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Executive Summary 
Building on the successfully completed effort to calibrate and validate the U.S. Department of 
Energy’s ResStock™ and ComStock™ models over the past several years, the objective of this 
work is to produce national data sets that empower analysts working for federal, state, utility, 
city, and manufacturer stakeholders to answer a broad range of analysis questions.  

The goal of this work is to develop energy efficiency, electrification, and demand flexibility end-
use load shapes (electricity, gas, propane, or fuel oil) that cover a majority of the high-impact, 
market-ready (or nearly market-ready) measures. “Measures” refers to energy efficiency, 
electrification, and demand flexibility variables that can be applied to buildings during modeling. 

An end-use savings shape is the difference in energy consumption between a baseline building 
and a building with an energy efficiency, electrification, or demand flexibility measure applied. 
It results in a time-series profile that is broken down by end use and fuel (electricity or on-site 
gas, propane, or fuel oil use) at each time step.  

ComStock is a highly granular, bottom-up model that uses multiple data sources, statistical 
sampling methods, and advanced building energy simulations to estimate the annual subhourly 
energy consumption of the commercial building stock across the United States. The baseline 
model intends to represent the U.S. commercial building stock as it existed in 2018. The 
methodology and results of the baseline model are discussed in the final technical report of the 
End-Use Load Profiles project. 

This supplemental document describes the methodology used for determining the dispatch 
timing of various End-Use Savings Shape demand flexibility measures. Demand flexibility 
measures are designed to reduce/dispatch electricity demand in buildings during especially 
beneficial/critical times. The method used in this work utilizes predictions of building loads to 
generate a schedule that reflects the periods when the building’s daily peak load occurs to 
support decision-making in demand flexibility measures. This method is also designed in a way 
to change the goal of the dispatch timing (i.e., finding daily peak) to another goal (e.g., 
maximum carbon emission factor) when provided with relevant input data (e.g., time varying 
carbon signals). 

The dispatch schedule generation method described in this document creates hourly schedule 
(i.e. 8760 values for the whole year) that includes a (load) dispatch (peak) window for each day 
based on load prediction, with options using different methods: perfect prediction, bin-sampling, 
fixed schedule, and outdoor air temperature (OAT)-based prediction.  

The perfect prediction method performs a simulation to obtain the annual load profile as 
predicted load, representing the scenario of perfect load prediction. The bin-sampling method (1) 
categorizes days into representative bins by temperature characteristics, (2) performs simulations 
on sample days from each of those bins to create representative (or predicted) load, and (3) 
assigns representative loads for all days in a year based on the bin categorization. The fixed 
schedule method defines uniform start and end time of peak window with assumed fixed daily 
peak time, for all days in a season or a year. The OAT-based prediction method uses the statistics 
of OAT (minimum and maximum) as the indicators of peak load, with specified delay response 
time from building loads to temperature. The fixed schedule and OAT-based prediction methods 

https://www.nrel.gov/buildings/end-use-load-profiles.html
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have been widely used in existing demand flexibility research, and serve as comparable 
references in this documentation that represent the prevalence choice of previous work (with 
shown downside) and help demonstrating the effectiveness of the perfect prediction and bin-
sampling methods (that outperform the fixed schedule and OAT-based prediction methods).  

Given the load prediction, daily peak periods are determined as a time window with specified 
length in each day that include the predicted daily peak load and with a secondary rule such as 
maximizing energy saving potential.  

The dispatch schedule generation method is not a standalone measure and is intended to be 
combined with other demand flexibility measures that could leverage the peak schedule and 
apply demand controls on specific systems or devices for demand response, such as Thermostat 
Control for Load Shedding and Thermostat Control for Load Shifting listed on the ComStock 
webpage.  

  

https://nrel.github.io/ComStock.github.io/docs/upgrade_measures/upgrade_measures.html
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Dispatch Schedule Generation for Demand Flexibility 
Measures 
Accessing Results 
This documentation covers the “Dispatch Schedule Generation for Demand Flexibility 
Measures” methodology that is leveraged in End-Use Savings Shape demand flexibility 
measures. 

