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Motivating Example: Reacting Flows
• Large eddy simulation (LES) applies 

a low-pass filter to the.            
Navier-Stokes equations

• Resolves largest length scales
• Models small scales effects

• Ex: Progress variable subfilter scale (SFS) 
dissipation rate

• Data-driven approach
• Filter direct numerical simulation 

(DNS) data to generate training pairs
• Flexible
• Introduces new uncertainties
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Dissipation 
Rate Model

• Physics-based algebraic models
• Gaussian processes
• Neural networks

[1] Wimer, Nicholas T., et al. Examination of a Methane/Diesel RCCI Engine Using Pele. No. 
NREL/CP-2C00-84700. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2023.
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Forms of Uncertainty
Epistemic
• Reducible with additional data
• DNS data availability in phase space
• Extrapolatory uncertainty

Aleatoric
• Irreducible with additional data
• Model features that we include
• Coarse-graining / filtering
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High Epistemic Uncertainty
Low Aleatoric Uncertainty

High Aleatoric Uncertainty
Low Epistemic Uncertainty



Modeling Uncertainty with BNNs
• Gaussian processes are a natural choice

• Non-parametric and interpretable
• Intractable training 
• Expensive prediction

• Bayesian neural networks (BNNs) are an 
attractive alternative

• Flexible model form
• Training amenable to big data regime
• Quick to evaluate on-line

• BNNs gaining popularity with widespread 
adoption of variational inference
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BNN modeling epistemic and aleatoric uncertainty

BNN modeling epistemic uncertainty



What’s so Bayesian about BNNs?
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• BNN trained with the Evidence LOwer Bound (ELBO)

• How should we specify a prior?
• Parametric view: What distribution should weights come from?
• Functional view: What is the functional form of the model?

• How do we expect this model to extrapolate?



Uncertainty in a Toy Model
• Underlying data generating function

• Epistemic model captures model form 
better with increasing data

• Epistemic + aleatoric model captures 
heteroskedastic noise
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How to Handle Extrapolation?
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• Warm-starting exhibits “catastrophic forgetting”

• A “low-fidelity” model can directly prescribe 
extrapolatory behavior

• Need to balance separation and quantity to avoid 
spoiling desired extrapolation from tuned BNN

• Out-of-distribution (OOD) data can be 
generated



Talk Outline
1. Introduction

2. Modeling uncertainty with BNNs

3. A Priori Results

4. Uncertainty Propagation

5. Concluding remarks

March 1, 2024 SIAM UQ24 10



Performance on Test Dataset
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Epistemic Uncertainty
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• Regions of high epistemic uncertainty show where additional data 
should be collected to better inform the closure model

• Aleatoric and epistemic uncertainties are similarly distributed due to 
uniform in phase space sampling

• Magnitudes differ by a few orders of magnitude



Filter Width: 16 Uncertainties

Flame Uncertainty Contours
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• Mid-plane slice of a test flame (not included in training dataset)
• BNN mean prediction across different filter widths
• Can be used to predict the pointwise uncertainties



Talk Outline
1. Introduction

2. Modeling uncertainty with BNNs

3. A Priori Results

4. Uncertainty Propagation

5. Concluding remarks

March 1, 2024 SIAM UQ24 14



What Uncertainties Should we Propagate?
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• Aleatoric uncertainty
• Captures all possible DNS realizations
• Unclear how to formulate a model for each realization

• Epistemic Uncertainty
• Captures all possible LES models given available data
• Sample the BNN mean

• Monte Carlo sampling
• Requires many forward evaluations of the LES model
• Will work in high-dimensions

• Quadrature methods (Stochastic collocation, polynomial chaos, …)
• Require fewer forward evaluations… if there is a low-dimensional space

Aleatoric Epistemic



Tractability Requires Dimension Reduction
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Noise-to-Signal Ratio (N2S)
Compute ratio
 and truncate

Mixed Variational Layers
Compose variational

and deterministic layers
Active Subspace Projection

Define objective function:

Compute leading singular vectors of:

Represent in the “active directions”

Goal-Oriented Variational Autoencoder

Encoder Decoder



Sampling from the Reduced Dimension
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Active Subspace Projection

Goal-Oriented Variational Autoencoder

Encoder Decoder

Mixed Variational Layers
Monte Carlo sampling of

Noise-to-Signal Ratio (N2S)

Monte Carlo sampling of

Same as Active Subspace

Projection onto active subspace

Monte Carlo sampling of

Sample the active subspace

Fit distribution to active subspace
representation of



Preliminary Results
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Use Relative error to compare reduced representations

Validation data
Reduced BNN
Full BNN
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Conclusions and Future Work
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• BNNs are a promising method to systematically model multiple forms 
of uncertainties arising in closure term modeling

• Low-fidelity data can be used to supplement high-fidelity training 
data to yield reasonable extrapolation uncertainty estimates

• Uncertainty propagation readily performed via Monte Carlo
•  More efficient representations are possible

• Future work / coming soon: propagation through LES codes
• Code availability: github.com/nrel/mluq-prop

[1] Graham Pash, Malik Hassanaly, Shashank Yellapantula. “A Priori Uncertainty Quantification of Reacting 
Turbulence Closure Models using Bayesian Neural Networks.” 2024. Preprint. arxiv.org/abs/2402.18729



Thanks!
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