
Performance modelling and yearlong outdoor degradation analysis of a GaAs//Si tandem module

Martin Springer, Riley Whitehead, Robert Witteck, Bill McMahon, John Geisz, Tim Silverman, Emily Warren *PVRW– 2024-02-27*

Motivation

Assess the long-term, outdoor performance of a GaAs//Si module

Configuration of the GaAs//Si four-terminal, rear heterojunction tandem solar module.

Image of fixed tilt mounting configuration

Outdoor deployment

filtering around standard test conditions

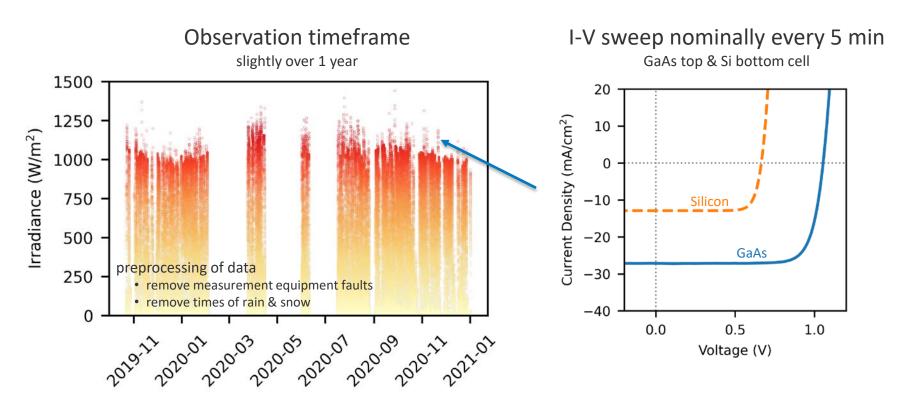
Performance

metric

translation to STC and normalization

Degradation

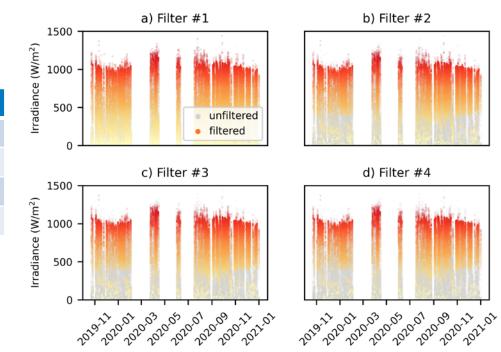
analysis


determine performance loss rate Performance modelling

confirming failure mode hypotheses

Outdoor deployment

Outdoor Test Facility, NREL, Golden, Colorado | 40° south, fixed tilt


Filtering data close to STC

Reference filter Set [Steiner and Siefer, 2023]

 Proposed for translation of outdoor tandem PV module I-V measurements to a STC power rating

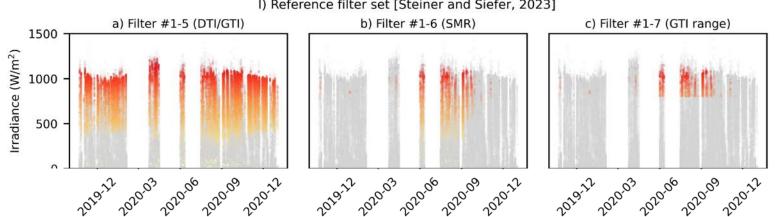
Nr.	Filter parameter	Restriction
1	GTI variation before-after I-V sweep	≤ 1%
2	GTI min-max variation 10 min	≤ 10%
3	GTI min-max variation 30 min	≤ 40%
4	Average wind speed	0.5 – 5 m/s

GTI ... Global Tilted Irradiance (W/m²)

[Steiner and Siefer, 2023, Translation of outdoor tandem PV module I–V measurements to a STC power rating]