Method Summary 
Title Dispatch Schedule Generation for Demand Flexibility Measures 

Method 
Definition 

This method generates schedule input for various demand flexibility measures by 
creating schedule (i.e. 8760 hourly values for the whole year) that determines when 
to dispatch demand flexibility for certain objective (e.g. daily peak load reduction), 
based on different load prediction methods: perfect prediction, bin-sampling, fixed 
schedule, and outdoor air temperature (OAT)-based prediction. Depending on the 
load prediction, daily peak periods are determined as a time window with specified 
length in each day that include the predicted daily peak load and with a secondary 
rule such as maximizing energy saving potential. 

Applicability This method is applicable to be used in conjunction with other ComStock Demand 
Flexibility measures, e.g. “Thermostat Control for Load Shedding” and “Thermostat 
Control for Load Shifting.” Refer to the documentation of those specific measures to 
understand where they are applied. 

Release 2024 Release 1: 2024/comstock_amy2018_release_1/ 
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1 Introduction 
1.1 Grid-Interactive Efficient Buildings With Demand Flexibility 
Electricity consumers across the residential, commercial, and industrial sectors are increasingly 
interested in opportunities to reduce their electricity bills and carbon footprint. Simultaneously, 
utilities, system operators, and state decision makers are aiming to reduce costs, more effectively 
utilize existing grid assets, maintain power system reliability, and reach carbon reduction targets. 
At the intersection of the customer and utility perspectives, buildings and their associated loads 
offer opportunities to align the interests of consumers, system operators, and policy decision 
makers. Interactivity between buildings and the broader electricity system expand these 
opportunities, and is enabled by advancements in building control technologies, data availability, 
advanced metering, new tariff designs, and improved analytics for energy management. 
Collectively, these smart technologies for energy management are often referred to as grid-
interactive efficient buildings (GEBs). GEBs utilize high-efficiency components to reduce 
electricity demand and increase the flexibility of specific building loads, responding to real-time 
signals or advanced calls for demand response. By shedding and shifting building load, these 
GEBs can reduce electricity bills, the cost of operating the grid, and emissions, all with minimum 
impact on occupant comfort. The methods for achieving these GEB objectives are called energy 
efficiency and demand flexibility measures. Specifically, demand flexibility measures focus on 
adjusting building loads (shedding and shifting) across different time scales. 

There are many resources for GEB research and demand flexibility strategies, from state to 
national scales. The U.S. Department of Energy (DOE) National Roadmap for Grid-Interactive 
Efficient Buildings (2021) [1] and Langevin et. al (2021) [2] both introduce GEB opportunities at 
a national scale. DOE has also published a technical report series [3] highlighting the state of the 
art for specific GEB technologies. The General Services Administration (GSA) has taken early 
action to identify potential and implement GEBs in the federal building stock with a set of GSA 
reports [4] highlighting the opportunities, demonstration projects, and lessons learned, among 
which the case studies [5] are directed to policy makers and utilities aiming to incentivize GEB 
deployment. While federal decision makers oversee GEB and demand flexibility strategies at a 
high level, many studies have focused on single building operations or even individual system 
control strategies for demand flexibility [6], [7], [8], [9], [10].  

1.2 Importance of Load Prediction for Demand Flexibility  
Based on the above resources, existing GEB demand flexibility measures targeting major 
building systems (e.g., HVAC system, lighting system) focus on load shed and shift strategies to 
flatten net system loads by reducing peak period load (e.g., through dimming the lights or a 
thermostat setbacks) and moving load off-peak (e.g., to the hours before and/or after the peak 
window). 

