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Abstract. Transmission constraints, increasing motivations to decarbonize, and concerns over
peak electric vehicle (EV) load impacts on local grids have driven electric customers to consider
behind-the-meter, hybrid power plant generation and storage at the distributed-grid level for
EV charging. In this study, we develop capabilities to optimize hybrid power plant component
capacities for EV charging. We then demonstrate these capabilities in a case study for Boulder,
Colorado, using public EV charging data as well as wind and solar resource data.

Our results show system designs that balance the cost of energy with load-meeting and peak
shaving performance. Within the case study, systems designed for wind, solar photovoltaic (PV),
and storage resulted in lower cost of energy than those optimized for PV and storage only. This
indicates that in areas where wind resource exists, hybrid power plants that include wind, PV,
and battery assets can better meet EV charging loads (including peak loads that are prone to
overloading local grids) than PV and battery assets alone. Future work to address limitations
in this paper include extending cost modeling to include performance losses (e.g., based on
operations or weather) and charging station costs to estimate levelized cost of charging, and
quantifying uncertainty and error in our aggregation methods for estimating EV charging loads
at the hourly timescale.

1. Introduction
The transformation of the U.S. power sector is driven by increasing electrification, reliance
on variable renewable energy generation, and integration of distributed energy resources.
Distributed energy resources—including behind-the-meter (BTM) assets like distributed wind
turbines, solar photovoltaic (PV) panels, batteries, and emerging loads like electric vehicles
(EVs) and their supply equipment—are becoming integral components of modern grid systems.
As variable renewable energy and distributed energy resources become more prevalent, pressure
on grid resources increases, leading to bidirectional power flows and voltage fluctuations that
impact grid design, control, and operation and that can stress local grids [1].

By 2030, it is expected that over half of all new cars sold in the United States will be EVs, and
light-duty vehicles are projected to consume up to 3,360% more electricity by 2035 than they
do today [2]. Meeting EV charging demands will require more high-voltage transmission lines
to transport electricity from rural wind and solar power plants to demand centers; smaller
distribution lines and transformers for last-mile electricity delivery; and hardware such as
inverters that enables energy feedback to the grid [3].

However, the U.S. transmission system is constrained, resulting in delays for renewable energy
developers seeking interconnections and grid updates. These limitations have spurred interest
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in distributed grid-level generation and storage. Commercial and industrial customers, who
have the ability to generate BTM power on-site, as well as distributed grids and rural electric
cooperatives at the edge of the grid who can co-locate self-generation with EV charging seek
solutions to generate and use renewable energy locally, keep costs low, and increase their energy
independence.

Hybrid energy systems (hybrids) at the distributed level are one solution to avoiding grid
constraints and variable renewable energy concerns to more reliably and cost-effectively meet
local EV charging demand. Hybrids combine generation like wind and PV assets with storage
and end uses, and have the ability to provide energy and ancillary grid services more reliably
than any of the single technologies can alone. Additionally, hybrids provide an opportunity to
share building and infrastructure costs, capture otherwise clipped energy, and take advantage
of federal incentive stacking.

Previous work has reviewed the state of the art in EV charging using distributed
renewable energy assets, mostly focused on grid support functionality (e.g., vehicle-to-grid,
charging aggregation, fast-charging capabilities) [4; 5; 6; 7; 8], advanced control and charge
management [9; 10; 11], and optimal placement of EV charging stations [12]. When considering
optimal hybrid power plant design for EV charging, Becker et al. optimized the capacity of
stationary batteries for an electric school bus fleet [13]. Muratori et al. [14] co-simulated
electricity rates and vehicle charging load scenarios at thousands of U.S. locations to assess
opportunities to reduce fast-charging costs by deploying on-site collocated PV and batteries.
However, optimizing wind, PV, and battery capacities for EV charging on-site has not been
fully explored.

There is a need for a tool that simulates and optimizes fully coupled hybrid design and
control for EV charging at the distributed, BTM level. This study begins to address that need
by developing EV charging capabilities in the Hybrid Optimization and Performance Platform
(HOPP) to enable capacity optimization of wind, PV, and stationary battery assets on-site for
EV charging.