Filtering data close to STC

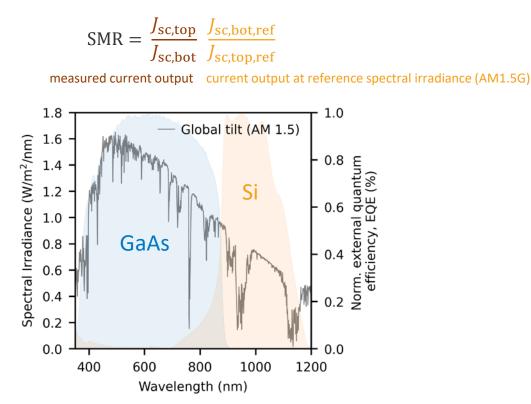
Reference filter set [Steiner and Siefer, 2023]


Nr.	Filter parameter	Restriction	
5	DTI / GTI	> 0.8	
6	Spectral Matching Ratio (SMR)	1 ± 0.03	
7	GTI range (W/m ²)	800-1200	

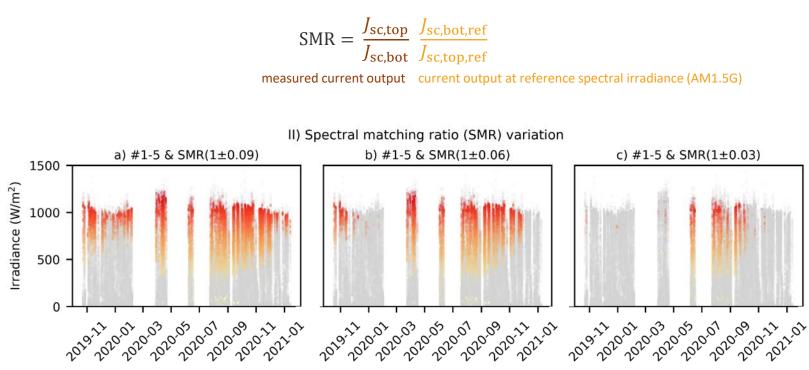
GTI ... Global Tilted Irradiance (W/m²) DTI ... Direct Tilted Irradiance (W/m²)

Problem with reference filter set

- filter #6 seems too strict for Golden, Co
- remaining data localized around summer/fall

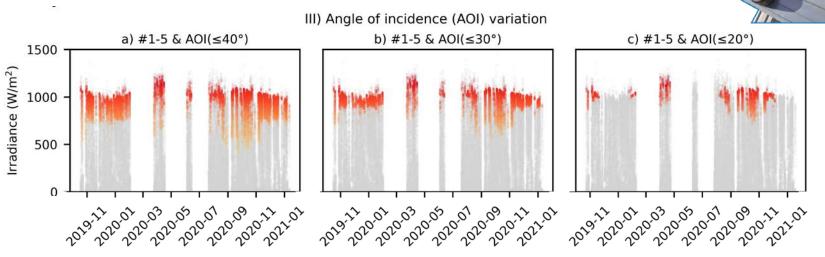

Note: Reference filter set was developed for a tracked system in Freiburg, Germany.

I) Reference filter set [Steiner and Siefer, 2023]


Spectral Matching Ratio (SMR)

used to quantify the impact of different spectral irradiance composition on the power output

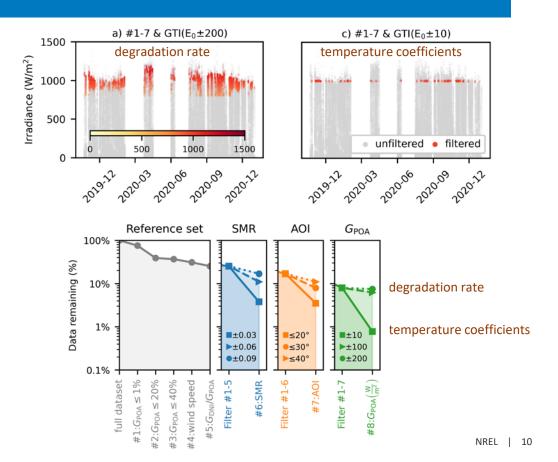
Spectral Matching Ratio (SMR)


used to quantify the impact of different spectral irradiance composition on the power output

Angle of Incidence (AOI)

