

Defect equilibria from first principles: From widegap oxides to topological semimetals

<u>Stephan Lany</u> National Renewable Energy Laboratory, Golden, CO 80401

> First International Workshop FLAIR 2024 Fermi Level and Processing of Oxide Electroceramics March 3-7, 2024

Defect equilibria from first-principles calculations

First-principles supercell calculations

Traditional solid-state chemistry

$$\Delta H_{\mathrm{D},q}(\mu, E_{\mathrm{F}}) = \frac{[E_{\mathrm{D},q} - E_{\mathrm{host}}]}{[E_{\mathrm{D},q} - E_{\mathrm{host}}]} + \frac{[\mu_{\mathrm{host}} - \mu_{\mathrm{D}}]}{[\mu_{\mathrm{host}} - \mu_{\mathrm{D}}]} + \frac{q \cdot E_{\mathrm{F}}}{[\mu_{\mathrm{host}} - \mu_{\mathrm{D}}]}$$

Nonequilibrium Synthesis of ZnSnN₂:O J. Pan, ..., SL, Adv. Mater. 1807406 (2019)

$$K_{\rm red} = p_{\rm O_2}^{1/2} [\rm V_O^{\bullet \bullet}] n^2$$

A Convergent Understanding of
Charged Defects
S. Anand *et al.*,
Acc. Mater. Res. 3, 685 (2022) NREL | 2

Ideal gas free energy

Gas phase chemical potential $\mu_{\rm O} = \frac{1}{2}H({\rm O}_2, 0{\rm K}) + \Delta\mu_{\rm O}(p, T)$

$$\Delta \mu(p,T) = [H^{\circ*} + c_{p}(T - T^{*})] - T [S^{\circ*} + c_{p}\ln(T/T^{*})] + k_{B}T\ln(p/p^{\circ})$$
standard enthalpy at
1 bar and 298.15K (3.5 k_B, rigid rotor) standard entropy pressure dependence
(ideal gas law)
$$0 = \frac{1}{2} + \frac$$

Thermodynamic simulations

Defect formation energy

Defect concentration

Electron/hole density

Charge neutrality

Self-consistent solution

$$\Delta H = \Delta H_{D,q} (\mu, \boldsymbol{E}_{F})$$

$$c_{D} \approx N_{site} \times \exp(-\Delta H/kT)$$

$$c_{e} = \int f_{FD} (\boldsymbol{E} - \boldsymbol{E}_{F}) g(\boldsymbol{E}) d\boldsymbol{E}$$

$$- c_{e} + c_{h} + \Sigma [q \cdot c(D^{q})] = 0$$

$$\Delta H(\boldsymbol{E}_{\mathsf{F}}) \longrightarrow c_{\mathsf{D}}(\Delta H) \longrightarrow \boldsymbol{E}_{\mathsf{F}}$$

Association / dissociation of defect pairs and complexes within law of mass action

Direct $(\Delta \mu \rightarrow c_D)$ and inverse $(c_D \rightarrow \Delta \mu)$ solutions ("pseudo-equilibrium")

Temperature dependence of band gap (CBM and VBM)

SL, JCP 148, 071101 (2018) Biswas, SL, PRB 80, 115206 (2009)

Outline

(1) Computational Fermi level engineering and doping-type conversion of Mg:Ga₂O₃ via three-step synthesis process
 Anuj Goyal, A. Zakutayev, V. Stevanović, S. Lany
 J. Appl. Phys. **129**, 245704 (2021)

(2) Band energy dependence of defect formation in the topological semimetal Cd₃As₂ Chase Brooks, M. van Schilfgaarde, D. Pashov, J.N. Nelson, K. Alberi, D.S. Dessau, S. Lany Physical Review B **107**, 224110 (2023)

 (3) Predicting Thermochemical Equilibria with Interacting Defects: Sr_{1-x}Ce_xMnO_{3-δ} Alloys for Water Splitting Anuj Goyal, M.D. Sanders, R.P. O'Hayre, S. Lany PRX Energy **3**, 013008 (2024)

Ga₂O₃ Fermi Level Engineering

Promising properties of β -Ga₂O₃:

- Ultra-wide bandgap (~4.9 eV)
- Tunable *n*-type conductivity
- *p*-type doping?
- Fermi level engineering (w/o p-type conduction)

