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Motivation




We want to
1. Reliably solve ACOPF problems for large-scale power systems
2. Deploy these algorithms on accelerators

Both can be challenging due to the numerical linear algebra problem at the core of
interior point methods [1, 2, 3].
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Optimizing over a Manifold




Smooth Manifolds

We consider a smooth manifold M to be given by
M ={x eR": g(x) =0}, (1)

where g : R" — R™ is infinitely differentiable, m < n and Dqy, the Jacobian of q
evaluated at x, is of full-rank for all x € R".

This is called an embedded submanifold of Euclidean space.
We limit ourselves to this case but these concepts can be generalized to a more

abstract setting. See [4, 5] for a rigorous mathematical approach or [6] for an
optimization oriented discussion.
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Tangent Space

Given a point x € M, consider any smooth curve v : | — M where | C R contains
zero and (0) = x. The tangent space Tx.M is defined by

M :={veR":v=+(0)} (2)
This coincides with the kernel of the Jacobian

TxM = {v e R": Dgyv = 0}. (3)
The tangent bundle is the disjoint union of all tangent spaces

TM=A{(x,v): xe M,ve TyM}. (4)
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Riemannian Manifold

We pair M with a Riemannian metric
Ox: M x TyeM — R (5)

to get a Riemannian Manifold. The Riemannian metric generalizes inner products
to a manifold.

We take gx to be the standard Euclidean inner product

9x(u,v) = (u, vX:_Zu,v, (6)

where u,v € TyM.
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Riemannian Gradient

Let f: M — R. The Riemannian gradient of f is the unique vector field gradf on
M such that for all (x, v) € TM, we have

Df(x)[v] = (gradf(x), v)x (7)
where Df is the differential of f. For a manifold given by (1), we have
gradf(x) = Px(V1(x)) 8)
where f is any smooth extension of f to R”, V denotes the standard Euclidean

gradient and Py : R” — T, M is the orthogonal projection and is given by the
matrix

Py=1-Q, Qx=Dg«(DgxDq])"'Dql. 9)
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Riemannian Optimization

m 1 -L. l, < . I

How do we generalize Euclidean algorithms?

We need a few extra concepts.
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A retraction is a smoothmap R: TM — M : (x,v) — Rx(v) such that for each
curve v(t) = Rx(tv) we have v(0) = x and 7/(0) = v.

A retraction is used to ensure iterates of any optimization algorithm are on the
manifold,

X1 = Rx (oSk), (11)
where xx € M, s € Ty, M and oy € R.

Xk Sk

M RXk (O{kSk)

Xk+1
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Vector Transport

A vector transport on M is a smooth, linear map
T:TMEPTM = TM: (u,v) = Ty(v) (12)
such that, for all x € M and for all u, v € T, M, there exists a retraction R where
Tu(v) € TryuyM and To(v) =v. (13)

A vector transport is used to move a vector from one tangent space to another.
For example,
gradf(Xx+1) — Toys, (gradf(xy)). (14)

NREL | 12



Application to AC Optimal Power Flow




Power Flow Manifold

We can (briefly) write the ACOPF as

i f
o (g, U) (15)
such that
diag(u)Yu — s = 0, (16)
S= S(Sgasd)a (17)
h(sg, u) < 0. (18)

Equation (16) creates an embedded submanifold of Euclidean space [7].
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Computational Setup and Results




Numerical Benchmarks

Used PowerModels.jl [8] to create ACOPF problems. Selected smaller cases from
pglib-opf repository [9].

Used Ipopt [10] as a benchmark.
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https://PowerModels.jl

Tested Algorithms

Inequality constraints are handled using
1. Riemannian Augmented Lagrangian (RAL) from [11]
2. Riemannian Exact Penalty (REP) from [11]

Subsolve is handled using
1. Riemannian Gradient Descent (RGD) from [6]
2. Riemannian Conjugate Gradient (RCG) from [12]
3. Riemannian Quasi-Newton (RQN) from [13]

All these methods are implemented in Manopt.jl [14].
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https://Manopt.jl

We use the orthographic retraction as presented in [15]. We perform the iteration

Y™ = ¥i — Dag, (DaxDay,) "' a(y). (19)
This searches for the manifold in a direction perpendicular to TxM.

Qi Sk
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Vector Transport

We use the vector transport 7 given by
Tu(V) = PRV (20)

where P, : R" — T, M is the orthogonal projector (given explicitly by (9)).
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Ongoing and Future Research




Ongoing Research

Computational next steps:
e Test larger systems
¢ Test other algorithms (e.g., Riemannian Trust Region)

¢ Implement and test coordinate retraction (the power flow manifold can be
realized as a graph).

Theoretical next steps:

¢ Use Riemannian geometry to develop computable error bounds for linearized
power flows (e.g., DCOPF problems)
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