Reference filter set does not account for AOI

- reference filter set was developed for tracked system
- our tandem module is deployed on fixed tilt racking



20,

Filter set for fixed tilt system

Modified filter set

Nr.	Filter parameter	Restriction	
1	GTI variation before-after I-V sweep	≤ 1%	
2	GTI min-max variation 10 min	≤ 10%	
3	GTI min-max variation 30 min	≤ 40%	
4	Average wind speed	0.5 – 5 m/s	
5	DTI / GTI	> 0.8	
6	Spectral Matching Ratio (SMR)	1 ± 0.09	
7	Angle of Incidence (AOI)	± 30°	
8a	GTI(temperature coefficients)	E ₀ ± 10	
8b	GTI(degradation rate)	E ₀ ± 200	

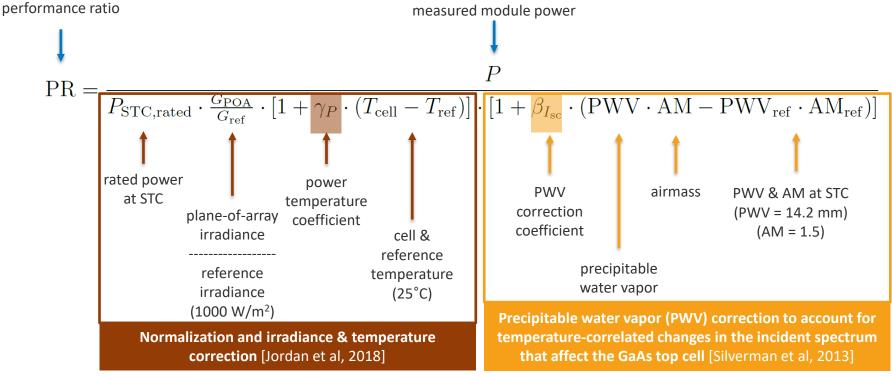
Outdoor deployment

filtering around standard test conditions

Performance metric

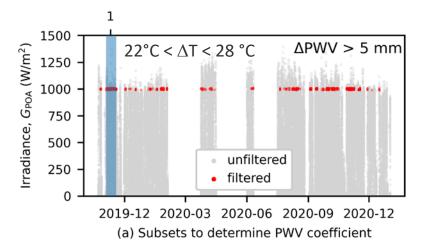
translation to STC and normalization

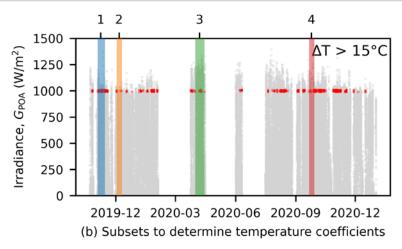
Degradation

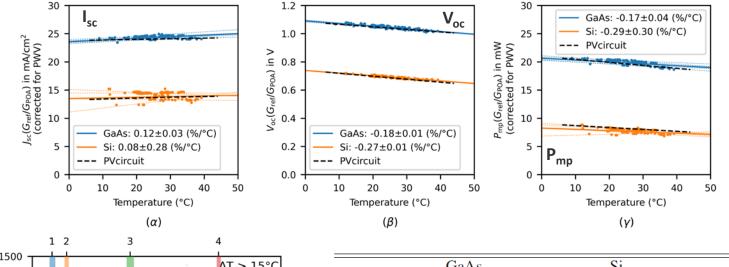

analysis

determine performance loss rate Performance modelling

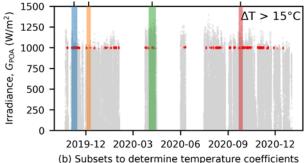
confirming failure mode hypotheses


Performance metric for degradation analysis


unitless performance ratio (PR)


Temperature & spectral correction coefficients

Challenges	Solutions
dedicated thermal transient measurements not available	coefficients calculated from outdoor time-series data
 spectral effects and temperature effects need to be decoupled 	 used a simple correction based on precipitable water vapor (PWV) and airmass (AM)
 device degradation must not affect coefficient determination 	 use subsets with sufficient variation to determine the coefficients