Utilities and grid operators are generally more concerned about aggregated grid electricity 
demand rather than the individual load profile of any particular building. However, 
understanding the shape of the building load and learning when the peak demand for the building 
happens is essential for providing demand flexibility and is beneficial to building 
owners/managers/operators from the perspective of the individual building. Targeting demand 
reduction of a specific building load may be infeasible on the grid/utility side, but it achieves 
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demand flexibility and optimized demand dispatch, and thus maximizes energy cost savings for 
single buildings. However, most of the existing modeling studies of demand flexibility measures 
(as summarized in [11]) simplify demand flexibility timing by assuming a uniform window 
aligning with the most common or averaged peak price schedule of time-of-use (TOU) rates for 
specific regions (e.g., weekdays between 2pm and 4pm for one of the Energy Information 
Administration’s [EIA] National Energy Modeling System Electricity Market Module regions 
[12]). Aligning the demand response control on building load favorably with a fixed schedule 
may lead to electricity energy and demand bill savings if the schedule agrees with the utility’s 
TOU rate structure (e.g., reducing load for peak pricing periods), but it does not guarantee true 
peak demand reductions if the actual building load profile is not aligned with the fixed window 
of peak pricing, which is inferred from the system load shapes drawn from EIA Electricity 
Market Module outputs representing the “average” peak timing in the region. Figure 1 illustrates 
an example scenario where a thermostat setback strategy based on assumed fixed peak fails to 
align the control with the actual load variations to reduce peak load. 

 

Figure 1. Example demand flexibility control with fixed peak schedule  
DF = demand flexibility 

On the other hand, while TOU rates are the most common reference to infer a demand response 
schedule when targeting bill cost savings, it’s either not accurate to select a single representative 
TOU rate for numerous buildings or it requires extensive efforts to map all applicable TOU rates 
to buildings across regions when it comes to aggregation in a high level (e.g., state level). For 
example, the Demand Response Research Center at Lawrence Berkeley National Laboratory 
published a set of reports for the California Demand Response Potential Study [13, p. 3], [14], 
and used TOU rates consistently to indicate the peak demand events for shed-type and shift-type 
demand response analysis. However, one of the reports (for phase 3) also pointed out that TOU 
pricing has limited flexibility, and dynamic prices should be explored. Nevertheless, TOU rates 
or other fixed peak window schedules are helpful for understanding the overall building load 
peak, or regulating the aggregated grid demand in the region level, but they cannot represent the 
timing of a single building’s peak load due to the diversity of building loads. Therefore, to better 
align demand flexibility dispatch with building loads, a more generic approach to determine peak 
schedule for individual building is needed to account for uncertainties and/or potentials in 
building load. 

In addition, advanced demand response controls require more flexible demand dispatch strategies 
for demand reduction on a daily basis. Understanding the daily load profile of a building and 
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designing demand response controls based on it grants individual buildings the ability to achieve 
bill savings when participating in advanced demand response programs that utilities have begun 
to provide in the past decade. This has proven to be one of the most effective solutions to load 
shifting and/or reduction for grid demand flexibility [15]. Typically, the driving force of a 
demand response program is the designed incentive that utility companies provide to customers 
(individual buildings or facilities, or energy aggregators/utility agencies) to motivate reduced 
energy consumption during peak demand periods, and customers can react to demand response 
events with flexibility and initiative based on the incentive structure. There are four main types 
of demand response programs with respect to program objectives: direct load reduction, 
customer self-regulated load reduction, enrolled/contracted/bidding capacity, and dispatched 
capacity. Table 1 summarizes typical demand response program types and example programs 
provided by representative utility companies. 

Table 1. Typical Demand Response Program Types and Example Utility Programs [16], [17], [18], 
[19] 

Demand 
Response 

Program Types 
Description Example Utility Programs 

Direct 
(Automatic) Load 

Reduction 

Utility directly reduces the load 
by remotely controlling the 
customer’s devices/circuit 

Direct Load Control (Xcel) 

AC Rewards and Saver’s Switch (Xcel), 
SmartAC (PG&E), Summer Discount Plan 

and Smart Energy Program (SCE) 

Customer self-
regulated load 

reduction (Pricing 
incentive) 

Utility sends event signal (price 
and time) and customer 

determines operation 
accordingly (reduce load or 

increase generation) 

Critical Peak Pricing (Xcel, SCE) 

Peak Day Pricing and SmartRate (PG&E) 

Real-Time Pricing (SCE) 

Enrolled/ 
contracted/ 

bidding capacity 

The customer provides potential 
demand reduction based on pre-
event enrollment/contract/bid in 
the demand response program 

Capacity Bidding Program (Xcel, PG&E, 
SCE, etc.) – mostly for aggregator 

ISOC (Xcel), Peak Partner Rewards (Xcel) 
[20] 

DR Auction Mechanism (DRAM involving 
PG&E, SCE, etc.) 

