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Motivation 



Motivation 

We want to 
1. Reliably solve ACOPF problems for large-scale power systems 
2. Deploy these algorithms on accelerators 

Both can be challenging due to the numerical linear algebra problem at the core of 
interior point methods [1, 2, 3]. 
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Optimizing over a Manifold 



Smooth Manifolds 

We consider a smooth manifold M to be given by 

M = {x ∈ Rn : q(x) = 0}, (1) 

where q : Rn → Rm is infnitely differentiable, m < n and Dqx , the Jacobian of q 
evaluated at x , is of full-rank for all x ∈ Rn . 

This is called an embedded submanifold of Euclidean space. 

We limit ourselves to this case but these concepts can be generalized to a more 
abstract setting. See [4, 5] for a rigorous mathematical approach or [6] for an 
optimization oriented discussion. 
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Tangent Space 

Given a point x ∈ M, consider any smooth curve γ : I → M where I ⊂ R contains 
zero and γ(0) = x . The tangent space Tx M is defned by 

Tx M := {v ∈ Rn : v = γ0(0)}. (2) 

This coincides with the kernel of the Jacobian 

Tx M = {v ∈ Rn : Dqxv = 0}. (3) 

The tangent bundle is the disjoint union of all tangent spaces 

T M = {(x , v) : x ∈ M, v ∈ Tx M}. (4) 
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Riemannian Manifold 

We pair M with a Riemannian metric 

gx : Tx M× Tx M → R (5) 

to get a Riemannian Manifold. The Riemannian metric generalizes inner products 
to a manifold. 

We take gx to be the standard Euclidean inner product 

nX 
gx (u, v) = hu, vix := uivi (6) 

i=1 

where u, v ∈ Tx M. 
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Riemannian Gradient 

Let f : M → R. The Riemannian gradient of f is the unique vector feld gradf on 
M such that for all (x , v) ∈ T M, we have 

Df (x)[v ] = hgradf (x), vix (7) 

where Df is the differential of f . For a manifold given by (1), we have 

gradf (x) = Px (rf̂ (x)) (8) 

where f̂ is any smooth extension of f to Rn , r denotes the standard Euclidean 
gradient and Px : Rn → Tx M is the orthogonal projection and is given by the 
matrix 

Px = I − Qx , Qx = Dqx (DqxDqT )−1Dqx
T . (9)x 
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Riemannian Optimization 

We are interested in solving 

min f (x) s.t. h(x) ≤ 0. (10) 
x∈M 

How do we generalize Euclidean algorithms? 

We need a few extra concepts. 
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Retraction 

A retraction is a smooth map R : T M → M : (x , v) → Rx (v) such that for each 
curve γ(t) = Rx (tv) we have γ(0) = x and γ0(0) = v . 

A retraction is used to ensure iterates of any optimization algorithm are on the 
manifold, 

xk+1 = Rxk (αksk ), (11) 

where xk ∈ M, sk ∈ Txk M and αk ∈ R. 
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Vector Transport 

A vector transport on M is a smooth, linear map M 
T : T M T M → T M : (u, v) → Tu(v) (12) 

such that, for all x ∈ M and for all u, v ∈ Tx M, there exists a retraction R where 

Tu(v) ∈ TRx (u)M and T0(v) = v . (13) 

A vector transport is used to move a vector from one tangent space to another. 
For example, 

gradf (xk+1) − Tαk sk (gradf (xk )). (14) 
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Application to AC Optimal Power Flow 



Power Flow Manifold 

We can (briefy) write the ACOPF as 

min f (sg , u) (15) 
(sg ,u)∈R4n 

such that 

diag(u)Yu − s = 0, (16) 
s = s(sg , sd ), (17) 
h(sg , u) ≤ 0. (18) 

Equation (16) creates an embedded submanifold of Euclidean space [7]. 
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Computational Setup and Results 



Numerical Benchmarks 

Used PowerModels.jl [8] to create ACOPF problems. Selected smaller cases from 
pglib-opf repository [9]. 

Used Ipopt [10] as a benchmark. 
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Tested Algorithms 

Inequality constraints are handled using 
1. Riemannian Augmented Lagrangian (RAL) from [11] 
2. Riemannian Exact Penalty (REP) from [11] 

Subsolve is handled using 
1. Riemannian Gradient Descent (RGD) from [6] 
2. Riemannian Conjugate Gradient (RCG) from [12] 
3. Riemannian Quasi-Newton (RQN) from [13] 

All these methods are implemented in Manopt.jl [14]. 
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Retraction 

We use the orthographic retraction as presented in [15]. We perform the iteration 
`+1 ` )−1 ` y = yk − DqT (Dqxk DqT q(yk ). (19)k xk xk 

This searches for the manifold in a direction perpendicular to Tx M. 
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Vector Transport 

We use the vector transport T given by 

Tu(v) = PRx (u)v (20) 

where Py : Rn → Ty M is the orthogonal projector (given explicitly by (9)). 
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Results: Objective Difference 

���� ����
Relative objective difference is given by 

f (xro) − f (xipopt ) 
.

f (xipopt ) 
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Results: Constraint Violation 
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Results: Iteration Count 
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Ongoing and Future Research 



Ongoing Research 

Computational next steps: 
• Test larger systems 
• Test other algorithms (e.g., Riemannian Trust Region) 
• Implement and test coordinate retraction (the power fow manifold can be 

realized as a graph). 
Theoretical next steps: 

• Use Riemannian geometry to develop computable error bounds for linearized 
power fows (e.g., DCOPF problems) 
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