Temperature coefficients

_

	GaAs		Si		
	Outdoor	Model	Outdoor	Model	Units
$\alpha_{I_{\rm sc}}$	0.12 ± 0.03	0.05	0.08 ± 0.28	0.11	%/°C
$\beta_{V_{ m oc}}$	-0.18 ± 0.01	-0.17	-0.27 ± 0.01	-0.30	%∕°C
$\gamma_{P_{\mathrm{mp}}}$	-0.17 ± 0.04	-0.17	-0.29 ± 0.30	-0.30	%∕°C
$\beta_{\rm PWV}$	0.15	N/A	-0.05	N/A	%/mm

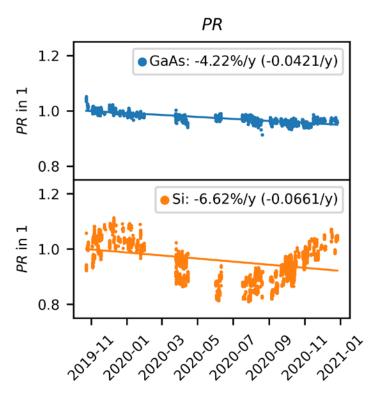
Outdoor deployment

filtering around standard test conditions

Performance metric

translation to STC and normalization

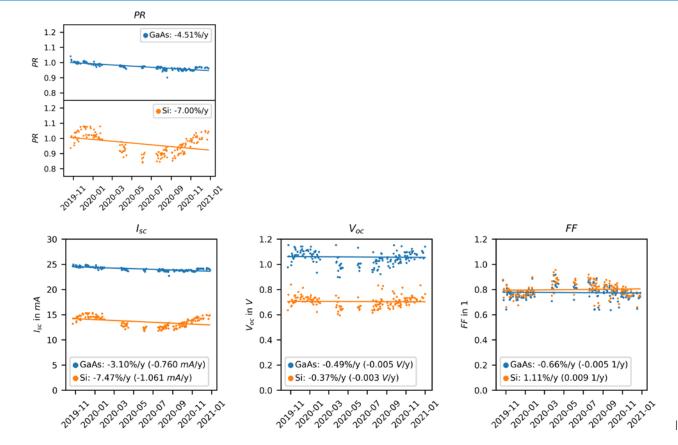
Degradation analysis


determine performance loss rate Performance modelling

confirming failure mode hypotheses

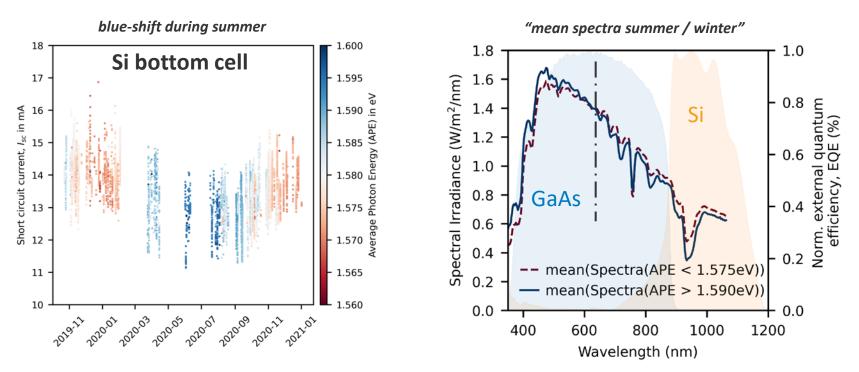
Performance loss rate

Regression analysis


- Theil–Sen estimator
- fit over whole observation time frame

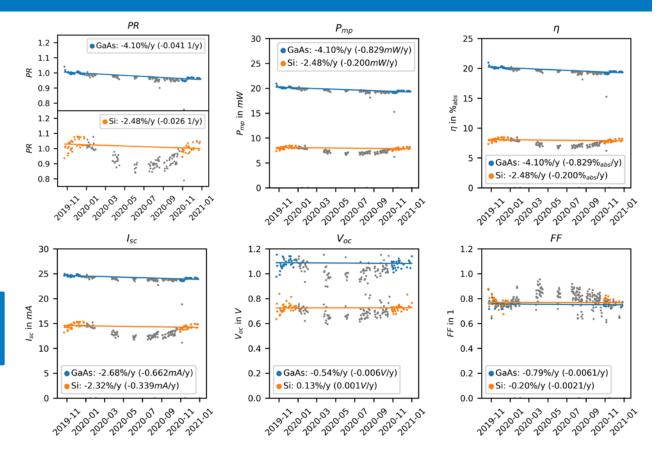
Aggregated degradation analysis

Improvements


• 1-day insolation weighted aggregation of data

17

Seasonal spectrum change



Aggregated degradation analysis

Improvements

- 1-day insolation weighted aggregation of data
- mask the overlapping month in 2019 & 2020
- \rightarrow "winter degradation rate"

Degradation hypothesis → delamination in module packaging

Outdoor deployment

filtering around standard test conditions

Performance metric

metric

