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Abstract. The observations collected by two scanning lidars deployed on the roof of a 2.8-MW
turbine undergoing a series of imposed yaw offsets are analyzed. The wake lateral displacement
detected by the rear-facing lidar correlates well with the yaw offset sensed by the forward-
facing lidar. We find that the high-frequency part of the yaw offset signal is connected to wake
meandering, whereas the low frequency component is a good predictor for wake displacement
due to yaw misalignment. Conditionally averaged wake velocity data for different yaw offsets are
used as benchmarks for the validation of a linearized Reynolds-averaged Navier-Stokes and an
empirical wake model. A mean error as low as 2% and a good prediction of the wake trajectory
are achieved, provided that the wake recovery rate matches the observations.

1. Introduction
Active wake steering has emerged as one of the most promising wake mitigation strategies and is
deemed mature enough to undergo full-scale testing [1]. Pioneering field studies have produced
encouraging results [2,3] and inspired numerous theoretical and numerical studies dissecting
the origin of wake deflection [4,5], the operation of yawed turbines [6], the influence of the
atmospheric state [7] and second-order effects such as secondary steering and yaw direction [8].
The knowledge earned through analytical calculations, high-fidelity simulations and wind tunnel
tests has been translated into several reduced-order models for wake deflection [5,9,10,11,12].
Now that the physical mechanisms of wake steering and yaw misalignment have been thoroughly
investigated, the next step is to bridge the gap between the idealized framework of the cited
studies and real-world scenarios.

Still, a number of pragmatic yet important challenges still prevent the widespread use of wake
steering. First, the effect on loads appears less straightforward than the energy counterpart [13].
Second, the main input to this technique, namely the yaw offset, is hardly controllable in real
time and is known with high level of uncertainty [14]. Third, wake morphology is governed by
atmospheric turbulence that is hard to reproduce in wind tunnels or numerical models [15].

The last problem, which is the focus of this work, has been tackled more recently through
the use of nacelle-mounted lidars. For instance, Trujillo et al. [16] observed a delayed onset of
wake deflection not predicted by any available model. Fleming et al. [17] report wake deficits
whose trajectory agrees fairly well with the predictions by FLORIS, albeit characterized by a
markedly different shape. Herges et al. [13] observed a significant wake deflection as a function
of the yaw offset and used automated wake tracking to carry out load analysis. Bromm et
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al. [18] included several months of hub-height lidar data from near to far wake under neutral
conditions to quantify the wake deflection, and showed that the estimated wake trajectory is
sensitive to the leveling of the instrument. Brugger et al. [19] adopted a volumetric scanning
strategy to quantify wake deflection, which agreed well with low fidelity models. The recent
study by Sengers et al. [20] adopted a volumetric reconstruction of mean wake velocity fields
that were then used to calibrate an analytical and a data-driven wake model.

This work attempts to shed some light on the different sources of errors of wake models for
deflected wake by comparing the simulations to the experimental data collected during the Rotor
Aerodynamics, Aeroelastics and Wake (RAAW) project. During RAAW, a 2.8-MW turbine
has been heavily instrumented, including the installation of two nacelle-mounted scanning
lidars. During an intense observational period of two days, the rotor has been deliberately
misaligned and the wake evolution captured, along with essential inflow and turbine performance
information. A careful statistical analysis of the lidar data is conducted to build benchmark wake
fields that are used to estimate the error of two numerical models.

2. Dataset overview
The observations were collected around a 2.8-MW turbine with a rotor diameter D = 127 m
and a hub height of H = 120 m. The top view of the experimental site is given in Fig. 1.

Figure 1. Layout of the experimental set up: (a) top overall view of the site in the global
reference system and wind rose during the selected period; (b) schematic of the turbine reference
system and yaw sign.

The nacelle-mounted inflow and wake scanning lidars represent the object of the current
analysis. Both lidars perform a plane position indicator (PPI) scan spanning ±20◦ from the
expected wind direction and an angular resolution of 2◦, which takes approximately 20 seconds
to complete. The scan is a re-adaptation of the optimal scans for turbulence presented in Letizia
et al. [21]. Figure 1b shows a schematic of the lidar scans as well as the yaw conventions.

