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ABSTRACT The process of energy decarbonization in island power systems is accelerated due to the
swift integration of inverter-based renewable energy resources (IBRs). The unique features of such systems,
including rapid frequency changes resulting from potential generation outages or imbalances due to the
unpredictability of renewable power, pose a significant challenge in maintaining the frequency nadir without
external support. This paper presents a unit commitment (UC) model with data-driven frequency nadir
constraints, including either frequency nadir or minimum inertia requirements, helping to limit frequency
deviations after significant generator outages. The constraints are formulated using a linear regression model
that takes advantage of real-world, year-long generation scheduling and dynamic simulation data. The
efficacy of the proposed UC model is verified through a year-long simulation in an actual island power
system using historical weather data. The alternative minimum inertia constraint, derived from actual system
operation assumptions, is also evaluated. Findings demonstrate that the proposed frequency nadir constraint
notably improves the system’s frequency nadir under high photovoltaic (PV) penetration levels, albeit with a
slight increase in generation costs, when compared to the alternative minimum inertia constraint.

INDEX TERMS Linear regression, frequency nadir, unit commitment, renewable integration, island system.

NOMENCLATURE
Indices
b Index for load buses.
i Index for generation units.
p Index for photovoltaic (PV) generation units.
t Index for time interval.
T Time span.
l Index for transmission lines.

Constants
Hi Inertia of unit i.
SUi Startup cost of unit i.

SDi Shutdown cost of unit i.
RUi Ramp-up limit for unit i.
RDi Ramp-down limit for unit i.
RSUi Ramp-up limit for unit i when starting up.
RSDi Ramp-down limit for unit i when shutting down.
Limitl Transmission limit for line l.
Db,t Forecasted power demand mean value of load bus

b at time t.
Pp,t Forecasted PV power (maximum power point

tracking) of unit p at time t.
Gmaxi,t Maximum generation output of unit i at time t.
Gmini,t Minimum generation output of unit i at time t.
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Ti,MinUp Minimum uptime (MUT) for unit i.
Ti,MinDn Minimum downtime (MDT) for unit i.
GSF l−i Generation shift factor from bus i to line l .
LP Price of load-shedding penalty.
H Total inertia of the system.
RP/ PFP Regulation reserve and primary frequency

reserve shortage penalty price.
PFRrt Primary frequency reserve requirement at

time t.
Regru,t Regulation-up reserve requirement at time t.
Regrd,t Regulation-down reserve requirement at time t.

Variables
cpi,t Production cost for unit i at time t.
Gi,t Generation output for unit i at time t .
Gi,t Maximum available generation output for unit i

at time t.
Pp,t PV power output for unit p at time t.
Db,t Scheduled demand for the bus b at time t.
1Db,t Load-shedding quantity of bus b at time t.
1PFRt Capacity shortage in the system PFR at time t.
1Dt System load shedding at time t.
1Regu,t System regulation-up shortage at time t.
1Regd,t System regulation down shortage at time t.
Regu,i,t Regulation-up capacity provided by unit i at

time t.
Regd,i,t Regulation-down capacity provided by unit i at

time t.
Regu,p,t Regulation-up capacity provided by PV power

plant p at time t.
Regd,p,t Regulation-down capacity provided by PV

power plant p at time t.
PFRi,t PFR capacity of unit i at time t.
vi,t Commitment status of unit i at time t.
ui,t Startup status of the unit i at time t.
wi,t Shutdown status of unit i at time t.

I. INTRODUCTION

INVERTER-BASED resources (IBRs) deployed for
energy decarbonization in power systems pose challenges

to stabilizing system frequency due to the absence of con-
ventional rotational inertia support [1], [2]. Variability and
uncertainty in IBR power outputs exacerbate power imbal-
ances, leading to larger frequency excursions and increased
resource requirements for frequency regulation [3], [4].
Replacement of conventional generators with IBR reduces
system inertia and the reliability of frequency regulation.
Consequently, power systems with high renewable penetra-
tion face a lower frequency nadir, risking under-frequency
load shedding (UFLS) [5], [6] after generation tripping. This
urgent issue is particularly critical for island systems without
interconnection. Some system operators in the United King-
dom adopt a minimum inertia constraint approach [7], used in
power systems with significant penetration of IBR, which has
the drawback of increasing cost. Maintaining conventional
generators online solely for inertia support incurs additional
expenses for maintenance, fuel, and operations. As the IBR

share increases, reliance on costly conventional generators
for the inertia response grows, posing financial challenges
and questioning the long-term feasibility of this approach.