2. Research Objectives
The objective of this study is develop a configurable and extensible method of modeling hybrids
designed to support EV charging. The subtasks are as follows:

• Investigate the balance between minimizing levelized cost of energy (LCOE) and ensuring
that the system reliably mitigates peak charging loads.

• Develop a study showcasing an optimized hybrid system for mitigating EV charging loads
using peak shaving.

• Understand benefits, trade-offs, and trends associated with different combinations of
generation and storage.

3. Methodology
3.1. Modeling Tools
This study builds on HOPP, a Python-based, component-level, open-source tool for simulation,
design, and optimization of hybrid plants [15], including generation and storage technologies.
HOPP’s primary dependency for generation and financial modeling is PySAM, a Python wrapper
for the System Advisor Model (SAM) [16].

3.2. Optimization Tools
To streamline system optimization tooling for HOPP, we implement a flexible capacity
optimization framework using Multi-Disciplinary Analysis and Optimization (MDAO) principles
via the OpenMDAO Python package [17]. This approach—designed for scalable optimizations
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involving multiple connected systems with their own computations and derivatives—focuses
primarily on gradient-based optimization, with multiple solvers supported. For this
implementation, we use the Interior Point Optimizer (IPOPT), an open-source solver designed
for complex nonlinear optimization problems [18]. Analytic gradients are not available for HOPP
simulations, so we use a forward finite difference method to determine gradient information,
provided by IPOPT.

3.3. Optimal Sizing Method
The optimal sizing method incorporates a discretized sweep of battery capacities, optimizing for
LCOE by varying solar and wind capacity. It presents bounds on wind and solar, as well as a
constraint ensuring that desired peak loads are met. These peak loads, in turn, represent de-
mand that exceeds a configurable threshold power. These are further described in the following
optimization formula.

Electric vehicle charging demand (D) is represented as an hourly time series, in kilowatts:

D = [d1, d2, ..., d8760]

Battery capacity, Cb,i (kWh), is calculated for a range of values of h, in hours:

Cb,i = Pb ∗ hi
hi ∈ [h−, h+]

where Pb is the battery power. We perform a sweep such that for each Cb,i we optimize for wind
and solar capacity. The system sizing optimization is represented as:

minimize LCOE

by varying Pw, Ps

subject to L̄miss − L̄+
miss ≤ 0

P−w ≤ Pw ≤ P+
w

P−s ≤ Ps ≤ P+
s

where Pw is the wind capacity, Ps is the solar capacity, and L̄miss is the average missed load.
The peak load, L, is the subset of the demand that exceeds the power threshold for peak shaving:

L = {di ∈ D | di > Pth}
L ∈ R

n

The average missed peak load, L̄miss, measured in kilowatt-hours, is the average difference
between the load demand (the difference between the peak load and the power threshold for
peak shaving) and hybrid generation for that time step:

L̄miss =
1

n

n∑

i=1

(�i − Pth − Pi)t

where �i represents the peak load at that time step, t = 1 represents the hourly time step,
and Pi is the total hybrid generation after curtailment, such that the missed load is zero if
the combination of wind, solar, and battery dispatch meets the desired load. The strategy
determining this generation is outlined in the following section.
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3.4. HOPP Model
To model wind and PV energy generation, we used HOPP [19], which leverages PySAM [16; 20]
and FLORIS [21] to calculate wind and solar performance and costs. Default PySAM PV panel,
wind turbine, and inverter models were used in this study, as described in [22].

To represent EV charging and battery dispatch, we developed a peak shaving dispatch. With
this strategy, the battery is charged during times of low demand—in this case, during the day—
and discharged during peak demand, which is based on a preconfigured threshold [23; 24]. There
are two primary scenarios for the implemented control scheme: peak and non-peak. In a peak
scenario, where demand is above threshold Pth, non-dispatched generation and battery are used
to meet the difference between the peak load and the threshold. If the generation is greater than
the desired amount, the excess will be used to charge the battery, and any generation beyond
that is curtailed. If generation is less than needed, the battery is dispatched to help meet the
load. In the case where the combination of generation and dispatch is insufficient to meet the
peak load, the missed load is recorded. In the non-peak scenario, generation is primarily used to
charge the battery, with excess used to meet non-peak demand. In all cases, the charging and
discharging rate is determined based on the power fraction between the desired power based on
the scenarios above, and the maximum power capability of the battery. The lower and upper
state of charge (SOC) bounds for the battery are 10% and 90%, respectively.

