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Robust wind farm layout optimization

Michael Sinner and Paul Fleming
National Wind Technology Center, National Renewable Energy Laboratory, Colorado, USA *

E-mail: michael.sinner@nrel.gov

Abstract. Wake interactions in wind farms cause losses in annual energy production (AEP) on
the order of 10%. Wind farm designers optimize the layout of the farm to mitigate wake losses,
especially in the dominant site-specific wind directions. As wind turbines and wind farms grow
in scale, optimization becomes more complex. Offshore wind farms regularly comprise more
than 100 wind turbines and are characterized by complex boundaries due to shipping lanes,
neighboring wind farms, and other constraints.

Layout optimization methods are broadly split between gradient-based and gradient-free
approaches. Gradient-based approaches can converge quickly and perform well for smaller,
academic problems but are often sensitive to initial conditions and tuning parameters and require
expert knowledge to use. On the other hand, gradient-free approaches can be more robust to
problem complexities. We present a robust layout optimization approach based on a random
search algorithm. The algorithm is intended for those who are not optimization experts and has
few tuning parameters that need specification to achieve satisfactory results. Unlike off-the-shelf
methods, which use generally available, non-domain-specific optimization routines that accept
as inputs an optimization function and constraint definitions, this approach takes advantage of
the relative computational costs of the different evaluations by evaluating cheaper computations
first (boundary and minimum distance constraints) and running expensive AEP evaluations only
if all other checks pass. Moreover, an outer genetic algorithm allows multiple solutions to evolve
in parallel, enabling rapid solution development on high-performance computers. We discuss the
relative ease of selecting necessary tuning parameters and demonstrate the efficacy of the genetic
random search on a complex layout problem consisting of placing 70 turbines in a nonconvex
and unconnected boundary region.

1. Introduction

As wind farms grow in size and competition for new areas of wind development intensifies,
increasing attention has been given to optimizing wind farm layouts to minimize the impacts of
turbine-to-turbine wake losses and maximize the annual energy production (AEP) of the farm.
Moreover, boundaries for turbine positioning are becoming complex because of the proximity
of shipping channels, infrastructure, protected areas, and human activities, which can result
in nonconvex wind farm boundaries and even wind farms with separable (or unconnected)
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regions [1]. Finally, layout optimization is appearing earlier in the wind farm procurement
and development cycle, and layouts are reoptimized and fine-tuned as the wind farm approaches
construction.

Approaches for wind farm layout optimization are broadly split between gradient-based
(or first-order) methods and gradient-free (zeroth-order) methods. Of these, gradient-free
approaches [2, 3, 4] are perhaps the more obvious choice due to the presence of many
local minima/maxima in the nonconvex layout optimization problem [5]. However, gradient-
free optimizers can be slow to converge, prompting growing research into gradient-based
methods [6, 7, 8] because of their faster local convergence. The existence of many local
minima/maxima remains a challenge for gradient-based approaches, although some heuristic
workarounds have been proposed in the literature [5]. Moreover, gradient-based methods
cannot generally handle cases where turbines are to be placed in an area consisting of two or
more unconnected polygons without substantial modification. Further, in layout optimization
problems, the optimization surface can be quite shallow/flat near optimal solutions, and we
have observed that while gradient-based methods move quickly when solutions are far from
optimal, they become sluggish or unstable nearer to the optimum unless algorithm parameters
are carefully tuned for the problem.

We are aware of only one previous study that has specifically addressed layout optimization
problems with unconnected regions [1]. Thomas et al. [1] provide a detailed comparison
of various optimization algorithms and present a novel (gradient-free) discrete exploration-
based optimization (DEBO) algorithm, which consists of an initial phase of greedy turbine
placement (initialization) followed by a local maximization by randomly checking a discrete set
of candidates in the vicinity of the initialized layout. As the authors point out, this results
in finitely many positions to check, which guarantees a finite number of possible layouts and
therefore a finite stop time for the algorithm, in contrast to exploration in a continuous space [4].

