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How do we measure impact of circular choices for PV in the context of Energy Transition?
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Future Metrics: Carbon, Energy Justice, Supply Chains…
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• Examine all metrics for holistic sustainability evaluation
Take Aways:
• Importance of deploying high reliability modules
• Designs can have tradeoffs between mass and energy

• Circularity scores well in mass, poorly in energy
• Efficiency scores well in Net Energy, poorly in mass

• Longevity shows improvement in all metrics
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Conclusions

Degradation Lifetime Failures

Maximize Mass Circularity >95% OR increase Lifetime 
Currently no modules >90%  closed-loop, even CdTe

Maximize Mass Circularity >90%
OR Increase Lifetime

Lifecycle Wastes

Every 0.1% reduction 
in degradation 

saves ~3 TW of replacements

0.1%/yr

2.0%/yr

50 yrs

8 yrs

Short Lifetimes require 
more replacements, sooner

Poor reliability modules require 
double replacements

versus top tier quality modules
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• Open-source Python Framework
• PV specific Circular Economy paths
• Multimodal End of Life
• Geospatial capable
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These are the most common sustainability proposals for photovoltaic modules (PV):
Maximize Lifetime, Maximize Efficiency, Maximize Recycling. But which is really the most 
sustainable choice?
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Goal: Minimize Wastes throughout PV lifecycle
Wastes are generated during refinement and 
manufacturing as well as at end of life. This means 
more replacements manufacturing generates more 
manufacturing wastes. For long lived modules, 
end of life wastes will occur after 2050, therefore 
Long life provides “grace period” to develop 
circular supply chains.

Goal: Minimize Extraction of Virgin Materials
Material extraction and refinement entails 
energy and environmental impacts. These can be 
minimized through increasing recycling rates or 
increasing lifetime. Currently, there is no closed-loop 
recycling for c-Si PV modules, and only the CdTe 
semiconductor is closed-loop in thin film technology.
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Goal: Maximize EROI & Net Energy
Energy Return on Investment 
(EROI) is energy generated over 
energy demands, representing 
energy returned to society. 
We propose Energy Balance; 
all energy generated by all systems 
deployed 2000 through 2100 
divided by all energy demands of 
those systems.
Energy Balance is increased by 
increasing lifetime.

Energy BalanceEnergy Demands
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Top priority: Build and Maintain PV Capacity for Energy Transition
Goal: Minimize Replacements
Effective Capacity = installs – degradation – failures – project 
lifetime; represents capacity available to generate energy.
Replacements will be required before 2100, increasing annual 
manufacturing. Quantity of replacements depends on lifetime. 
Short lived modules significantly decrease effective capacity and 
therefore increase required replacements.
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Goal: Minimize Energy demands 
Energy demands can be reduced by 
reducing the quantity of manufacturing 
and/or reducing the energy intensity of 
processes (e.g.; recycling). If we need to 
manufacture more modules prior to 
2050 (e.g.; short lived modules 
requiring replacements), then we 
increase energy demands while the grid 
is not fully decarbonized. 
Energy savings from circular pathways 
is not sufficient to offset increased 
energy needs for manufacturing 
replacements. Long-lived modules 
reduce energy demands.
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