Base Interruptible Program (PG&E, SCE) 

Scheduled Load Reduction Program (SCE) 

Dispatched 
capacity or 

energy reduction 

The customer provides actual 
demand/energy reduction during 

events 

Capacity Bidding Program (Xcel, PG&E, 
SCE, etc.) – mostly for aggregator 

ISOC (Xcel), Peak Partner Rewards (Xcel) 

DR Auction Mechanism (DRAM involving 
PG&E, SCE, etc.) 

 
The latter two categories of demand response programs summarized above are load capacity 
related programs, and are usually more complicated. They require the customers (owners or 
managers of individual facility or building) to gain extensive knowledge of the building load 
profile and align the control with the predicted peak load (either in the system or building level 
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depending on specific application) and the corresponding demand response program structure in 
order to dispatch demand at the proper time to maximize bill savings. With sufficient advance 
notice of demand response calls (e.g., received from advanced demand response programs via 
the OpenADR protocol [21]) and/or the ability to predict dispatch needs, buildings can use pre-
determined logics or more sophisticated control algorithms such as model predictive control to 
provide advanced demand flexibility with minimal occupant impacts [22], [23]. Model predictive 
control has been deployed by several companies for load regulation in buildings, such as 
QCoefficient [24] and Enbala [25]. The QCoefficient’s EMeister model predictive control is a 
supervisory controller that communicates with existing building automation systems, aiming at 
day-ahead load/bill prediction based on weather and pricing inputs to override controls for 
demand reduction, and it was implemented in several large commercial buildings/campuses with 
proven performance of reduced peak demand and energy savings. Enbala’s Concerto software, 
on the other hand, serves as a management platform for large-scale aggregated distributed energy 
resources (e.g. buildings) to predict dispatchable demand capacity to the grid in real time and 
optimize the operations of a mixed-asset ecosystem for enrolled bidding capacity to the utility 
program (the enrolled/contracted/bidding capacity program type in Table 1). 
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2 Demand Flexibility in ComStock 
The current ComStock workflow does not include any demand flexibility in the baseline. This is 
likely sufficient for this study since demand response measures are not yet deployed at scale, so 
their impact at the stock level is likely minimal at this time. The existing baseline schedules (e.g., 
thermostat setpoint schedules) in ComStock are based on a building automation data from three 
industry-provided private data sources with over 3,700 buildings, described in detail in the 
“ComStock Documentation” report [26]. The output schedule from the dispatch schedule 
generation method described in this document will serve as the input for specific demand 
flexibility measures applied to certain systems, and the detailed baseline descriptions will be 
provided in the corresponding measure documents on the ComStock webpage—Thermostat 
Control for Load Shedding and Thermostat Control for Load Shifting. 

https://nrel.github.io/ComStock.github.io/docs/upgrade_measures/upgrade_measures.html
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3 Modeling Approach 
3.1 Dispatch Schedule Generation 
The dispatch schedule generation method creates a schedule (i.e., 8760 hourly values for the 
whole year) with hourly indicators of when to dispatch demand flexibility for a certain objective 
(e.g., daily peak load reductions), with options using different load prediction methods: perfect 
prediction, bin-sampling, fixed schedule, and outdoor air temperature (OAT)-based prediction. 
High-level descriptions of each prediction method are as follows: 

1. The perfect prediction method performs a full annual baseline (without demand 
flexibility measure) simulation to obtain the annual load profile as predicted load, 
representing the scenario of perfect load prediction.  