In this paper, we employ gradient-free layout optimization to provide an algorithm that is
relatively robust, has few tuning parameters, and is suitable for optimizing layouts in areas
with complex boundaries. The genetic random search (GRS) algorithm chosen is described in
Section 2, and its strengths are presented therein. The algorithm is similar to Thomas et al.’s
DEBO [1] but searches randomly in a continuous space. While this means that the algorithm
does not inherently reach a terminating condition (as there are infinite solution candidates), we
argue that in practice, it both simplifies the algorithm (few tuning parameters are required) and
may enable an improved solution over discrete searches. The tuning parameters that remain
to be chosen, as analyzed in Section 3, can be selected within a broad range and still provide
satisfactory results, demonstrating the robustness of the algorithm; moreover, we argue that the
parameters are intuitive to select to alter the progress and precision of the candidate solution.
We also demonstrate a relative insensitivity to the initial candidate layout, which can hamper
gradient-based methods. To demonstrate the full capabilities of the proposed GRS algorithm,
we optimize the layout of a 70-turbine wind farm with a complex boundary and heterogeneous
inflow conditions in Section 4 before providing brief conclusions in Section 5.

2. Layout optimization using genetic random search

We propose that, for the large-scale, complex wind farm optimization problems that are common
in practice, a random search approach is appropriate. Rather than computing gradients and
taking a step in a gradient descent direction, the random search takes a step of random length in a
random direction. If the new layout is feasible, its AEP is compared to that of the previous layout
and, if greater, the solution is saved. Moreover, several random searches can be undertaken in
parallel and final solutions compared in a genetic algorithm approach. We see three important
benefits to such a GRS as compared to gradient-based optimization methods:

(i) The approach is straightforward to implement and is robust to the layout optimization
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problem specifics. In particular, the constraints (such as the boundary constraint and
minimum turbine-to-turbine spacing) can be checked, and the candidate discarded if
infeasible, before evaluating the cost function (which requires running a flow solver such as
FLORIS) to determine the AEP. Because the cost function is much more computationally
expensive to evaluate than the constraints, this ordering presents significant speed
improvements.

(ii) The random search approach readily handles split regions for optimization (see the figure
in Section 4 for an example). Provided that the possible steps are large enough, a random
step can move a turbine between regions. Off-the-shelf gradient-based methods require
significant modification to deal with such split regions of feasibility [1].

(iii) The outer genetic algorithm is particularly suited to parallelization, making the method easy
to scale and use with high-performance computing. Gradient-descent-based algorithms can
parallelize gradient and cost function evaluations, but must take gradient descent steps in
serial, whereas the proposed genetic random search can be run completely independently
for many search steps before selecting a set of top-performing layouts to proceed in the next
generation.

2.1. Layout optimization problem

Let z = {x;}i=1,..N, Ti € R? represent the set of locations of N turbines in 2-D space, that is,
x defines the lateral and longitudinal locations of the turbines within an N-turbine wind farm.
Further, let w represent a wind condition bin, for example, wind speed between 8 and 10 m/s
and wind direction between 270 and 273 degrees. The actual wind condition at any given time
is a random variable W with probability mass function (PMF) (representing the probabilities
of wind conditions over a year) W ~ py (w). The PMF py (w) is commonly referred to as the
“wind rose” of the site.

With the operation of each wind turbine fixed according to its power and thrust curves, the
instantaneous power P generated by the farm is a function of the current wind condition w and
the layout z, i.e.,

P=P(w,x). (1)
The evaluation of Eq. (1) requires running a wind farm wake model. In the results presented
here, we evaluate Eq. (1) using FLORIS’s Gauss-curl-hybrid (GCH) model [9, 10]. However, the
method we present is agnostic to the form of the model evaluated in Eq. (1).

During layout optimization, wind turbines should be placed inside a closed region R C R2.
Often in the literature, R is a (convex) polygon, but in realistic cases R may also be composed
of multiple unconnected and/or nonconvex polygons. Further, for structural loading and safety
reasons, a minimum distance d that should be maintained between any two turbines is often
specified.

Collecting the above information, we can form an optimization problem to maximize the
mean (expected) power over a year (equivalently, maximize the AEP) as

maximize ZP(w, x)pw (w) (2a)
x
w
subject to z C R (2b)
|w; — || >d, Vi=1,...,N Vj=1,...,N,j#i. (2¢)
Here, || - || denotes the Euclidean norm.