Non-equilibrium doping

- Analogy to GaN:Mg
- Growth under H₂
- Annealing/activation

Nakamura *et al,* Jpn J Appl Phys 31, 1258 (1992)

Quantitative computational predictions for process conditions enabling *n*-to-*p* type conversion

DFT supercell calculations

- 160 atom supercells: Mg_{Ga}, Mg_i, V_O, V_{Ga}, H_i
- Defect pairs/complexes: (2Mg_{Ga} V_O), (Mg_{Ga} H_i)
- VASP-PAW in DFT-GGA (HSE06 for Mg_{Ga} acceptor)
- Fitted elemental reference energies (FERE) SL, PRB (2008); Stevanovic *et al*, PRB (2012)
- GW band gap and $\Delta H_{\rm D}$ corrections Peng *et al*, PRB (2013)
- *T*-dependence of CBM SL, APL Mater (2018)

First principles defect equilibria

- Finite-temperature free energies
 - configurational: defects, pairs, complexes
 - electronic: Fermi-Dirac E_{F} , CBM(T)
 - ideal gas: O_2 , H_2 , H_2O
 - vibrational: minor contribution
 Millican, ..., SL, Chem Mater (2022)

Computational approach

Mg:Ga₂O₃ Growth Step

Lower growth T and H-rich conditions required to maximize $[Mg - 2V_0]$ defect concentration

Annealing Step: Maximize Net Acceptor Concentration

Optimal annealing temperature

Anneal without V_o equilibration

$$T = 600 \text{ °C}, pO_2 = 1 \text{ atm}, pH_2O = 10^{-8} \text{ atm}$$

Quench Step: Determine Fermi Level at Operating Conditions

- Quenched from the preceding anneal step
- Freeze defect concentrations and allow for Fermi level (*e*,*h*) to equilibrate

 $E_{\rm F}$ has stronger dependence on $T_{\rm op}$ than Mg doping $[n_{\rm e}]$ greatly suppressed

$E_{\rm F}$ engineering of Ga_2O_3 : Conclusions

Defect equilibria from first principles

- Increasing complexity
 - dopant-defect pair association
 - non-equilibrium processes
 - T dependence of electronic structure
 - − gas phase equilibria $H_2 + \frac{1}{2}O_2 \leftrightarrow H_2O$

A. Goyal, *et al. J Appl Phys* 129, 245704 (2021)

Growth

- Little effect of H on Mg solubility
- Reduction of V_o compensation (H-rich and low T)

Annealing

- With V_o equilibration:
 Optimal annealing T
- Without V_o equilibration: dependence on growth step

Quench

- Net *p*-type 10¹⁰ to 10¹³ cm⁻³
- Negligible *p*-type conductivity
- Reduction of $E_{\rm F}$, suppression of $n_{\rm e}$

Band Energy Dependence of Defect Formation Topological Semimetal Cd₃As₂

"Disorder in Topological Semimetals" (DOE-SC-BES)

NREL

Kirstin Alberi Mark van Schilfgaarde

CU Boulder

Chase Brooks

Dan Dessau

- Fermi level within band continuum
- Meaning of defect levels
- Electronic screening
- Shape of the density of states
- Temperature dependence of defect equilibrium
- Doping engineering: Avoid unintentional *n*-type doping

Cd₃As₂ structure

Fluorite structure (sg 225)

 $\begin{array}{ll} {\sf CaF}_2 \longleftrightarrow {\sf AsCd}_2 \\ {\sf Conventional\ cell:} & 12\ {\sf atom\ (sc)} \\ {\sf Primitive\ cell:} & 3\ {\sf atom\ (fcc)} \end{array}$

2 empty sites per sc cell for Cd₃As₂ stoichiometry ground state sg 142, centrosymmetric no spin splitting 80 atom primitive cell

Ali *et al*, Inorg Chem 53, 4062 (2014) NREL | 13

Supercell and electronic structure calculations

First principles calculations

- DFT-PBE (VASP)
- DFT-SCAN + spin-orbit (VASP)
- QSGW electronic structure (Questaal)

Defect formation energy

- Cd interstitial on empty site
- Charged vs neutral defect
- Cell size dependence 80 to 320 atoms

$$\Delta H_{\mathrm{D},q}(E_{\mathrm{F}},\{\mu\}) = [E_{\mathrm{D},q} - E_{\mathrm{h}}] + \sum_{\alpha} n_{\alpha} \mu_{\alpha} + q E_{\mathrm{F}}$$

