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Scale-up: Extending systems and processes 
that were developed in the laboratory to 
function in the real world

Device and process scale-up comes with 
significant technical challenges and risk

Typical challenges:
• Data-driven models perform best when 

interpolating, extrapolation is inherently 
uncertain, and therefore risky

• Increasing ranges of scale (spatial, temporal) 
often lead to new/enriched physics

• High-fidelity physics-based models may capture 
new physics, but are typically too expensive for 
design/optimization work

• Operational regimes of existing experiments are 
limited, and new experiments are expensive

Scale-up of complex systems 
and associated risks



NREL    |    3

Goal: reduce scale-up challenges by integrating multi-
fidelity modeling and optimal compute resource use

Optimize the use of finite resources 
to achieve a specific science goal

Connect models with experiments to drive 
experiment design and data acquisition needs

Goal-oriented 
solutions

Multi-fidelity models 
and real-time 

experiment synergy

Optimization and 
uncertainty 

management
Control of extrapolation uncertainty 

through targeted active learning

Adaptive Computing

Orchestration of a multi-fidelity model hierarchy 
and/or experiment campaign to arrive at the best 
goal-based solution with well-characterized 
uncertainty given finite resources
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Most applications feature an assortment of 
models of widely varying fidelities, developed 
for different purposes:

• Experiment: “Truth”, but limited operational 
regime

• High-fidelity simulations: Physics-based 
(PDE/ODE), costly

• Lower fidelity levels: reduced physics, coarser 
meshes, less costly

• Data-driven surrogates: AI/ML, PINNs, 
Gaussian Processes (GPs), really cheap

Key capability: multi-fidelity modeling

Fig: Exploiting information from multiple 
fidelity levels can increase surrogate accuracy
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High-fidelity: Black-box expensive optimization

min𝑓𝑓(𝑥𝑥)
𝑠𝑠. 𝑡𝑡.𝑔𝑔𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … , 𝐼𝐼 

𝑥𝑥 ∈ Ω

Black box𝑥𝑥 𝑓𝑓(𝑥𝑥)
𝑔𝑔𝑖𝑖(𝑥𝑥)

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥
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Surrogate models steer the optimization loop

Initial experimental design

Evaluate expensive 
objective function

Fit/Update surrogate 
model

Select new evaluation 
point

Radial basis function, 
Gaussian Process, 
polynomial ..

Guided by surrogate model 
and user-specified estimate of 
trustworthiness 

Stop?
No

Return best 
solution found

Yes

Needs adaptation for 
problems with constraints, 
integers, failed evaluations, 
noise, multiple conflicting 
objective functions

Black box

Stop when compute 
budget used up
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Correcting the low-fidelity model

• Multiplicative: �𝑦𝑦ℎ𝑓𝑓 𝑥𝑥 = 𝜌𝜌 𝑥𝑥 ∗ 𝑦𝑦𝑙𝑙𝑓𝑓(𝑥𝑥)

• Hybrid: 
• �𝑦𝑦ℎ𝑓𝑓(𝑥𝑥) = 𝜌𝜌 𝑥𝑥 ∗ 𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿(𝑥𝑥) (𝜌𝜌 const.)
• �𝑦𝑦ℎ𝑓𝑓 𝑥𝑥 = 𝑤𝑤 𝑥𝑥 ∗ 𝜌𝜌 𝑥𝑥 ∗ 𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 1 − 𝑤𝑤 𝑥𝑥 ∗ (𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿(𝑥𝑥)), 𝑤𝑤 ∈ [0,1]

• Additive: �𝑦𝑦ℎ𝑓𝑓(𝑥𝑥) = 𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿 𝑥𝑥

How do we make use of multiple fidelity levels during active learning?

𝑦𝑦𝑙𝑙𝑓𝑓(𝑥𝑥) 𝛿𝛿(𝑥𝑥)

Ground truth

𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿 𝑥𝑥
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Exploiting multi-fidelity information

Build a surrogate model for the low(er) 
fidelity function

• Allow more samples than for high-fidelity 
function

• Use this surrogate to decide where to focus the 
search in the high-fidelity function

• Low fidelity model is not necessarily accurate

Build a surrogate model for the high- 
fidelity function

• Fewer samples are affordable
• Surrogate is less accurate (built on less data)
• Surrogate can be used to make (final) sample 

decisions
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Gaussian Process: Using multiple fidelity 
information in one model

Red = high-fidelity evaluations
Black = Lower fidelity evaluations

Combining high and lower fidelity information 
can lead to better approximation surface 
(compare to true contours)

Python package surrogate 
modeling toolbox (SMT)
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Maximize the expected 
improvement to select a new point