2.2. Solution method
We use a random search approach for layout optimization [4]. Given a feasible candidate solution
x, that is, a value x that satisfies the constraints (2b) and (2c), the random search simply chooses
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a random turbine to move in a random direction at a random distance, and produces a new
candidate &. If Z is feasible and increases the value of the cost function (2a) compared to z, &
takes the place of x and the process repeats. If not, x is retained and the process repeats with
new random selections. The random search method is formalized in Algorithm 1.

Algorithm 1 Random search layout optimization

Require: Layout x satisfying constraints (2b) & (2c¢); distance PMF pr(r); time limit ¢pax
while ¢ < t.x do
Sample i ~U{1,N}; 0 ~Ujgory; R~ pr(r)
Z; < x; moved distance R in direction 6
if #; ¢ R then
break
else if ||z; — zj|| < d forany j =1,...,N,j # i then
break
elseif ) P(w,2)pw(w)> >, P(w,z)pw(w) then
T
end if
end while
return z

In Algorithm 1, ¢ is the computer clock time. Algorithm 1 runs serially, providing an
optimized (but not necessarily optimal) layout once the time limit ¢,y is met. As the algorithm
is inherently random, running multiple times with the same initial condition z may not produce
the same final layout once the time limit is reached. If multiple processors are available for
computation, this property makes Algorithm 1 suitable for wrapping in a genetic algorithm.
Specifically, Algorithm 1 may be run in parallel on multiple different processors with the same or
differing initial conditions z, and when t,,y is reached, the best layout(s) from across the different
processors may be selected as new initial layouts before relaunching the next “generation” of the
genetic algorithm. This GRS method is formalized in Algorithm 2. Note here that the “selection”

Algorithm 2 Genetic random search layout optimization

Require: Layout = satisfying constraints (2b) & (2c); number of individuals G; relegation
number n; total time limit T«
29—z g=1,...,G
while ¢ < Ti,ax do
for g=1,...G do in parallel
Run Algorithm 1 with z < z(9)
.’E(g) —
end for
Order the z(9) by cost function (2a) value
Replace n lowest value 29 with n highest value 2(9)
end while
z + max, Y. P(w,z9)py (w)
return z

step of Algorithm 2 (that is, the selection of a new set of individuals z(9) by replacing the lowest-
value candidates with copies of the highest-value candidates) is very simple, and other, more
complex selection approaches are possible based on the value (“fitness”) of each candidate, which
may be more efficient. However, we have found this simple selection satisfactory, at least for
relatively small numbers of individuals G (2 < G < 10). See Section 3.1 for more details.



The Science of Making Torque from Wind (TORQUE 2024) IOP Publishing
Journal of Physics: Conference Series 2767 (2024) 032036 doi:10.1088/1742-6596/2767/3/032036

Finally, after the outer computational time limit Ti,,x (which is usually multiple times #yax
to allow multiple generations to run, see Section 3.2) is reached, the returned value x is taken
as the optimized wind farm layout.

2.8. Convergence and termination

The GRS algorithm presented randomly searches a continuous optimization space [4], which
can continue indefinitely unless terminated by the time limits fyax and Tmax. In contrast,
discrete searches can check every candidate solution and “self-terminate” in finite time [1].
However, there is no guarantee that a layout in the discrete candidate set is indeed optimal.
In our opinion, simply allowing the GRS to continue to run until the time limit is reached is
satisfactory: Because the solution is not updated unless a candidate improves the AEP compared
to the previous candidate, the user can be satisfied that even if the best solution is arrived at
early, this solution will still be presented at Tyax. However, if an early termination condition
is desired, it would be straightforward to implement a condition of convergence (such as no
improvement in the AEP over some chosen number of generations).

2.4. Alternative cost functions

The objective function (2a) specifies the mean power produced by the wind farm over a year
as the target for optimization, as this is equivalent to the AEP (when multiplied by the length
of a year). AEP has generally been the metric of concern for optimization. However, other
objectives may also be of interest, such as maximizing the monetary value of the power produced.
Depending on the operating contract that the farm is under, the owner may be paid for electricity
at the spot market price. If different wind conditions w are correlated with different electricity
prices, the cost function may be exchanged for the expected value of power produced annually,
for example, > v(w)P(w,x)pw (w), where v(w) is the price of electricity (specified in terms of
unit power, or converted to a price per unit of energy delivered).