2. The bin-sampling method categorizes days into bins by temperature characteristics and 
performs simulations on selected sample days from bins as the representative “predicted” 
load, and then assigns the sample prediction for all days based on the bin categorization.  

3. The fixed schedule method defines uniform start and end times of a peak window with 
an assumed fixed daily peak time, for all days in a season or a year.  

4. The OAT-based prediction method uses OAT statistics (minimum and maximum) as 
the indicators of peak load, with specified delay response time from building loads to 
temperature. 

There are various methods that could be applied in order to understand building load, as complex 
as using digital twin modeling approaches or machine learning prediction models (data-driven 
gray-box or black-box models such as in [27], [28], [29]), or as straightforward as reading in 
baseline (for simulation) or historical (for actual) building load data and adjusting the data for 
prediction. In a dynamic dispatch scenario, the control system is expected to decide what data 
could be leveraged to determine optimized dispatch. The practical application of demand 
flexibility dispatch measures would require extensive input data and complex model structure 
(such as the neural network model developed in [30]) for load prediction. Detailed definitions 
and explanations are provided for the options selected/developed in the following sections. 

3.1.1 Perfect Load Prediction Through Full Baseline Simulation 
The perfect prediction method performs a full baseline simulation to obtain the annual load 
profile as predicted load, representing the ideal scenario that the load profile could be—perfectly 
predicted without any uncertainty, assuming that the baseline simulation results are the truth. The 
daily peak load and timing (and other associated characteristics) can be obtained directly from 
the annual simulation results. Although such data might not be available in real-world scenarios, 
the perfect prediction option represents the best scenario of load prediction that could support 
discovering the maximum potential of applied demand flexibility measures, or contribute to 
quantifying the upper limit of achievable demand savings or peak reductions. 
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3.1.2 Load Prediction Through Bin-Sampling  
The objective of utilizing bin-sampling techniques in this measure is to generate predicted load 
profiles that carry sufficient insight to the timing, shape, and magnitude of the building’s daily 
peak demand. This method bins 365 days in a year (e.g., Jan 1st = bin A, Jan 2nd = bin B, Jan 3rd  
= bin A, …, Dec 31st = bin Q) using weather data based on the assumption that for an individual 
building with consistent schedules (lighting schedule, plug load schedule, occupancy schedule, 
etc.), similar weather conditions lead to similar load profiles. The binning criterion is based on 
weather parameters that have the most impact on the target load variations. Specifically, for 
cooling load prediction, this measure uses two variables for binning—daily maximum outdoor 
air temperature (OATmax), and hour of daily maximum outdoor air temperature (OATmaxhour). 
The daily maximum outdoor air temperature is selected to characterize the seasonal weather 
variations, and the time of the maximum outdoor air temperature is selected to characterize the 
daily weather variations and to capture the relationship between maximum temperature and hour 
of peak load. For heating load prediction, on the other hand, the daily minimum outdoor air 
temperature (OATmin) should be selected instead of OATmax, and correspondingly the hour of 
daily minimum outdoor air temperature (OATminhour) would take the place of OATmaxhour. 
The binning criteria could be flexible for different scenarios. In the example scenario, bins are 
determined to distribute number of days in bins as evenly or normally as possible to make bins 
mathematically representative while considering the practical applications; from prior 
knowledge, more discretization is needed for the noon to afternoon period where most cooling 
peaks take place, for cooling load prediction specifically. 

The following table summarizes the chosen bins in detail for a specific example weather input.  

Table 2. Example Bins and Number of Days in Bins 

Bins OATmaxhour 
12-2PM 2-3PM 3-4PM 4-5PM 

5PM-
11AM 

OATmax Other 

≥ 32°C Very hot 13 28 20 4 1 

30-32°C Hot 27 8 17 1 0 

26-30°C Mild 14 15 21 9 2 

18-26°C Cool 19 16 32 13 9 

< 18°C Other 9 20 41 9 17 
 

Given appropriate binning results, the measure draws sample days from the bins. The samples 
are randomly selected, and the number of samples increases as the number of candidates in a bin 
increases to account for representativeness of drawn samples. The numbers of samples drawn 
from each bin depending on the bin size are summarized in the following table, showing the 
computational efficiency and potential number of bins. 
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Table 3. Number of Samples Versus Number of Days in Bins 