To maintain frequency stability in the system operation
stage, researchers integrate the frequency nadir constraint
into a traditional generation scheduling problem, such as
unit commitment (UC) and economic dispatch (ED). A com-
prehensive literature review, presented in Table 1, reveals
that the frequency nadir constraints can be derived from
two approaches: the analytical model method [1], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21] and the data-driven method [22], [23], [24], [25],
[26], [27], [28], [29]. However, incorporating the frequency
nadir constraint into existing Mixed Integer Linear Program-
ming (MILP)-based UC problem through either of these
methods, particularly the data-driven approach, can increase
the Complexity of Adaption (CoA), leading to a larger
number of decision variables and parameters during lineariza-
tion or master-sub programming, and hence can increase
computational complexity. Categorically, we conclude three
challenges to incorporating frequency nadir constraints to
MILP-based UC problems in the current situation:

First, the non-linearity of the nadir constraints makes
it challenging to incorporate them into a MILP-based UC
model. Many studies use Piece Wise Linear (PWL) [1], [8],
[9], [11], [12], [13], [14], [15], [16], [17], [19] and Benders’
Decomposition (BD) [18], [22], [23], [24], [25] methods
to integrate the constraint. Piecewise linearization allows
for the representation of nonlinear functions with a series
of linear segments, offering more flexibility in modeling
complex relationships. However, using PWL requires careful
selection of breakpoints and can lead to a high approximate
error, while using BD could result in infeasible solutions
in subproblems. These methods can increase CoA in the
MILP-based UC problem by introducing more decision vari-
ables and parameters during linearization. A frequency nadir
constraint has a small CoA in MILP when it is closer to a
linear equation, while a nonlinear frequency nadir constraint
leads to a higher CoA in MILP. Moreover, those constraints
with higher CoA result in higher computational complexity
during linearization.

Second, accurately estimating the frequency nadir con-
straint is essential to maintain adequate inertia and headroom
for fast frequency response, as well as to ensure that the
system frequency nadir remains within acceptable limits [30].
However, accurately estimating this constraint is challenging
due to various factors such as inertia, synchronous reactance,
time constants, droop settings of conventional generators and
IBRs, and the number of online units. Analytical models may
not capture all the nonlinear relationships involved, further
complicating the estimation process. Fortunately, data-driven
methods [22], [23], [24], [25], [26], [27], [28], [29] can offer
accurate estimates by treating the frequency nadir and the
input data as black boxes, considering the entire system and
its output. These data-driven approaches provide a viable
alternative to analytical models, leveraging the advantages
of capturing complex nonlinear relationships. Therefore, this
work embraces the benefits of data-driven models to estimate
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TABLE 1. Comparison of related works in the literature (in publication time order).

the frequency nadir instead of relying solely on analytical
models.

Third, validation and testing of the frequency nadir con-
straint is crucial to ensure its accuracy, reliability, and
effectiveness in the MILP solution. Long-term simulations
with realistic time series data and real-world systems are
necessary for comprehensive validation under various system
operation scenarios. Most studies use a simulation of one day
(24 hours) [1], [8], [9], [11], [14], [15], [16], [17], [18], [19],
[22], [23], [24], [25]. The volatile operation conditions of
high-IBR penetration power systems, including the impact of
large-capacity PV-battery systems and their operating hours,
cannot be fully satisfiedwith his short-term validation. There-
fore, a ‘‘long-term’’ simulation with attentive analysis is
crucial to confirm the frequency nadir constraint’s effective-
ness while considering dynamic performance.

Thus, to solve the aforementioned challenges of incor-
porating the frequency nadir constraint into MILP of the
unit commitment problem with efficiency and easy appli-
cability by industry considered, this study proposes a novel
data-driven frequency nadir-constrained unit commitment
(FNC-UC) model, which imposes constraints on frequency
nadir following the largest generation contingency. The main
contributions can be summarized below:

1) A data-driven, linear regression-based frequency nadir
estimation model is proposed that accounts for the
impacts of the system inertia, the headroom for the
primary frequency response (PFR), and the largest
generator’s output capacity in a generation trip contin-
gency. Based on our previous study [32], this model
provides a highly accurate estimate of the frequency
nadir in a realistic island system with a generation-
tripping contingency.

2) The proposed frequency nadir model is embedded in
a MILP-based unit commitment formulation such that

the system frequency nadir after the most significant
generator outage is endogenously considered in the
generation dispatch problem. It should be noted that the
proposed FNC-UC model has a lower CoA compared
to previous studies, as shown in Table 1, making it both
computationally efficient and easily applicable in the
industry.

3) A real-world island system with high IBR pene-
tration, Maui Island Grid, with realistic load and
renewable generation profiles, is used to validate the
proposed FNC-UC model. The proposed FNC-UC is
comprehensively validated over a long-term period,
effectively demonstrating its performance. In addition,
the economic and reliability impacts of the proposed
frequency nadir constraints on Maui Island operation
are quantified.

The remainder of this paper is organized as follows. The
regression-based linear frequency nadir constraint is intro-
duced in Section II. The procedure to obtain this linear
constraint is also presented. The FNC-UCmodel that contains
the frequency nadir or minimum-inertia requirement con-
straints is formulated in Section III. Case studies in an island
system are performed and analyzed in Section IV. Section V
concludes the paper.