Other terms may be added to the objective function to represent, for example, costs
associated with certain layouts such as cabling costs (e.g. Y . P(w,z)pw(w) — c(z) =
Y ow [P(w,x) — c(z)] pw(w) for some cost function ¢(-). Further, the wind condition bin w can
be directly expanded to include other atmospheric parameters such as turbulence intensity,
provided that the PMF py (w) is updated accordingly. Generally, various modifications can be
made to the cost function in a straightforward manner, provided that it is still of the form

S Flw, 2)pw (w) - (3)

No requirements are made on smoothness, differentiability, or convexity of the cost function.
For the purpose of this study, we simply choose to optimize AEP as shown in problem (2).

3. Algorithm tuning

Algorithms 1 and 2 require several parameters that may be considered tuning parameters.
Generally, we consider these to be more intuitive than tuning parameters required by gradient
descent algorithms, and we provide a description of each here. For the purposes of demonstrating
sensitivity to the different parameters, we use the example of placing 35 turbines within the
slightly complex region shown in Fig. 1. The initialized gridded positions are shown in black in
the left-hand plot, and an example of optimized positions is shown in the right-hand plot.

3.1. Genetic selection process
Aside from the total optimization time limit T}y (discussed in Section 3.2), two parameters
particularly affect the outer genetic algorithm: the number of individuals per generation G
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Figure 1. Region for 35-turbine layout problem used for demonstrating tuning parameter
sensitivity. Turbines may be placed in the gray region. Left: Initial layout used for most
studies. Right: Example optimized layout.

and the relegation number n. The former of these is simply constrained by the computing
hardware: the more processors available, the higher G can be, which allows a wider search in
each generation. However, the choice of the relegation number n (which represents the number
of individuals who will be replaced by “fitter” individuals) is not so clear. To investigate this,
we use the 35-turbine problem shown in Fig. 1. We set G = 10, and vary n from 1 to 5. The
outer time limit Tiax is set as 1 hour, and the inner time limit is set at tyax = Tmax/5. However,
our results did not show a clear dependence of algorithm performance on the relegation number:
the best performers were n = 1 and n = 5, with minimal spread across all tested values of n in
either the rate of improvement of the cost function per generation or the final optimized AEP
after the five generations were complete. We therefore take the conservative approach of setting
n =1 (i.e., only the worst-performing individual is replaced) for all subsequent optimizations.

3.2. Time limits
The time limits tpax and Tiax provide the limits on the (real) runtime of the algorithms. To
achieve the highest-value solution z, the algorithms should be run as long as possible, and
generally speaking, larger wind farms (i.e., larger N) will require more time to converge to a
solution than smaller farms. However, there is a trade-off between how long to run the individual
(Algorithm 1, limited by tmax) compared to the outer genetic algorithm (Algorithm 2, limited
by Tmax). To investigate this, we compare the results from optimizing using a fixed outer time
limit Thax = 3600 seconds (1 hour) and a varying inner time limit ¢pax so as to split the
genetic algorithm into 2, 4, 8, 16, and 32 generations. We again use G = 10 individuals per
generation (and set the relegation number to n = 1). The progress of the optimization is given
in Fig. 2. The left plot shows the progress (in terms of percentage AEP improvement from the
initial layout) as a function of the GRS algorithm generation, whereas the right plot shows the
same data plotted according to computation time. Considering the right plot, it is evident (if
somewhat surprising) that the progress is rather similar in all cases.

The left plot in Fig. 2 provides some intuitive explanation of the process that the GRS
algorithm takes. After each generation, exactly one individual is terminated. However, this
process can lead to “mutations” that persist for multiple generations before being eventually
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Figure 2. Progress of the GRS algorithm with various values of tyax (and fixed Tiax). Left:
AEP improvement by GRS generation. Right: AEP improvement by computation time.

ended (for example, around generations 15-22 for tyax = Tmax/32). Moreover, some mutations
survive an initial period of lower performance and recover their fitness, as seen around
generations 5-15 for the tyax = Tinax/32 case.