translation to STC and normalization

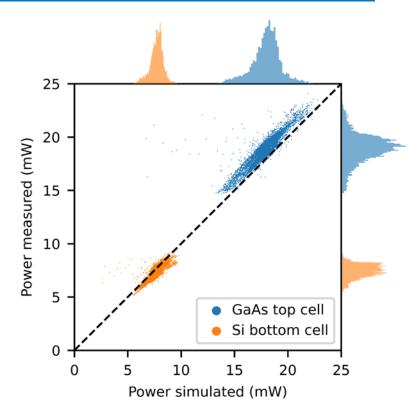
Degradation

analysis

determine performance loss rate Performance modelling

id

confirming failure mode hypotheses


Performance modeling

PVCircuit

open-source Python library for optoelectronic modeling of tandem/multijunction solar cells

- measured J_{sc} data as model input
- cell or packaging degradation not accounted
- simulated and measured power data are in good agreement

 → reduction in the J_{sc} explains performance degradation
 → aligns with the identified delamination failure mode in the module packing that reduces J_{sc}

Conclusion

Summary

- GaAs//Si tandem module deployed outdoors for 14 month
- filtered data for outdoor conditions close to STC
- corrected for irradiance, temperature, precipitable water vapor, air mass
- still ended up only with a "winter degradation rate"

Takeaways

- 2+ years of outdoor data would be optimal for degradation analysis
- (or better spectral correction)

Manuscript in preparation

Springer et al. "Performance modelling and yearlong outdoor degradation analysis of a GaAs//Si tandem module"

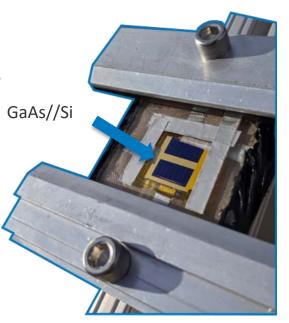


Image of fixed tilt mounting configuration

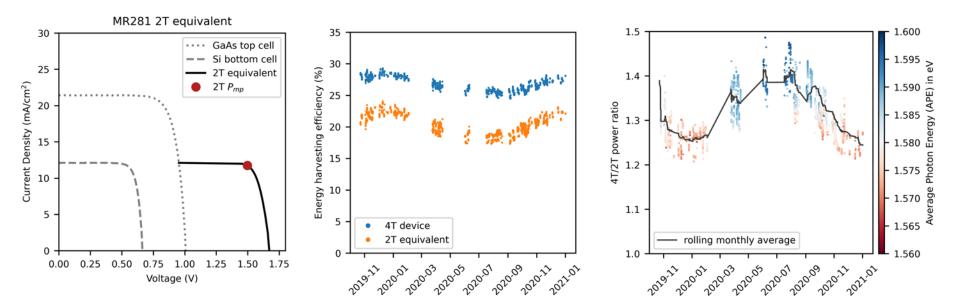
Thank you!