LCOE is calculated using PySAM, via the SingleOwner financial model. It includes capital
and operational costs for the hybrid system (wind, solar, and battery), extrapolating the year of
generation data to calculate LCOE based on an expected plant lifetime of 25 years. Note that
the dynamics and costs of charging infrastructure are not represented in this analysis but are
further discussed in Section 6.

The dispatch modeling approach introduces assumptions. The model operates on a
configurable time window, in this case 24 hours, based on a perfect forecast. Therefore, neither
forecasting uncertainties nor strategies used to manage them are represented in this analysis.
Additionally, the peak shaving heuristic currently does not support grid charging for the battery.
It also does not involve more detailed battery simulation of voltage, current, thermal effects, and
detailed degradation. However, these aspects are simulated a posteriori based on the dispatch
profile and included in the finances. For this simulation we utilize the BatteryStateful model
in PySAM, and maintain its default configuration.

4. Case Study
We apply this method in a case study for Boulder, Colorado, which serves as an effective baseline
due to its combination of wind and solar resources, as well as its accessible EV load data. The
EV demand profile is generated using the EVI-Pro (Lite) web tool to represent a fleet of 1000
vehicles that primarily charge at night [25]. A week of EV charging demand is depicted in Figure
1. This load profile represents the common multi-modal charging scenario in which peak charging
times correspond with primarily evening charging behavior (most often associated with owners
returning home at night and charging their EVs) and secondarily, morning charging behavior.
For resource data, we use wind and solar time series data from the Wind Integration National
Dataset (WIND) Toolkit and National Solar Radiation Database (NSRDB) [26; 27] for the year
2012 (Figure 2).

Table 1 describes the optimization parameters for the case study. These values are chosen to
address the evening peak load demand seen in Figure 1, and these parameters are configurable
by the user to meet intended use cases. A potential challenge exists in the battery power
parameter, Pb, value selection. We choose Pb to be roughly the same as the largest desired peak
shaving load, in this case 600 kW [23]. Non-peak loads are loads that do not exceed this 600
kW threshold.

We repeated the optimization sweep for a solar/storage-only scenario, with the same case



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 082015

IOP Publishing
doi:10.1088/1742-6596/2767/8/082015

5

study parameters (save the h bounds, which are wider for the PV-only scenario), for comparison.

Figure 1: Hourly EV demand profile.

(a) Solar resource. (b) Wind speed histogram.

Figure 2: Wind and solar resource.

Table 1: Parameters

Parameter Description Unit Case Study Value/Range
Pb Battery power kW 600
h−, h+ Lower and upper bounds, battery duration hours [1,5]
Pth Threshold power for peak shaving kW 30
L̄+
miss Upper bound on average missed load kWh 500

P−w , P+
w Lower and upper bounds for wind capacity kW 100, 1× 106

P−s , P+
s Lower and upper bounds for solar capacity kW 1× 106
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5. Results
5.1. Capacity Optimization Results
Sweep results are depicted in Figures 3 and 4. These show an optimal solution for minimizing
the LCOE of a hybrid plant aimed at supporting EV charging loads. The plant’s optimal
capacities are a battery capacity of 1950.0 kWh, solar capacity of 446.16 kW, and wind capacity
of 594.22 kW, resulting in an LCOE of $79.90/MWh. Wind and solar capacity both decrease
with increased battery capacity, approaching 500 kW beyond the optimal point. LCOE initially
decreases with increased battery capacity, but beyond the optimum, LCOE increases with
battery capacity. For the plant without wind, the optimal capacities are a battery capacity
of 3150.0 kWh and solar capacity of 1292.86 kW, resulting in an LCOE of $100.65/MWh.