# of days in bins # of samples 

0 0 

1–7 1 

8–14 2 

>14 3 
 

After drawing samples, simulations are run on the sample days and the load profile is extracted 
(using hourly time intervals) from the simulation results as sample loads. If multiple single-day 
samples are drawn for a given bin, the sampled load profiles are averaged to generate the 
representative single-day load profile for the bin. Then the representative load profile will be 
replicated for all the days in the bin as their predicted load. A full year load prediction is thus 
constructed by populating representative daily load profiles for all days based on their bins. 
Figure 2 shows the daily load profiles (green) corresponding to the bins in Table 2, the drawn 
samples (red-dashed), and the representative load profiles (orange) derived from the samples for 
every bin.  



   
 

10 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 

Figure 2. Example daily load profiles (green) in bins, the samples drawn (red-dashed), and the 
representative load profiles (orange) derived from the samples 

The green load profiles represent daily simulation results throughout the year corresponding to 
the bin. Note that the green profiles are for illustration only, and only a few of them will be 
obtained (red-dashed) through simulation in the method. The red-dashed load profiles are 
randomly selected samples from the green profiles in each bin (the number of samples depends 
on the number of green profiles in the bin as described in Table 3). The orange profiles are the 
representative load profiles derived from averaging the selected samples (red-dashed) and will be 
the predictive load profiles representing the days (green) in the same bins, respectively. As can 
be seen in Figure 2, most of the representative load profiles (orange) can capture the daily load 
shape and peak with acceptable deviations (error of predicted peak time is less than 2 hours). 
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This method is used as a proxy to characterize the mean/median performance of any applicable 
control systems providing demand flexibility, intended to represent actual predictions that could 
be made using historical measured data, with introduced uncertainty. 

3.1.3 Determining Daily Peak Window 
With the full year load data generated by the above two options and the user input of peak period 
length (default 4 hours to be aligned with the most common length of demand response events 
[15]), this measure determines daily peak windows by following two rules: 

1. First rule: the daily peak window will include the time of the predicted daily peak 
demand 

2. Second rule with three options: 
a. The total energy consumption of the selected peak window is maximized among 

the candidates that meet the first condition (including the peak), to excavate as 
much energy saving potential as possible while reducing the peak load 

b. Start the peak window at the time of the predicted daily peak demand 
c. Center the peak window on the time of the predicted daily peak demand. 

3.1.4 Fixed Schedule Peak Window 
The fixed schedule option represents the most used demand flexibility strategy currently 
(discussed in Section 1.2) and is implemented as a comparative reference. We integrated the 
existing GEB measure in the OpenStudio GEB measure gem [31] to generate a daily schedule of 
the peak window by specifying peak window start and end time for summer and winter. The 
assumed peak window specifications are summarized in Table 4, which are derived from 
assumed peak windows by Electricity Market Module regions from EIA documentation [12]. 
Although the fixed schedule method has been widely used as the default control strategy in 
existing demand flexibility research, it has evident drawbacks when applying for daily dispatch 
providing the natural conflict of “fixed” and “flexibility”, which will be shown in Section 4. 

Table 4. Assumed Fixed Peak Window by Climate Zones 

ASHRAE 
Climate Zone Summer Peak Period  Winter Peak Period 

2A 5–8 p.m. 6–9 p.m. 
2B 4–7 p.m. 6–9 p.m. 
3A 6–9 p.m. 5–8 p.m. 
3B 5–8 p.m. 6–9 p.m. 
3C 6–9 p.m. 5–8 p.m. 
4A 1–4 p.m. 5–8 p.m. 
4B 4–7 p.m. 6–9 p.m. 
4C 4–7 p.m. 5–8 p.m. 
5A 5–8 p.m. 5–8 p.m. 
5B 4–7 p.m. 5–8 p.m. 
5C 4–7 p.m. 5–8 p.m. 
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ASHRAE 
Climate Zone Summer Peak Period  Winter Peak Period 

6A 3–6 p.m. 5–8 p.m. 
6B 4–7 p.m. 5–8 p.m. 
7 3–6 p.m. 5–8 p.m. 