Contact: Martin Springer | Martin.Springer@nrel.gov

NREL/PR-5K00-89010

Acknowledgements

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding was provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number 38266. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.


Appendix

Energy harvesting efficiency 2T vs. 4T

2T equivalent JV

EHE

Power ratio

Spectral Matching Ratio (SMR)

used to quantify the impact of different spectral irradiance composition on the power output

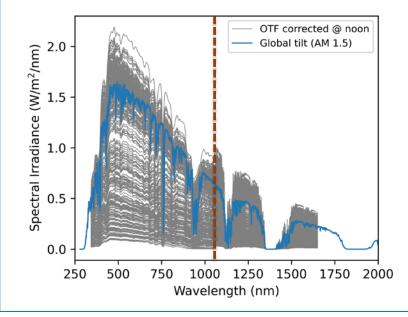
SMR can be obtained from

1) component cell* measurements

 $SMR = \frac{J_{sc,top}}{J_{sc,bot}} \frac{J_{sc,bot,ref}}{J_{sc,top,ref}}$

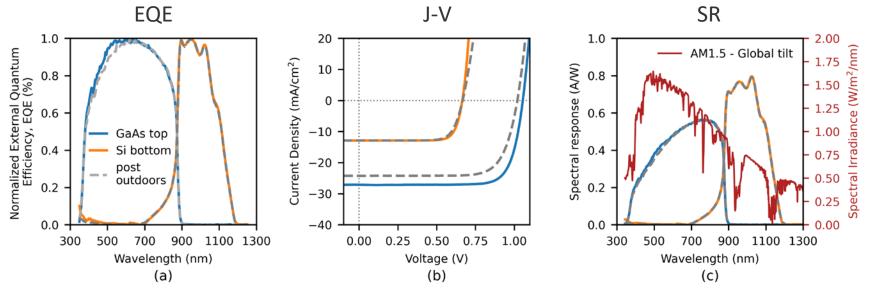
measured current current output at reference spectral output irradiance (AM1.5G)

*component cells are defined as cells, which are optically (absorption and transmission) equivalent to the whole multi-junction cell but electrically behaving as one of the multi-junction's sub cells.


2) spectroradiometer readings

 $SMR = \frac{\int E(\lambda) SR_{top}(\lambda) d\lambda}{\int E(\lambda) SR_{bot}(\lambda) d\lambda} \frac{\int E_{ref}(\lambda) SR_{bot}(\lambda) d\lambda}{\int E_{ref}(\lambda) SR_{top}(\lambda) d\lambda}$

*only the Global 40-South Spectral Data (OTF) spectroradiometer readings were available for the investigated time frame. This sensors cuts off at 1050 nm.


OTF Spectrometer correction

The new <u>SRRL Global 40-South</u> sensor makes this correction obsolete for time series analysis after 04/28/2022.

Simulator performance characterization

Module measured at one-sun under the AM1.5G spectrum

 $SR = \frac{q\lambda}{hc}EQE$

Comparison outdoor analysis vs. simulator

Outdoor analysis Lab measurements FF V_{oc} lsc 20 1.2 30 1.2 Current Density (mA/cm²) 10 25 1.0 1.0 20 0.8 0 0.8 I_{sc} in mA V_{oc} in V FF in 1 -100.6 0.6 15 10 0.4 0.4 -20 GaAs: -2.68%/y (-0.662mA/y) GaAs: -0.54%/y (-0.006V/y) GaAs: -0.79%/y (-0.0061/y) 5 0.2 0.2 -30 Si: -2.32%/y (-0.339mA/y) Si: 0.13%/y (0.001V/y) Si: -0.20%/y (-0.0021/y) 0.0 0.0 0 -402020.03 2020.05 2020-01 2020.09 2020.03 2020.05 2020-01 2020-09 2020:11 2019-11 2020.03 2020.05 2020:01 2020.09 2020-12 2022.02 2019:11 2020.01 2020-12 2022.02 2019-11 2020.01 2022.02 2020.01 0.25 0.50 0.75 1.00 0.00 Voltage (V) (b) FF FF V trend SC oc 00