The results from the sweep indicate stable convergence in hybrid system sizing. Increasing
battery capacity leads to a decrease in wind and solar capacity, signaling efficient use of additional
battery capacity and reduced reliance on non-dispatched generation. However, the extra battery
capacity leads to higher system costs and overall LCOE, as the system relies more heavily on
buffering and meeting the demand using battery power. This trade-off is further highlighted by
the significantly higher LCOE for the system without wind. This system must rely on battery to
manage peak loads, which occur at night: without support from wind generation, this increased
battery size and utilization significantly increases costs.

Figure 5 demonstrates the behavior of the constraint on average missed load. For both system
types, the constraint is active for battery capacities up to their respective optimal points, then
L̄miss decreases monotonically beyond the optimal points. Both systems exhibit similar behavior
in that designs with battery capacities higher than optimal can more comfortably achieve missed
load values within the constraint boundaries. In the optimal system, this missed load translates
to roughly 88% of the desired peak shaving met across the time series.

While this case study holds the average missed load bound L̄+
miss constant, the developed

software can explore systems with varying resilience requirements. In some cases, including
public transportation systems or micro-grid applications, higher resilience needs may necessitate
more battery storage [28]; thus, this software maintains a balance between cost and performance
via its objective, constraints, and configurable parameters.

5.2. Optimal System Results
Figure 6 highlights a one-week window depicting the original demand and the demand after
peak shaving using optimal system capacities. The shaded area represents the total demand
shaved, based on the difference between the peak demand and the hybrid system generation,
including dispatch (and after curtailment of excess generation, if applicable). Figure 7 depicts
non-dispatchable generation and curtailment over the time period, and Figure 8 shows battery
operation, including power and SOC.

This time period highlights features of the system and its load management strategy. In the
first two days of the week, consistent wind and variable solar provide enough generation to cover
most peak shaving; however, wind drops on 1-17, and the battery dispatches at the beginning
of the evening as solar generation drops. As the wind picks up later that night, it supports the
peak shaving requirement while also charging the battery. Note that another low-wind period
occurs toward the end of the week, from 1-20 to 1-21. In both low-wind cases, the battery
supports a much larger share of the load. Figure 6 demonstrates that these periods result in the
system missing a portion of the required load as the battery reaches its lower bound of SOC, or
10%, and can no longer dispatch.

Curtailment is calculated based on the desired loads for peak and non-peak times. For this
system, curtailment is highest during daytime periods of high wind and solar. During these
periods, EV charging demand is low, the battery charges quickly, the desired demand is easily
met, and the rest of the generation is curtailed. At night, curtailment is low, as the system is
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designed to use the combination of wind and battery dispatch to meet these peaks.
The optimal system meets 86% of the total peak shaving and non-peak loads across the time

series, and 88% of peak shaving loads alone. While the system was not explicitly designed to
meet the non-peak loads, these results follow from the same behavior shown in curtailment. Low
daytime EV charging demand is easily met by non-dispatchable generation, even after charging
the battery. The missed peak loads are driven by the L̄+

miss constraint: on average, the missed
load is 30 kWh, so we expect values below and above 30 kW to be common. To meet other
resilience needs, users may select other configurations with higher capacity, as demonstrated in
Section 5.1, or rerun the optimization with a lower value of L̄+

miss.

Figure 3: Sweep results: LCOE. Figure 4: Sweep results: generation.

Figure 5: Average missed peak loads.

Figure 6: Peak shaving results.
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Figure 7: Generation and curtailment.

(a) Battery Power. (b) Battery SOC.

Figure 8: Battery operation.

6. Conclusions
EV adoption and the associated charging needs are set to add an increased strain on local
distributed electric grids. Hybrid distributed BTM energy systems may alleviate that strain
by collocating renewable energy generation and battery storage with EV charging demand,
providing crucial power during peak loads, especially during times of low non-dispatchable
generation.