DOS

Defect behavior

- Localized Defect (LD) state vs band continuum (BC)
- Cd_i donors (BC)
- V_{Cd} acceptor (BC)
- V_{As} amphoteric (LD)
- no bound effective-mass donor/acceptor state due to screening

Origin of cell size dependence of $\Delta H_{\rm D}$

Band filling energies

- Dopant donates electrons
- Concentration dependence
- BF energy recovers $\Delta H_{\rm D}({\rm Cd_i}^{2+})$
- Cd_i⁰ better described as Cd_i²⁺ + 2e

 n,\mathbf{k}

 $\Delta E_{\rm bf} =$

 $\sum w_{\mathbf{k}} f_{n,\mathbf{k}} (\varepsilon_{n,\mathbf{k}} - E_{\mathrm{DP}})$

 $\Delta H_{\mathrm{D},q}(E_{\mathrm{F}},\{\mu\}) = [E_{\mathrm{D},q} - E_{\mathrm{h}}] + \sum_{\alpha} n_{\alpha} \mu_{\alpha} + q E_{\mathrm{F}}$

Electronic structure

- SCAN lies halfway between standard DFT (GGA) and QSGW
- Upward shift of *s*-like Cd and As states, analogous to semiconductors
- Offset ΔE_{DP} –0.19 eV on absolute energy scale

Defect equilibria

- Cd_i and V_{Cd} are dominant defects, difference determines doping
- Defect equilibrium with charge balance (defects and carriers)

$$n_{\rm e} = \int_{E_{\rm DP}}^{\infty} \frac{g_{\rm QSGW}(E)}{e^{(E-E_F)/k_{\rm B}T} + 1} dE$$

Doping-balance control via T_{growth}

Equilibrium $E_{\rm F}$ increases with

- Cd-rich (Cd) vs As-rich (CdAs₂)
- growth temperature

Constrained equilibrium

- fixed defect conc.
- re-equilibrate $E_{F}(T)$
- *E*_F(*T*) intersects *E*_{DP} for As-rich/high-*T* growth

Doping balance control

- non-monotonic behavior
- type conversion

Cd₃As₂ topological semimetal: Conclusions

Defect theory in semimetals

- Absence of bound effective-mass states
- Charged defect + continuum carriers dopants model
- Defect equilibrium and $E_{\rm F}$ sensitive to shape of DOS

Doping control

- Non-monotonic *T*-dependence of net doping
- Doping balance at specific growth conditions

C. Brooks *et al.,* Phys Rev B **107**, 224110 (2023)

Solar fuels: Thermochemical Hydrogen

Renewable energy-form mismatch

Renewable Energy additions¹ (actual power, not capacity)

- Photovoltaics 40%
- Wind 35%
- Hydro 20%

Energy consumption²

- Electricity 20%
- Fuels 80%
- [1] Renewable capacity statistics IRENA (2023)
- [2] Key World Energy Statistics IEA (2021)

$$M_x O \to M_x O_{1-\delta} + \frac{\delta}{2} \cdot O_2$$
$$M_x O_{1-\delta} + \delta \cdot H_2 O \to M_x O$$
$$H_2 + \frac{1}{2} O_2 \leftrightarrow H_2 O$$

Reduction (solar heat) + $\delta \cdot H_2$ Oxidation (H₂ production) Ideal gas law (H₂, O₂, H₂O)

> Colorado School of Mines (R. O'Hayre)

- BCM: Ba(Ce_{0.25}Mn_{0.75})O₃
 D. Barcellos *et al.*, EES (2018)
- SCM: (Sr,Ce)MnO₃
 A.M. Bergeson-Keller *et al.*,
 Energy Tech. (2022)

Model: HT-DFT + dGNN

Supercell vacancy defect DFT relaxations

Machine leaning of defects

600 800 1000 1200 1400 1600

T (°C)

Nature Comp. Sci. **3**, 675 (2023).