 

3.1.5 Outdoor Air Temperature-Based Load Prediction 
The OAT-based prediction option uses the statistics of OAT (minimum and maximum) as the 
indicators of peak load, based on the assumption that daily maximum temperature will lead to 
daily peak cooling load in summer and daily minimum temperature will lead to daily peak 
heating load in winter, both with some time delay (corresponding to the response time of 
building loads to change in outdoor conditions). This is true for building loads that are most 
sensitive to OAT and have minimal disturbances from other factors such as internal load or other 
weather characteristics. This method takes the OAT profile as input to infer the daily cooling and 
heating peaks with specified delay time and creates the corresponding peak schedules. 

3.2 Limitations and Concerns 
Below are limitations and concerns of utilizing this measure: 

• Our current approach represents demand flexibility delivered every day of the year, 
which represents something closer to full technical potential rather than a realistic 
potential based on anticipated dispatch of, or requests for, demand response based on grid 
conditions for specific days. For example, we are currently aiming to generate a dispatch 
schedule in the model for all possible days in a year for all large office buildings. 
However, in reality, some buildings are less capable of daily dispatching and the dispatch 
might occur during emergency periods; some other building types are also highly 
engaged in the demand market or are good candidates as GEBs. The actual needs in the 
near term are likely well below full response from all buildings for every day. On some 
days, even more response than is modeled might be needed, but on many days, far less 
will be needed. Nevertheless, individual buildings (owner/manager/operator) could 
benefit from the opportunity of cost savings via daily load reduction. Also, the 
approaches employed to define the peak window could still end up missing the actual 
peak period and thus the actual hour(s) when flexibility is most needed on the grid. 
DOE’s Energy Efficiency and Demand Flexibility State-Level Potential project team is 
planning to engage with stakeholders (e.g., state energy officials, utility commissioners, 
implementers) in 2024 to reflect the most important aspects in the field in terms of 
applicability and practical feasibility and significance to the modeling environment. This 
load prediction methods and strategy to generate peak window from prediction might be 
revised depending on the feedback from stakeholders.  

 
• For the ComStock workflow, the bin-sampling method had been initially adopted as a 

compromise between the computational effort and the prediction accuracy with respect to 
capturing seasonal and daily load variations. However, the performance of bin-sampling 
method in the ComStock workflow is not as good as expected for test implementation, 
with respect to computational efficiency, which will be discussed in the Results section. 
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At the current state, the bin-sampling option would not be the prioritized option for load 
prediction, and needs further improvement on computational efficiency. 
 

• The bin-sampling method being developed is exploratory and designed for ComStock 
scenarios. It is aimed to represent the average performance of similar load prediction 
methods in the building stock, but not necessarily representative of any commercially 
available product. 
 

• The current approach described in this document targets peak energy savings only. 
However, there are other performance metrics that can be targeted such as minimizing 
grid operating cost or minimizing carbon emissions. These different metrics might not 
align with the same approach described in this document, and this is a limitation that this 
method is currently facing. The stakeholder engagement described above is also 
anticipated to get feedback on this aspect. 
 

• The current approach described in this document is designed based on targeting two 
demand flexibility measures: load shed with thermostat setback and load shift with pre-
cooling.  
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4 Test Results 
4.1 Uncertainty in Peak Prediction and Impact on Load Shed Strategy  
Figure 3 shows load profiles from five consecutive days comparing the same single building 
model with the baseline scenario and with the load shedding measure applied with either the 
perfect prediction or bin-sampling method for load prediction. The perfect and bin-sampling 
methods show accordance in the first three days, but the bin-sampling method mis-predicts the 
time of peak load (much earlier than the actual peak in the baseline) and thus fails to shed peak 
load in the last two days. This is because the load profiles bin assignment by the bin-sampling 
method for the last two days are not representative of the true load profiles due to conditions that 
are not captured in the method (i.e., conditions other than outdoor temperature). The influence of 
these other conditions on load shape binning is generally trivial during summer and winter 
seasons when outdoor temperature characteristics are monotonous and their impact on building 
load dominates other weather factors such as solar radiation and cloud cover. However, the 
importance of other conditions increases during shoulder seasons when weather conditions are 
more random or fluctuating and are affected by multiple factors. 

