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2. Charge Cycling:
•  Lithium moving between electrodes 

during the (dis)charging process causes 
expansion and contraction of grains.

What behavior is being modeled? → Electro-chemo-mechanical cathode cracking
• Electro-chemo-mechanical cracking is a result of uneven swelling and contraction of adjacent cathode 

grains, which leads to stress concentrations and crack propagation, largely along grain boundaries.
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Damaged particle after (dis)charging cycles

What causes electro-chemo-mechanical cracking?
• A combination of phenomena:  

What are the implications for damage of Li-ion batteries?
• Electro-chemo-mechanical cracking leads to reduced battery life.
• When these cracks form, they inhibit the movement of lithium, making it 

difficult to charge Li-ion batteries.

Pristine baseline particle 
before (dis)charging cycles  

Red areas indicate 
damaged cathode 
particle zones; 
blue areas indicate 
undamaged zones.
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Where in a battery is this damage occurring?
• Electrode materials are made up of many particles, and 

each particle has a polycrystalline microstructure.
•  This work investigates a single particle in the cathode, 
which is commonly made of a Nickel Manganese Cobalt 

(NMC) material.

1. Cathode Composition:
•  Randomly oriented grains
•  Strongly anisotropic and nonlinear 

material properties can cause grains to 
expand into and contract away from 
each other.[5]
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NMC cathode 
materials are made up 
of a collection of 
particles and voids.

Within a single 
cathode particle, 

there are many 
grains.
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Research Highlights

•  Visualize crack opening/closing in coupled simulations
• Capture time-dependent crack growth and battery 

degradation over lifetime use
•  Extend meshfree model to capture arbitrary and more 

realistic particle geometries
• Apply method to all solid-state battery materials cracking 

and delamination models (example images at left).

•  IM-RKPM captures strain discontinuities, even with 15x less nodes than FEM.
• Incorporation of IM-RKPM’s distance-based kernel scaling drastically reduces Gibbs 

oscillations and nonphysical stress discontinuities.
• High stress zones largely follow the grain boundaries and exhibit strong discontinuities 

between grains, as expected.

Discretizations
• Image-based geometry
• FEM discretization has 62,852 

elements and 63,354 nodes.
• RKPM discretization has 4,195 

nodes.

Model Verification
Numerical tensile test of 

image-based domain.

Zoomed-in views around 
some interesting triple 
junctions are displayed to 
better compare the methods’ 
performance.

Highly-refined, body fitted FEM mesh Coarse RKPM discretizationStatistical microstructure image

Observations
• All methods show good agreement with the FEM reference solution.
• IM-RKPM captures sharp strain discontinuities while maintaining coarse discretization.

Loading conditions and 
heterogeneous material 

properties

Reproducing Kernel Particle Method (RKPM)
• A meshfree method that spatially discretizes a domain 

without explicit mesh connectivity, unlike FEM.
• No problems with mesh entanglement/distortion
• Commonly used for large-deformation problems and 

fracture mechanics, like other meshfree methods.
• RKPM can yield an extremely smooth function, making 

it challenging to represent material discontinuities 
without Gibbs oscillations.

Finite Element Method (FEM)
• A meshed method that spatially discretizes a 

domain into elements with an explicit mesh.
• Widely used in industry
• The solution accuracy can drastically depend on 

mesh quality, making meshing tedious at times.
• Used for model verification in this work

Interface Modified RKPM (IM-RKPM)
• Minor modification of the standard RKPM 
• A distance-based kernel scaling terminates 

neighboring kernels along material interfaces.
• Naturally introduces different types of 

discontinuities into the true field or derivative 
field to avoid Gibbs oscillations.

IM-RKPM shape functions of interface neighbor 
nodes are smooth and interface conforming.
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• Model construction transitions directly from pixels to node locations, and 
transient electro-chemo-mechanical coupling simulates (dis)charging effects.

• Anisotropic material properties capture nonuniform expansion/contraction, 
which leads to stress and damage largely along grain boundaries.
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NI 𝐗𝐗 : FEM shape functions 
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Final stress profiles are 
compared at 𝑡𝑡 = 500 𝑠𝑠 , 
showing oscillation 
reduction (boxed) and 
nonphysical stress 
discontinuities relieved 
(circled) when using IM-
RKPM over RKPM. 

The concentration is 
plotted throughout 

time, visualizing 
nonuniform diffusion 

and oscillation 
reduction (boxed) 

when using IM-RKPM 
over RKPM. 

Rotated view

IM-RKPM shape 
functions of interface 

nodes incorporate 
weak discontinuities 

into the approximation. 
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