The yaw offset is achieved by overriding the yaw controller and fixing the rotor at the
prescribed offset from wind direction read from the wind vane installed at hub height on the
inflow met tower. Yaw offsets from −30◦ (CW) to +30◦ (CCW) are held for the duration of 30
minutes with a 0-offset 30-minute buffer interval in between each yaw change. It is convenient to
split the total yaw offset seen by the turbine, γ, into its mean value, γ based on the mean wind,
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and the yaw error, γ′, based on the instantaneous wind. The presence of yaw offset will induce a
displacement in the wake for two separate reasons [22]: first, a positive total yaw misalignment,
γ, will induce a transversal force pushing the wake towards negative y; second, a positive yaw
error, γ′, indicates a negative lateral component that will carry the wake also towards negative y.
We shall name the first phenomenon a proper ”yaw misalignment effect”, which would happen
also in the absence of yaw error, whereas the second phenomenon is due to advection only and
falls more properly within the ”wake meandering” category.

The lidar data undergo quality control based on an adaptive signal-to-noise ratio filter.
Subsequently, the inflow measurements are leveraged to estimate the real-time incoming wind
speed and direction by fitting a cosine function to the radial velocity measurements at the three
available upstream distances [23]. The wake observations are used to estimate the instantaneous
location of the wake center by fitting a Gaussian function to the de-projected hub-height wind
speed [15]. Figure 2 depicts an example of the aforementioned data processing.

Figure 2. Example of processing of instantaneous inflow and wake PPIs.

As a sanity check, the lidar-based inflow is compared to the met tower equivalent at hub
height (Fig. 3). All quantities are time-shifted to correct for the streamwise displacement of
the different sensors and synchronize them to the wind conditions at the rotor in a Taylor-
frozen sense. The advection velocity used for this correction is equal to the 10-minute averaged
met tower wind speed. Lidar signals from the three locations shown as arrows in Fig. 2 are
averaged together to increase the statistical significance. The best agreement between met
tower and lidar is achieved for the wind speed, followed by yaw misalignment and turbulence
intensity. The latter is calculated directly as the ratio of lidar wind speed standard deviation to
its mean and is then affected by the well-known limitations of the lidar acquisition [24], such as
probe/time averaging, noise, and cross-contamination. The lidar-based turbulence intensity is
systematically underestimated (likely due to probe/time averaging), although it seems to track
well the low-frequency patterns sensed by the met tower. Both lidar and met tower agree that
the test periods (which happened during daytime) were characterized by moderate (5 m s−1) to
high (15 m s−1) wind speeds and high buoyancy-driven turbulence intensity, except for a period
of low turbulence intensity below 10% before 14:00 UTC of day 1. The yaw misalignment time
series exhibits significant biases and fluctuations around the target value (green line in Fig 3),
which indicates that maintaining a prescribed yaw offset is extremely difficult in a real-world
context. The bias is a result of the imperfect alignment of the lidar with the actual mean wind
direction and is corrected by realigning the measurements with the 10-minute averaged wind
direction during post-processing. The large fluctuations in the lidar-based yaw offset are likely
exacerbated by a well-known drawback of nacelle lidars called ”cyclops dilemma” [25], namely
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the inability to separate the effects of misaligned inflow from horizontal shear in the line-of-sight
measurements. Two countermeasures are implemented to mitigate these effects in the inflow
lidar data: first, cases with yaw errors larger than the PPI half-opening angle (i.e. 20◦) are
discarded; second, the remaining yaw error values are scaled by a constant factor of 0.83 to
match the standard deviation of the lidar-based observations with that derived from the met
tower. The next section will explore the link between the so-obtained yaw offsets and the wake
displacement.

Figure 3. Hub-height wind speed, U∞ (a), yaw misalignment, γ (b), and turbulence intensity
(c) from met tower and inflow lidar.

3. Wake centers analysis
The analysis of the wake center dynamics is aimed at answering two essential questions that are
relevant for a well-posed reconstruction of the mean wake velocity field used for model validation:

(i) which sensors provide the best predictor for the yaw misalignment sensed by the turbine?

(ii) how can we disentangle the wake displacement caused by wake meandering from that due
to actual yaw misalignment?

To answer the first question, the locations of the wake centers calculated through the Gaussian
fit mentioned earlier, yc, are correlated with three predictors of yaw misalignment, γ. Namely,
the yaw offset from the nominal schedule, the met tower and the lidar (green, black and red
lines in Fig 3b, respectively) are used as candidates to predict instantaneous wake displacements.
Correlation coefficients, ρ(γ, yc), are evaluated for different downstream regions and for different
time shifts to test the effect of the advection lag between the rotor (where the yaw offset is
defined) and the local wake location. The tested time shifts are converted into shifts in x
through the Taylor-frozen hypothesis using tentatively the freestream velocity as a proxy for
advection. Based on the aforementioned considerations and the yaw sign convention (Fig. 1b),
we anticipate a correlation ρ(γ, yc) < 0 between γ and yc as both a positive intentional yaw
misalignment and positive yaw error that induces wake meandering should displace the wake
towards negative y, and vice versa.