3.3. Initial layout

Given the presence of many local minima in layout optimization problems, they are often very
sensitive to the initial condition selected. We propose that, although there is still a sensitivity, the
random search method presented here may be somewhat less sensitive than gradient descent-
based optimization approaches. To investigate this, we provide three initial layouts to the
optimizer (Fig. 3, top plot): two based on a simple grid and the third based on an algorithm to
place turbines far apart within the optimization space (the full approach will not be described
here for brevity).

We then compare the results of optimizing using GRS (lower-left plot of Fig. 3) and scipy’s
minimize routine using sequential least squares programming (SLSQP) (lower-right plot) run
for an equivalent time period. First, it is clear that the SLSQP method is not well tuned. After
an initial period of improvement using all three layouts, the algorithm appears to essentially
become unstable. While it is likely that fine-tuning the SLSQP algorithm would improve results,
the tuning would be problem-dependent, requiring significant effort for each new wind farm
optimization problem. The GRS algorithm, on the other hand, robustly optimizes the layout
with the varied initial layouts, converging on a similar (but not identical) optimized AEP value
for all three initial layouts.

3.4. Distance probability mass function

Perhaps the most nuanced decision to be made in running the GRS algorithm is in the choice
of the distance PMF ppr(r) supplied to Algorithm 1. The distance PMF specifies the distance
for random perturbations of the turbine location (the direction of perturbation is chosen from a
uniform distribution around the circle). Depending on the complexity of the region for turbine
placement, the choice of distance PMF can play a crucial role in the optimization process: if the
region is disjoint (see Section 4), the designer can choose whether to allow jumps between the
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Figure 3. Optimizer sensitivity to initial conditions. Various initial layouts are shown in the
upper plots, along with optimizer progress in the lower plots (GRS on the left, SLSQP (from
scipy.minimize) on the right).

unconnected areas by including or omitting any probability mass above the minimum distance
between regions.

Even for a single region, the choice of pr(r) may affect the optimizer performance, as a
larger support will enable more rapid exploration but less fine positioning and vice versa. To
investigate the effect, we again run the optimization of 35 turbines within the boundary shown
in Fig. 1, using a range of PMF's shown in the upper plots in Fig. 4. The resulting optimization
trajectories are shown in the lower plot of Fig. 4 (where only the best-performing individual at
the end of each generation is shown). As expected, a PMF with smaller support (in particular,
the first PMF shown in blue) proceeds more slowly and conservatively, whereas a PMF with
significant mass at larger distances (e.g., the second (orange) and final (purple) PMFs) make
faster initial progress. Striking a balance between the two, the fourth (red) PMF is perhaps a
good “default” option, where the probability of a large perturbation (say, half of the distance
across the optimization region) is 5%.

As indicated by the results in Fig. 4, the choice of distance PMF may depend on the level of
fidelity needed in the design: a coarser PMF with larger perturbations may be good for quickly
arriving at an approximate solution, whereas final build layouts may use a finer PMF with
smaller perturbations. Naturally, these could be run sequentially (i.e., the final layout from a
coarser design could be used to initialize a finer layout optimization). We consider the choice of
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Figure 4. Top: Five tested distance PMFs. The first (shown in blue) contains 100 points
uniformly distributed between 0 and 2 rotor diameters (D); the second and third contain only 3
points, at 1D, 2D, and 13.9D; the fourth has 99 points uniformly distributed between 0 and 2D
and sharing 95% of the probability mass, with a single point of 5% mass at 13.9D; and the fifth
(purple) has 100 points of linearly decreasing mass between 0 and 13.9D. Bottom: Resulting
progress of the best individual in the GRS algorithm (colors match the distance PMFs in the
upper plots).

distance PMF to be the most important “tuning parameter” for the GRS algorithm; however,
we hope that its impact on the progress and capabilities of the algorithm are clear enough to
make it user-friendly to select an appropriate distance PMF for the problem at hand.