 

Figure 3. Load profile comparison for baseline and load shedding with the perfect prediction and 
bin-sampling options 

Figure 4 and Figure 5 show load profiles for five consecutive days comparing the load shedding 
measure applied with the fixed schedule and OAT-based prediction options, respectively. 
Neither option is capable of capturing the load peak for the days shown. The assumed peak 
window (6PM–10PM for the example model in climate zone 3A) in the fixed schedule option 
completely misses the actual peak period, which means the universal peak times derived for 
representative buildings are inconsistent with the actual building load profiles. The OAT-based 
option fails to predict the time of peak load except for the 4th day (9/27), indicating a high 
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failure ratio for predicting peak time correctly, possibly due to non-negligible factors other than 
OAT affecting building load. 

 
Figure 4. Load profile comparison for baseline and load shedding with the perfect prediction and 

fixed schedule options 

 

Figure 5. Load profile comparison for baseline and load shedding with perfect prediction and 
OAT-based prediction approaches 
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4.2 Computational Efficiency of the Bin-Sampling Method 
The bin-sampling method was proposed as a compromise between computational effort and 
prediction accuracy within the constraints of the ComStock workflow, based on the intuitive 
assumption that simulations on a small number of days (samples) would be computationally 
lighter compared to a full annual simulation, and thus should take less computational time for 
load prediction than the perfect load prediction method. However, the bin-sampling method 
underperformed in test implementation regarding computational time (much longer time 
consumed) when applied with the demand flexibility measure of load shedding in a ComStock 
run with 90 applicable building models (large offices with electric HVAC systems). The test run 
results are summarized in Table 5. 

Table 5. Consumed Run Time With the Load Shedding Measure With Different Dispatch Schedule 
Generation Options 

Scenarios Run Time (HH:MM:SS) 

Baseline 15:40:04 

Load shedding measure with perfect load prediction 23:42:50 

Load shedding measure with bin-sampling method 43:38:12 
 

The reason for the unexpected extra time used by the bin-sampling method is the repeated pre-
simulation steps for EnergyPlus/OpenStudio simulation (warm-up and sizing) for each sample 
daily simulation. This issue has not been resolved at the time of release and future work is 
needed to make the bin-sampling method more feasible in terms of computational time.  

4.3 Test Run Results Comparison 
A ComStock test run (with 10,000 building models and 90 applicable large offices) was 
performed to compare the effectiveness of the thermostat control for the load shedding measure 
applied with different dispatch schedule generation options: perfect load prediction, OAT-based 
prediction, and fixed schedules (the bin-sampling method is excluded in this test due to the 
computational issue). The test run includes 90 large office models that are applicable for 
applying the demand flexibility measure. Because the major objective of the demand flexibility 
measure in this analysis is to achieve peak load reductions (on a daily basis), we use the 
distribution of median daily peak load reduction percentages by month throughout the stock as 
the metric to illustrate and compare the performance (more explanation in the demand flexibility 
measure documentation Section 5.5). Figure 6 shows that the perfect prediction option 
outperforms the fixed schedule option and the OAT-based prediction option, which is consistent 
with the single building comparison results shown in Section 4.1. In addition, the fixed schedule 
option has the largest negative peak savings (Q1-Q3 boxes all located on the negative side), 
which indicates new higher peak loads are generated with the fixed schedule option for most of 
the applicable buildings for most of the time. 
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Figure 6. Distribution of median daily peak load reduction percentage by month compared to the 
baseline model for load shedding measure with perfect prediction, fixed schedule, and OAT-based 

prediction options 
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