600 800 1000 1200 1400 1600

T(°C)

O vacancy formation in SrMnO_{$3-\delta$}

δ = 1.7 @ 1400 °C

Energy Materials Network (DOE-EERE)

Supercell calculations

• VASP-SCAN+U $U_{Mn-d} = 2 \text{ eV}$ $U_{Ce-f} = 1 \text{ eV}$

hex	d _{Mn-O} (Å)	Mn-O-Mn (°)	ΔH_{D}^{ref} (eV)
01/02	1.89-1.92	82	2.37
03/04	1.87-1.89	171-174	3.30
perov			
01	1.90	180	2.04

Role of repulsive defect interactions?

 $[V_{\rm O}] = \frac{\exp(-\Delta H_{\rm D}/k_{\rm B}T)}{1 + \exp(-\Delta H_{\rm D}/k_{\rm B}T)}$

Defect model

Free energy of defect interaction

$$\Delta E_i^{\text{int}} = \Delta H_{\text{D},i}(nV_{\text{O}}) - n \times \Delta H_{\text{D}}(V_{\text{O}})$$

$$\Delta G^{\text{int}} = -\frac{k_{\text{B}}T}{n} \ln \sum_{i} \left(g_{i} \exp\left(-\Delta E_{i}^{\text{int}}/k_{\text{B}}T\right) \right)$$
$$\Delta G^{\text{int}}(T) = (a_{0} + a_{1}T)\delta \quad \text{parameterization}$$

SrMnO₃ reduction

Interacting defect model

- δ moderately underestimated in both phases
- Very good description of *T*-dependence
- Slight adjustment of $\Delta H_{\rm D}$ yields perfect agreement for all T

Hexagonal-perovskite phase transition

- $\Delta E_{\text{poly}} = 0.16 \text{ eV/fu in SCAN+U}$ $\Delta G^{\text{tot}} = 0.13 \text{ eV/fu}$
- Possible additional contributions:
 vibrational free energies and ZPE
 - polymorph energies beyond DFT

$$\Delta G^{\text{tot}} = f_{\text{d}} \left(x_{\text{V}} \left(\Delta H_{\text{D}} + \Delta G_{\text{D}}^{\text{int}} \right) + k_{\text{B}} T \left(x_{\text{V}} \ln(x_{\text{V}}) + (1 - x_{\text{V}}) \ln(1 - x_{\text{V}}) \right) \right)$$

Ce alloying in $Sr_{1-x}Ce_{x}MnO_{3-\delta}$

Mixing enthalpy

- Positive ΔH_{mix} as expected for solid solution
- x = 1: CeMnO₃ is unstable wrt CeO₂+MnO
- Hexagonal-Perovskite transition at x = 0.1 (experimentally at x = 0.05)

O vacancy formation energies

- Strong *x* dependence
- Superposition of defect interactions:

 $\Delta G^{\text{int}}(T) = (a_0 + a_1 T) \,\delta + (a_0' + a_1' T) \,x_{\text{Ce}}$

SCM reduction and H₂

- δ decreases with Ce fraction
- Almost quantitative agreement with experiment Bergeson-Keller *et al*,

Ene. Tech. (2022)

- Reduction: $T = 1400 \text{ °C}, pO_2 = 10^{-4} \text{ atm}$ Oxidation: $T = 850 \text{ °C}, pH_2O = 1 \text{ atm}$
- Ideal gas law: $H_2 + O_2 \leftrightarrow H_2O$
- Water splitting only under dilute $H_2:H_2O$ $pH_2 < 10^{-2}$ atm
- Increasing pH_2 threshold with x_{Ce}

27

Interacting defects in STCH oxides: Conclusions

General model for repulsive defect interactions

- Sampling of defect pairs and triplets
- Free energy of defect interaction
- Parameterization $\Delta G^{\text{int}} = (a_0 + a_1 T) \delta$ and higher orders in T

A. Goyal, M.D. Sanders, R.P. O'Hayre, S. Lany, PRX Energy **3**, 013008 (2024)

STCH water splitting

- Very good agreement with expt. data (*T*-dependence)
- Work highlights STCH challenges in enthalpy-entropy tradeoff

Thank you

www.nrel.gov

NREL/PR-5K00-89067

This work was performed in part at the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office and specifically the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under this same office. This research was performed under the project "Disorder in Topological Semimetals", funded by the U.S. Department of Energy (DOE), Office of Science (SC), Basic Energy Sciences, Physical Behavior of Materials program. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY