% and
negligible FAR) reached at 1.0 min after an accident. This represents
an improvement of at least 26% in AUC-PR (from 23% to 49%) vs.
Setting 1.

Table 2 summarizes the results for both settings, both datasets,
and all classifiers. Note that even when reporting summary statistics
such as the mean and median of performance metrics obtained with
different sensor configurations and TTDA, we notice overall superior
classification performance under Setting 2 and XGBoost classifier.

5.2. Feature importance analysis

Figs. 18 and 19 show a summary of feature importance based on
classifier predictions in I-75 and I-24, respectively. Recall that we used
SHAP to estimate feature importance (Section 4.4). The horizontal
axis depicts individual SHAP values. The greater the value, the higher
the impact on the prediction. The vertical axis represents individual
14
features. Note that features are in decreasing order of importance (from
top to bottom). For each feature, the color of each point is determined
by its SHAP value: points with higher values are redder, and points
with lower values are bluer. The figures highlight the top-15 most
important features for the best performing classifier in each case study
(i.e., XGBoost under Setting 2) and 5.5 and 3.5 min TTDA.

We observe that traffic-related features, including speed, volume,
and occupancy, from downstream and upstream locations have the
greatest impact on classifier outputs. Note the importance of consid-
ering both upstream and downstream features (Setting 2) vs. only
upstream features (Setting 1). Accidents affect traffic features both up-
stream and downstream, so considering both helps improve classifica-
tion performance and reduce TTDA. Additionally, measurements from
sensors that are farther away from the accident locations (i.e., more
than one hop apart) tend to have a stronger influence on classification
results. In fact, perceived changes in traffic conditions from more
distant sensors help discriminate between accidents and non-accident
events vs. considering only the sensors closest to the accident. This re-
inforces the idea that a shock wave moves rapidly around neighboring
locations after accidents, as discussed previously by Parsa et al. (2020)
and Wang, Xie, Liu, Ragland, et al. (2016).

Note also that higher SHAP values associated with higher feature
values (redder points) correspond to higher accident probabilities.
Conversely, higher SHAP values associated with lower feature values
(bluer points) correspond to lower accident probabilities. In general,
when present in the top 15 of features, upstream measurements one-hop
apart (i.e., −1 hop) tend to associate lower speed and lower volume
values with higher chances of an accident. In contrast, downstream
measurements one-hop apart (i.e., +1 hop) tend to associate higher
speed and lower volume values with higher chances of an accident.
This is consistent with previous empirical measurements on the topic,
including the work by Shang et al. (2020).

Finally, weather- and lighting-related features tend to be less rel-
evant features, and they do not appear in the top 15. That said, we
found that snow conditions have a slight positive impact on accident



Expert Systems With Applications 244 (2024) 122813

15

P. Moriano et al.

Fig. 14. The I-24 classification results when using a random forest classifier under Setting 1.

Fig. 15. The I-24 classification results when using a random forest classifier under Setting 2.
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Table 2
Summary of performance evaluation. Numbers are presented as mean (standard deviation)/median. Classification methods are logistic regression
(LR), random forest (RF), and XGBoost (XG).
Configuration DR FAR AUC-ROC AUC-PR

Setting 1

I-75
LR 0.57 (0.07)/0.57 0.40 (0.06) 0.40 0.59 (0.03)/0.59 0.01 (0.00)/0.01
RF 0.31 (0.07)/0.30 0.06 (0.09)/0.02 0.62 (0.03)/0.63 0.05 (0.03)/0.04
XG 0.39 (0.12)/0.34 0.08 (0.11)/0.01 0.66 (0.04)/0.65 0.07 (0.06)/0.05

I-24
LR 0.60 (0.05)/0.60 0.39 (0.02)/0.39 0.61 (0.02)/0.60 0.01 (0.00)/0.01
RF 0.39 (0.08)/0.40 0.06 (0.09)/0.02 0.67 (0.04)/0.67 0.06 (0.05)/0.04
XG 0.41 (0.09)/0.40 0.04 (0.05)/0.01 0.69 (0.04)/0.68 0.09 (0.07)/0.07