4. Complex layout optimization problem

To demonstrate the strengths of the GRS algorithm, we perform layout optimization for a wind
farm of 70 turbines in the complex, unconnected region shown in gray in Fig. 5 (left). No special
effort is made to select an advantageous initial condition—turbines are simply placed in a grid in
the center of the three regions, as shown by the black dots. Further, a heterogeneous wind map
is provided to the underlying flow field such that the left side of the domain sees 10% lower wind
speeds than the right side (with a linear increase from left to right). The optimization is then
run for 40 generations with 15 minutes per generation (10 hours total) using 10 individuals. The
resulting layout is shown with red dots. We note that here, a relatively conservative distance
PMF was used; the optimizer could be encouraged to explore more quickly with a more aggressive
PMEF, at the likely expense of attaining a somewhat poorer final solution.

Even with the simple initial layout, the optimizer moves turbines between unconnected regions
and achieves a satisfactory final layout. The trend observed by Thomas et al. [1] that optimized
layouts often have turbines most densely spread around the boundary with relatively low density
internal to the region is also seen here. Moreover, the optimizer packs turbines more densely in
the right-hand portion of the domain to best utilize the higher wind speed region.
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Figure 5. Left: Unconnected wind farm optimization problem. Initial wind turbine positions
are shown in black; optimized positions are shown in red. The underlying shading indicates wind
speed heterogeneity, with winds on the left side of the domain 10% lower than those on the right
side across all wind directions. Right: Progress of the 10 individuals over the 40 generations.

5. Conclusions

With this paper, we present a robust wind farm layout optimization method based on a genetic
random search (GRS). The GRS method has few tuning parameters, with the main sensitivity
being the choice of probability mass function used for perturbations of the turbine locations.
Moreover, the implementation is such that computationally cheaper constraint checks are carried
out before more expensive cost function evaluations, limiting unnecessary computation. As such,
we believe that the GRS implementation will be useful to non-optimization experts seeking a
simple and robust approach for wind farm layout optimization, especially in complex scenarios
such as nonconvex or unconnected boundary regions and wind speed heterogeneity. Our analysis,
while heuristic, indicates that the GRS method can indeed be run “out of the box” to achieve
satisfactory layout optimization results.

References

[1] J. J. Thomas, N. F. Baker, P. Malisani, E. Quaeghebeur, S. Sanchez Perez-Moreno, J. Jasa, C. Bay, F. Tilli,
D. Bieniek, N. Robinson, A. P. J. Stanley, W. Holt, and A. Ning. A comparison of eight optimization
methods applied to a wind farm layout optimization problem. Wind Energy Science, 8(5):865-891, 2023.

[2] Christopher N. Elkinton, James F. Manwell, and Jon G. McGowan. Algorithms for offshore wind farm layout
optimization. Wind Engineering, 32(1):67-84, 2008.

[3] Ying Chen, Hua Li, Kai Jin, and Qing Song. Wind farm layout optimization using genetic algorithm with
different hub height wind turbines. Energy Conversion and Management, 70:56—65.

[4] Ju Feng and Wen Zhong Shen. Solving the wind farm layout optimization problem using random search
algorithm. Renewable Energy, 78:182-192, 2015.

[5] Beatriz Pérez, Roberto Minguez, and Rail Guanche. Offshore wind farm layout optimization using
mathematical programming techniques. Renewable Energy, 53:389-399, 2013.

[6] David Guirguis, David A. Romero, and Cristina H. Amon. Toward efficient optimization of wind farm
layouts: Utilizing exact gradient information. Applied Energy, 179:110-123, 2016.

[7] Ryan N. King, Katherine Dykes, Peter Graf, and Peter E. Hamlington. Optimization of wind plant layouts
using an adjoint approach. Wind Energy Science, 2(1):115-131, 2017.

[8] Pieter Gebraad, Jared J. Thomas, Andrew Ning, Paul Fleming, and Katherine Dykes. Maximization of the
annual energy production of wind power plants by optimization of layout and yaw-based wake control.
Wind Energy, 20(1):97-107, 2017.

[9] NREL. FLORIS version 3.5.0, 2023.

[10] J. King, P. Fleming, R. King, L. A. Martinez-Tossas, C. J. Bay, R. Mudafort, and E. Simley. Control-oriented
model for secondary effects of wake steering. Wind Energy Science, 6(3):701-714.

10