Figure 4 shows the correlation coefficients between wake center location and either nominal
(Fig. 4a), met-tower-based (Fig. 4b) or lidar-based (Fig. 4c) yaw offset for different downstream
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Figure 4. Correlation coefficient at different non-overlapping downstream regions and for
different shifts in x to account for advection. (a): target yaw offset; (b) yaw offset from met
tower; (c) yaw offset from lidar. Values whose 95% confidence interval include 0 are displayed
as white. Dots indicate the location of the minimum correlation, the dashed line is the y = x
line, and the continuous line in panel (c) is the linear fit of the black dots.

regions (horizontal axis) and advection shifts (vertical axis). Both the yaw based on met tower
and lidar predict the expected negative correlation, whereas the nominal yaw offset fails to
identify the correct sign of the wake displacement. This substantiates the qualitative observation
made around Fig. 3 regarding the challenges of maintaining the desired misalignment in the
field experiment. The magnitude of correlations based on both met tower and lidar is similar
and decreases moving downstream, suggesting a progressive loss of coherence between the wake
displacement in the far wake and the wind conditions at the rotor. The advection shift that
provides the best correlation (black dots superposed to the heat map) increases with x/D. This
means that wake displacements further downstream correlate well with the yaw offset value
that occurred further back in time. This is consistent with the hypothesis that the wake deficit
acts as a passive tracer ”emitted” at the rotor according to the instantaneous thrust and inflow
conditions and is advected downstream. The location of the minimum correlation follows closely
the expected 1:1 line for the lidar, which is consistent with the expectation of the advection
velocity being similar to the freestream value. Based on this finding, all the inflow and yaw
information in the remainder of the paper are time-shifted using an advection velocity equal
to the freestream value also in the wake region. More importantly, this analysis indicates that
the lidar-based yaw misalignment is the predictor of yaw misalignment that better describes the
wake center dynamics, thus answering the first of the questions formulated earlier.

To address the second question, namely how the effects yaw misalignment and wake
meandering can be separated, it is necessary to predict the effect of meandering that can
then be subtracted from the overall wake displacement to single out the contribution of the
yaw misalignment. For this purpose, we adopt the well-established Dynamic Wake Meandering
(DWM) approach [26]. The wake center prediction by the DWM is implemented as follows:

yc,DWM(x, t) = −⟨U∞(t) sin γ(t)⟩ x

U∞
, (1)

where −⟨U∞(t) sin γ(t)⟩ is the time-filtered lateral component of the inflow responsible for the
wake meandering and x/U∞ the advection time to location x based on the 10-minute averaged
freestream wind speed. The filtering time window for the lateral velocity is chosen according to
[19]. The difference between the actual wake center and the DMW estimate is yc,γ = yc−yc,DWM

and according to our hypothesis is due to yaw misalignment only. From a practical standpoint,
yc,γ will also carry over inaccuracies due to the limits of DWM in reproducing the real-time wake
meandering path but we expected these errors to be unbiased and average out when calculating
statistics.
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Figure 5. Snapshots of wake measurements with the wake center detected through Gaussian
fitting, yc (golden dots), the wake center location predicted by the DWM, yc,DWM (green dots),
and their difference yc,γ (red is positive, blue is negative).

Figure 5 illustrates a few snapshots of wake center reconstruction including the DWM
prediction for cases with evident wake meandering induced by incoming eddies that are captured
by the DWM (green dots). The difference between observed wake center location and DWM
output is also highlighted and can be qualitatively correlated to the yaw offset of the turbine.
A more quantitative comparison is provided in Fig. 6 where probability density functions and

Figure 6. Probability density functions of wake centers at different downstream regions (shaded
areas) and their standard deviations (dashed lines) from lidar observations (black) and DWM
(red).

standard deviations of wake centers are plotted for different non-overlapping downstream regions.
The remarkably good agreement of the standard deviations suggests an important conclusion:
the dispersion of the instantaneous wake centers is dominated by the meandering component
with little additional contribution from yaw misalignment. This implies that for effects of yaw
misalignment to emerge it is necessary to average several individual scans with a consistent
yaw offset to cancel out the meandering. More pragmatically, there exists a cut-off frequency
separating the slow components of yaw offsets signal that will correlate with yaw misalignment,
from the fast component that carries information mostly about meandering. To find such a
cut-off, we calculate again the correlation between wake centers from lidar, DWM, and their
difference and the yaw offset time-filtered but this time with different moving-average windows
(Fig. 7).