To this end, we designed a configurable, foundational tool for sizing and simulating hybrid
plants aimed at supporting EV charging. This includes a peak shaving battery dispatch strategy
that prioritizes performance during peak loads—which typically occur at night when vehicles are
charging—and prioritizes charging the battery outside of peak load times. It also implements a
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configurable optimization method that determines an optimal combination of wind, solar, and
battery storage that minimizes LCOE while achieving desired peak shaving performance.

We further investigated the balance between LCOE and system performance, applying these
new tools to a case study in Boulder, Colorado, using wind, solar, and EV load profile data.
By comparing scenarios with and without wind, we identified that hybrid systems with wind
power may allow for smaller systems that produce energy at lower cost while maintaining desired
performance. Solar/storage-only systems must account for nighttime peaks by increasing the
battery capacity and relying more heavily on battery utilization, driving up costs.

Future work will focus on a number of key areas. This study is limited in addressing the cost of
energy, as it does not include the dynamics and costs of charging infrastructure, a significant cost
[29]. By incorporating these elements, we may calculate levelized cost of charging (LCOC) and
more thoroughly explore the financial feasibility of BTM systems for EV charging, potentially
extending the optimization to use LCOC as an objective. Furthermore, including performance
losses based on operations, weather, etc. will be important to sufficiently estimate LCOC.
Alongside LCOC, other objectives, such as value of energy, which accounts for grid electricity
price dynamics, could enable users to minimize cost to customers or developers. Additionally,
optimal placement of a hybrid on the local grid is critical to minimizing grid impacts of EV
charging. While HOPP is not a power flow analysis tool, it can be used alongside one to
simulate a hybrid optimally placed and sized for meeting EV charging demands and reducing
local grid impacts. Finally, this study aggregates EV charging demand data at a temporal
resolution consistent with HOPP (hourly). However, EV charging loads are dynamic and often
fluctuate significantly at the sub-hour timescale. Quantifying the impact of this aggregation for
the results of a steady-state model like HOPP, and addressing any major disparities that arise,
should be a topic of future work.
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[18] Wächter A and Biegler L T 2006 Mathematical Programming 106 25–57 ISSN 0025-5610

[19] National Renewable Energy Laboratory 2023 Hybrid Optimization and Performance Platform
(HOPP). Version 2.1.0 URL https://github.com/nrel/hopp

[20] Blair N, Diorio N, Freeman J, Gilman P, Janzou S, Neises T W and Wagner M J 2018 (NREL/TP-
6A20-70414) URL https://www.nrel.gov/docs/fy18osti/70414.pdf

[21] National Renewable Energy Laboratory 2022 FLORIS. Version 3.1 - develop branch URL https:

//github.com/NREL/floris/tree/develop

[22] Clark C E, Barker A, King J and Reilly J 2022

[23] Oudalov A, Cherkaoui R and Beguin A 2007 Sizing and Optimal Operation of Battery Energy
Storage System for Peak Shaving Application 2007 IEEE Lausanne Power Tech pp 621–625 URL
https://ieeexplore.ieee.org/abstract/document/4538388

[24] Lu C, Xu H, Pan X and Song J 2014 Energies 7 8396–8410 ISSN 1996-1073 number: 12 Publisher:
Multidisciplinary Digital Publishing Institute URL https://www.mdpi.com/1996-1073/7/12/8396

[25] Wood E URL https://www.osti.gov/biblio/1876634

[26] Draxl C, Clifton A, Hodge B M and McCaa J 2015 Applied Energy 151 355–366 ISSN 03062619
URL http://dx.doi.org/10.1016/j.apenergy.2015.03.121

[27] Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G and Shelby J 2018 Renewable and Sustainable
Energy Reviews 89 51–60 ISSN 18790690 URL https://doi.org/10.1016/j.rser.2018.03.003

[28] Zhang M and Chen J 2014 IEEE Transactions on Power Delivery 29 1427–1435 ISSN 1937-4208
conference Name: IEEE Transactions on Power Delivery URL https://ieeexplore.ieee.org/

abstract/document/6814897

[29] Borlaug B, Salisbury S, Gerdes M and Muratori M 2020 Joule 4 1470–1485 ISSN 2542-4351 URL
https://www.sciencedirect.com/science/article/pii/S2542435120302312