Expected improvement surface is multimodal and can become flat – 
making it difficult to find the global maximum…

…requires development of other sampling strategies, 
guided by low-fidelity model
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Sampling with candidate points

Add random perturbations to (select) variables of the best point(s) 
found so far

• Maximize a merit function that trades off 
predicted function value and distance to 
already evaluated points 

• Low function value -> local search
• Large distance -> global search

• Select 𝑁𝑁 new points for potential 
evaluation
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Multi-fidelity sampling: 
when to ignore the low-fidelity model

• Make use of as much information as is available
• Surrogate of high-fidelity model
• Low-fidelity (cheap) information – what if this 

one is very inaccurate/uncorrelated?
• Surrogate of the difference as a selection 

constraint
• User-specified estimates of local model 

trustworthiness Difference between high-
and low-fidelityLow-fidelity modelHigh-fidelity ground truth SM of high-fidelity model

1. Define auxiliary function 𝑎𝑎(𝑥𝑥) using 
the surrogate model predictions

2. Optimize 𝑎𝑎(𝑥𝑥) to find 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛
3. If −𝛿𝛿 ≤ 𝑑𝑑 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 𝛿𝛿 probe with low 

fidelity model first, otherwise ignore 
and evaluate high-fidelity model 
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Key capability: diverse compute 
resources

Edge DatacenterCloud

Experiment

Resource manager: 
how much and what kind of 

resources do I have available?

Solve stochastic discrete 
optimization problem

Resource Management

Optimal computing strategy driven by specific output quantity of interest
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• What resources are available when?
• Formulate as optimization problems with 

stochasticity
• Implement solutions as constraints for multi-

fidelity sampling
• Eventually must exploit asynchronous 

parallel computations

Compute resource optimization 
problem

• Enumerate the user-defined simulation types 
(fidelity levels)

• Possible hardware configurations (# of CPUs, GPUs)
• Corresponding calculation duration
• Measurement noise estimate (aleatoric 

uncertainty)
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• Big Picture Goal: Accelerate the deployment of 
new materials and new capabilities of integrated 
electronics by avoiding materials growth and 
device integration barriers

• Challenges: Materials discovery has greatly 
outstripped reliable material synthesis and 
subsequent integration into devices. Each step 
currently requires a full experimental 
campaign for static, stove-piped optimization, 
and often suffers from reproducibility issues. 
This challenge is exacerbated by changing 
process conditions when moving from lab to 
pilot scale synthesis chambers.

Materials synthesis scale-up



Example application: virtual engineering of biofuels

• Process lignocellulose-rich biomass into biofuel
• 3 step chemical processes

• Pretreatment: fast simulation
• Enzymatic hydrolysis: surrogate or CFD calculation
• Bioreaction: surrogate or CFD calculation

• Objective: maximize reactor-averaged 
oxygen uptake rate

• Inputs: O(10) chemical and processing 
design parameters

• Fidelity Level 1: HF simulation (pretreatment, enzymatic 
hydrolysis, bioreactor): 32 CPU-cores @ 57 hours

• Fidelity Level 2: HF pretreatment, LF Lignocellulose model, and 
HF bioreactor: {72 CPU-cores @ 4 hours, or 32 CPU-cores @ 9 hours}

• Could add simulation type that varies the time to steady 
state/grid resolution



Preliminary tests on virtual 
engineering app

• 8 parameters, 9 random samples from LHS, 10 iterations
• Run for 5 minutes on 1 core, low fidelity models only
• Max Oxygen Uptake Rate =  0.06723323
• For some parameter settings, we obtained  NaNs

– The low fidelity models used may not be valid across the entire parameter space (hidden 
constraints – we know how to deal with these)

Parameter name VE default Min Max Final

Fraction of solids that is xylan 0.263 0 1 0.32

Fraction of solids that is glucan 0.4 0 1 0.29

Porous fraction of the biomass particles 0.8 0 1 0.64

Initial concentration of acid 1e-4 0 1e-3 (1) 1e-3

Steam temperature (C) 150 3.8 250.3 170

Fraction of insoluble solids 0.745 0 0.99 (1) 0.99

Enzymatic load 30 0 1000 57

FIS_0 target 0.05 0.005 (0) 1 0.005

(No multi-fidelity business yet)
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Adaptive computing: optimizing the use of computational 
resources to target deficiencies and challenges related to 
scale-up

Reliable scale-up of 
laboratory experiments

Efficient use of 
computational resources and 
reduction of associated costs 

Reliable scale-up of power 
systems

Adaptive computing:
Novel generalized 

framework

enables

enables

enables
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