While the correlation between actual wake centers (Fig. 7a) remains negative for all the
averaging window and downstream locations, the one for the wake centers due to meandering
only decays fast as the averaging time increases (Fig. 7b). Conversely, the correlation between
yaw offset and wake center due to yaw misalignment (Fig. 7c) is initially small or even negative
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Figure 7. Correlation between the time-filtered yaw offset, ⟨γ⟩ and the wake centers from lidar,
yc (a), DWM yc,DWM (b) and their difference yc,γ (c). The dashed lie is the selected cut-off to
separate yaw misalignment from meandering effects.

for a null averaging time and increases as the yaw offset signal is time-filtered more significantly.
This analysis reiterates the concept expressed before: fast (⪅ 5 minutes) components of the yaw
offset signal trigger essentially wake meandering, while slow (⪆ 5 minutes) components are more
correlated with wake displacement due to yaw misalignment.

Finally, we selected a 20-minute-moving-averaged yaw offset, ⟨γ⟩, as the best predictor for
effects due to yaw misalignment, because it provides the strongest negative correlation with yc,γ
(Fig. 7c) and is negligibly connected to meandering (Fig. 7b).

4. Results
The experimental data are here leveraged to perform error analysis of two wake models, the
curled wake model (CWM) [11] and the Gauss-Curl-Hybrid model (GCH) [12]. The first model
is a parabolic and linearized Reynolds-averaged Navier-Stokes model with an eddy viscosity
turbulence closure. The second, is an empirical Gaussian model that incorporates the curl
treatment from the CWM.

In order to maximize the use of the present experimental dataset, benchmark wake velocity
fields are built by conditionally averaging lidar velocity data based on the filtered yaw offsets,
⟨γ⟩. The conditional mean velocity, u, and turbulence intensity, Iu, are calculated through
the LiSBOA approach [27] for five bins of yaw offsets identified by inspecting the histogram
of ⟨γ⟩ (Fig. 8). Except for the very first and insufficiently populated cluster (which shows an
irregular pattern likely due to poor statistical convergence) the other conditional statistics show
meaningful features. The wake is deflected as expected upwards and downwards for negative and
positive yaw offsets, respectively, and by a magnitude that appears proportional to the offset.
Increased turbulence is also sensed within the deflected wake region. In the following, the mean
velocity for clusters 2 to 5 are used as the ground truth for model validation. Boundary and
turbine conditions to run the models are approximated as the mean of the respective values for
each cluster (Table 1). This approach implicitly assumes that the velocity field varies linearly as
a function of the inputs within each cluster and represents an inevitable choice because both wake
models are steady. Preliminary analysis of the difference between models and lidars suggested
that the wake recovery is a leading factor that can overshadow the effect of wake deflection. To
further explore this aspect, simulations are conducted both with a baseline setup and with an
optimized turbulence model. The optimization is carried out successfully with a straightforward
exhaustive search where values of both the normalized eddy viscosity, νT (made non-dimensional
by U∞D), for the CWM and the wake expansion coefficient, ky = kz, for the GCH, are varied
within allowable ranges (specifically, νT ∈ [0.001, 0.02] and ky = kz ∈ [0.01, 0.3]). Constant
values of both νT and ky = kz are used for the optimization to eliminate any a priori assumption
on their spatial dependence.

The agreement between models and observations is quantified through the Mean Absolute
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Figure 8. Mean velocity (top) and turbulence intensity (bottom) for the five clusters of yaw
offset. The histogram of the yaw offset with the bin edges is also provided.

⟨γ⟩ range γ [◦] U∞ [m s−1] TI [%] ct TSR Shear exp. Veer [◦ m−1]
(−20◦,−7◦] -11.9 7.0 13.5 0.66 10.8 0.09 -0.045
(−7◦, 5◦] -1.1 7.2 14.0 0.68 11.1 0.11 -0.055
(5◦, 13.5◦] 8.5 6.9 13.5 0.64 11 0.25 -0.005
(13.5◦, 40◦] 24.1 8.5 13.7 0.57 9.8 0.08 -0.055

Table 1. Mean inflow and turbine conditions for the selected clusters.