Setting 2

I-75
LR 0.55 (0.07)/0.55 0.35 (0.05)/0.34 0.60 (0.04)/0.60 0.01 (0.00)/0.01
RF 0.33 (0.08)/0.33 0.05 (0.10)/0.01 0.64 (0.04)/0.64 0.11 (0.09)/0.09
XG 0.43 (0.11)/0.41 0.06 (0.11)/0.01 0.69 (0.05)/0.68 0.15 (0.12)/0.12

I-24
LR 0.57 (0.05)/0.57 0.34 (0.03)/0.34 0.62 (0.02)/0.62 0.01 (0.00)/0.01
RF 0.42 (0.08)/0.42 0.05 (0.09)/0.00 0.69 (0.05)/0.69 0.18 (0.15)/0.15
XG 0.50 (0.12)/0.49 0.03 (0.06)/0.00 0.74 (0.07)/0.73 0.23 (0.18)/0.22
Fig. 16. The I-24 classification results when using an XGBoost classifier under Setting 1.
occurrence, followed by adverse lighting conditions (not shown in the
figures).

6. Discussion

Reducing accident response time is crucially important for saving
lives. Recent progress has shown the potential of using ML classifiers
and traffic-related data to achieve this goal. However, despite the use
of more sophisticated classifiers, more progress must be made to re-
duce the TTDA and improve classification performance, both of which
have plateaued. To that end, this work proposes a novel automatic
accident detection framework that exploits the topological deployment
of sensors in the road and their associated data. Specifically, we show
how using data from neighboring sensors around accidents, along
with weather and lighting data, can reduce TTDA while improving
classification performance. The proposed framework shows how we
can optimize the automatic accident detection by combining spatiotem-
poral traffic data to minimize the TTDA and maximize classification
performance.
16
To validate the effectiveness of the proposed framework, we ana-
lyzed accident detection on two highway stretches over I-75 and I-24
in the Chattanooga metropolitan area (Section 3.1). We tested differ-
ent ML classifiers (logistic regression, random forest, and XGBoost)
over a dataset of 24 accidents and 3039 non-accident events for I-75
and 31 accidents and 4852 non-accidents events for I-24. After care-
fully balancing the dataset and using traffic data from both upstream
and downstream locations, the best performing classifier (XGBoost)
achieves 45% AUC-PR, 82% AUC-ROC, 64% DR, and negligible FAR
at 5.5 min TTDA for I-75 and 56% AUC-PR, 86% ROC-AUC, 73% DR,
and negligible FAR at 3.5 min TTDA for I-24.

We evaluated how different configurations of spatiotemporal traf-
fic data affect the classification task for detecting accidents at road
segments. Including both upstream and downstream traffic data up to
a certain distance increases classification performance while reducing
the TTDA. We performed a similar analysis by including only traffic
data from upstream traffic and corroborated that adding traffic data
from downstream sensors leads to more accurate accident detection
and reduced TTDA. We tested this key observation by using different
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Fig. 17. The I-24 classification results when using an XGBoost classifier under Setting 2.
Fig. 18. Feature importance analysis for the best performing classifier in the I-75
analysis.

ML classifiers and computed the most important features that drive
classification.

The proposed framework provides insights on how to leverage
traffic data to reduce accident response time and increase classification
performance based on spatiotemporal analysis of traffic. Having noted
the potential of our approach, we are also aware of the followings
limitations of our proposed work.
Lack of Real-Time Field Test: Our proposed framework was trained
and tested on empirical, static datasets. We reported results on these
datasets and showed that, based on the configuration of sensors used
in the classification task, it is possible to guarantee a peak in per-
formance for a specific TTDA. We did not perform a real-time field
17
Fig. 19. Feature importance analysis for the best performing classifier in the I-24
analysis.