Percentage Error (MAPE), where a 100% error represents a difference equal to the freestream
velocity. An overview of the errors is given in Fig. 9. What stands out at a first glance is

Figure 9. Summary of the error between lidar and models.

the large error of CWM with the baseline turbulence model for the first two clusters. A closer
look at the velocity fields (Fig. 10) reveals that wake deflection is underestimated by the CWM
(continuous line vs. dots) but, most importantly, wake recovers too slowly for the first two
cases compared to the experimental data. Those two clusters are also characterized by low
shear and high ct (Table 1). Since the eddy viscosity model in the CWM is essentially driven
by shear-generated turbulence, it explains the underestimated wake mixing compared to the
real-world buoyancy-driven flow. Optimization of the turbulence model, however, leads to a
drastic reduction of the MAPE that drops around 2%, although the wake center trajectory is
not improved (not shown). Indeed, optimal values of (constant) eddy viscosity for the CWM
model are νT = 0.006, 0.008, 0.008, 0.004 for the four clusters, respectively, thus significantly
higher than the baseline values shown in Fig. 10.

The baseline GCH performs significantly better than the CWM thanks to the empirical wake
expansion coefficient that is related to the ambient TI, thus including also the influence of
thermal convection. Optimizing the turbulence model improves the agreement with lidar data
just marginally, although the values of the optimal wake expansion coefficients (Fig. 11) are
higher than their baseline counterparts (ky = kz = 0.055, 0.057, 0.055, 0.056). Velocity fields for
the optimized GCH, which is the best-performing model, are shown in Fig. 11. The wake center
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Figure 10. Mean velocity from clustered lidar data (top), CWM with baseline turbulence
model (middle) and their difference (bottom). Dots and continuous line are the wake centers of
the lidar and simulations, respectively.

trajectory, which was minimally changed from the baseline, agrees well with the observations,
except for the far wake of the first cluster, possibly due to non-linear effects occurring within
the cluster itself. The error distribution highlights that most of the discrepancy occurs in the
near wake and due to a different shape of the initial velocity deficit, with the GCH having a
narrower/deeper profile than the lidar. However, this aspect is of secondary importance for real
applications because wake interactions occurs generally at distances greater than 3 diameters.

Figure 11. Like Fig. 10 but for optimized GCH.

5. Conclusions
Experimental data collected by a forward-facing and a rear-facing scanning lidars have been used
to build conditionally-averaged statistics of wake velocity under different yaw offsets and used for
model validation. The main challenge from the experimental standpoint was the identification
of the best predictor of yaw misalignment effects on wake deflection, which turned out to be
the 20-minute averaged yaw offset from the inflow lidar. This parameter is representative of the
wind state at the turbine and varies sufficiently slow to allow wake meandering effects to cancel
out. Cluster statistics as a function of yaw offset reveal a wake deflection that agrees in sign with
theoretical models. The result is significant mainly because it is obtained for a relatively short
campaigns (2 days) compared with similar studies [18,19] that took several weeks. The CWM
and GCH were able to capture the relevant physics in terms of yaw deflections and their initial
errors before tuning the turbulence effects are below 10% of the freestream velocity. However,
the CWM and GCH performed differently when compared to the observations. The first one
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in its baseline version tends to under-predict the wake recovery but significantly improves after
tuning the eddy viscosity to account for buoyancy-driven turbulence. The second one has a
2% error in its baseline version, which is driven by differences in the near-wake shape and
improves minimally when recalibrating the wake expansion coefficient. The GCH also has a
better agreement with experimental data for the wake deflection. This analysis highlights two
possible improvements for models: for the CWM, an enhanced turbulence model suitable for
non-neutral stability conditions; for the GCH, an adaptable thrust distribution to match specific
turbine models.
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[24] Penã A, Mann J and Dimitrov N 2017 Wind Energy Sci. 2(1) 133–52
[25] Letizia S et al 2023 Frontiers Mech. Eng. 9 1261017
[26] Larsen G, Madsen, H A, Thomsen, K and Larsen, T J 2008 Wind Energy 11(4) 377–95
[27] Letizia S, Zhan L and Iungo G V 2021 Atmos. Meas. Tech. 14 2065–93