evaluation of the proposed framework because real-time data feeds
(while under development by the transportation agency) were not yet
production-ready.
Continuous Classifier Adaptation:We presented results on the perfor-
mance of classifiers trained and tested on static datasets. However, we
acknowledge that accident patterns continuously evolve, and classifiers
must adapt based on updated traffic patterns of accident and non-
accident conditions. Thus, retraining or incrementally updating the
classifiers requires thoughtful exploration to provide adaptation.
Distinction between Other Road Events: The incident datasets used
contain only accident events and associated metadata. Although the
traffic sensor data includes all scenarios for the studied time frame, the
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incident datasets did not include ground-truth data for other events that
may influence traffic patterns (e.g., construction, special events in the
city). This means that the accident detection presented in this paper
cannot account for such incidents.
Topology of Sensor Placement: In the case studies, we focused on

single linear neighborhood between sensors near junctions. How-
ver, incidents that occur close to junctions may affect upstream or
ownstream traffic on multiple highways. For instance, if there was an
ccident on I-75 southbound immediately north of its junction with I-
4, then this would affect downstream traffic on I-24 westbound and
-75 southbound. Similarly, an accident in the northbound direction
ould affect upstream traffic from I-24 eastbound and I-75 northbound.
se of Default Parameter Values in ML Classifiers: We performed a
rid search over a subset of hyperparameters for the proposed classifiers
hat had been explored in previous research (Van Rijn & Hutter, 2018).
herefore, we did not explore additional hyperparameters that could
urther improve performance.

Results from this work show how to reduce the TTDA by using ML
lassifiers and leveraging the traffic impact of accidents in upstream
nd downstream traffic conditions. We anticipate that field experiments
an be performed to validate the results of this work based on the
ich data sources readily available, as we have shown in our two case
tudies.

. Conclusion

We show the utility of using spatiotemporal traffic data sources for
he quick and accurate detection of accidents by leveraging different
L classifiers (i.e., logistic regression, random forest, and XGBoost). As
complement to current automatic accident detection approaches, we
ave demonstrated a proof-of-concept to reduce the accident response
ime while increasing classification performance to as early as 1.0 min
fter accident occurrence with an AUC-ROC of up to 83% and an
UC-PR of up to 49%. The proposed framework relies on empirical

raffic data along with weather and lighting data sources. We have
emonstrated the benefits of using our approach on a set of 24 accidents
n I-75 and 31 accidents on I-24 in the Chattanooga metropolitan area.
he framework proposed in this paper relies on accidents having a
hock wave effect that expands to neighboring locations upstream and
ownstream from accidents. Thus, considering traffic data from more
istant accident locations helps to more quickly identify accidents. Re-
ying on this observation, we detailed an automatic accident detection
ramework based on ML classification for quick and accurate detection
f accidents. Specifically, we showed that the proposed framework can
etect accidents rapidly while still performing reasonably well. After
.0 min TTDA, we achieved 38% AUC-PR, 74% AUC-ROC, 48% DR, and
egligible FAR for I-75; after 1.0 min TTDA, we achieved 49% AUC-PR,
3% ROC-AUC, 67% DR, and negligible FAR for I-24.

Future work in this area includes the following ideas:

• Real-time incident detection: examine the effectiveness of the pro-
posed framework with real-time traffic data from radar detectors.
We expect that in the near future, this data can be readily avail-
able and accessible through APIs across different transportation
authorities in the United States.

• Integration in traffic analysis platforms: integrate the proposed
methods in data-driven platforms for transportation analysis,
monitoring, and data visualization, such as the Regional In-
tegrated Transportation Information System, which is coming
online across many states.

• Probe data: using probe data as an alternative to stationary sen-
sors to obtain link-level speeds. As the penetration rates for most
available probe data are fairly low (5-10% of all vehicles/devices
in many areas), the resulting traffic counts may not be reliable
and there could be delays in reporting speed changes due to
the sparser sampling of vehicles. However, probe data have the
18

advantage of not requiring traffic infrastructure to be in place.
In summary, an implementation of a prototype for automatic acci-
ent detection, based on the principles described here, should be feasi-
le with the availability of real-time data from diverse traffic-related,
ata-driven platforms. By detailing our experimental procedure in this
ork and sharing our dataset with the research community (Berres
t al., 2023), we hope that further studies can reflect on comparing a
roader set of classification models beyond logistic regression, random
orest, and XGBoost. We look forward to further research in this area.
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