II. DATA-DRIVEN DYNAMIC FREQUENCY NADIR
CONSTRAINT
This section introduces the procedure for obtaining the lin-
ear frequency nadir constraint through a linear regression
model with an extensive historical load of one year, renew-
able power generation scheduling, and dynamic simulations.
The data-driven-based nadir estimation and the proposed
FNC-UC framework will be introduced in Subsections II-A
and II-B.
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FIGURE 1. Illustration of the proposed frequency nadir constraint unit commitment approach.

FIGURE 2. Total inertia and headroom dataset testing error
distribution [32].

A. DATA DRIVEN-BASED FREQUENCY NADIR
ESTIMATION
In our previous study [32], we evaluated five data-driven
methods (linear regression (LR), gradient boosting (GB),
support vector regression (SVR), artificial neural network
(ANN), and XGBoost to predict frequency nadir in the power
system with high renewable penetration levels. The training
and testing dataset is Total Inertia Headroom (TIH), which
was generated using simulations with the Multi-Timescale
Integrated Dynamic and Scheduling (MIDAS) [33], [34] tool-
box. The attributes in the TIH dataset include the system-wide
inertia and the PFR headroom. The results showed that the
fivemethods had a high prediction accuracy. In particular, lin-
ear regression ranked higher than ANN and SVR, as shown in
Fig. 2. Although LRmay not have the best error performance,
it can still provide reasonable accuracy after considering
CoA. The hourly total inertia and total headroom can be
calculated as follows:

Inertiat =

N∑
i=0

vi,t · Hi · Mbasei, ∀i

PFRheadroomt =

N∑
i=0

(Gi,t − Gi,t ), ∀i (1)

where Inertiat and PFRheadroomt are the systems total inertia
(MW*s) and total headroom (MW) at time t; Hi is the inertia

of unit i; Mbasei is the rating in MVA of unit i; Gi,t and Gi,t
are the maximum generation and the power generation of unit
i at time t , respectively. Inspired by [35], [36], and [37], which
is typically used to analyze the frequency nadir of connected
machines in the entire system, the swing equation in the DC
model can be simplified as

Inertia ·
2∂1f (t)

∂t
= PFRheadroom − 1PL (2)

where 1PL is the power outage, 1f (t) is the frequency
deviation function of t. Therefore, it is significant to con-
sider potential power outages as an element in the frequency
nadir constraint to ensure the power system maintains the
frequency above the threshold of the UFLS level. Most stud-
ies [12], [13], [36], and [37] use the largest generation outage
for this PL .

Linear regression is one of the most common techniques in
machine learning [38]. Extensive literature [39], [40] shows
that linear regression performswell in forecasting, prediction,
and classification applications. It can provide stable, robust,
and accurate prediction results. The goal of linear regression
is to build a model whose output scalar, y ∈ R, is a linear
function of the input vector, x ∈ Rn, by solving a regression
problem. Let ŷ be the prediction value and y be the actual
value, so the equation of the linear regression should be
defined as ŷ = wTx + b , where wT

∈ Rn is the vector of
parameters; b is an intercept term. Note that the parameters
are values that control the prediction of the system. In other
words, the output, ŷ, is the sum of all the weighted input
vectors, x. The more significant weight, wi, contributes more
substantially to the prediction value. The training process is
listed as follows:

1
n
∇w

[ n∑
i=1

(ytraini − ŷtraini )2
]

= 0

∇w(Xtrainw − ytrain)T(Xtrainw − ytrain) = 0 (3)

In a nutshell, considering an N-1 largest generation con-
tingency (tripping the largest generation), the inertia of the
system, the amount of headroom, and the largest power gen-
eration are the most related variables in the linear regression
equation to estimate the frequency nadir of the system. The
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adopted formulation from the linear regression to this study is
the linear regression-based nadir constraint in (4), as shown:

fnadir = a ∗ Inertia+ b ∗ PFRheadroom + c ∗ Pmax + d (4)

where fnadir is the frequency nadir (Hz); Pmax is the system’s
largest generation outage capacity (MW); and a, b, c and d
are the linear coefficients obtained from linear regression. In
our previous study [32], we analyzed the impact of inertia and
PFR headroom on frequency nadir in power systems. Tradi-
tional systems exhibit a strong correlation with inertia and a
weak correlation with PFR due to its slower governor model
limitations, necessitating separate consideration of inertia and
PFR headroom. In contrast, modern systemswith high renew-
able penetration and integrated battery energy storage system
(BESS) present different dynamics, where BESS contributes
to a rapid PFR. Thus, Eq. (4) in our study, which includes
PFR headroom as a separate variable, captures the distinct
influence of thesefactorsonfrequencynadir.Inthisway,wecan
obtain the frequency nadir constraint, which contains only a
set of linear constraints to the MILP problem, resulting in a
lower CoA than other methods, as shown in Section III-D. 2).

B. PROPOSED FNC-UC FRAMEWORK
Figure 1 shows the flow chart to obtain the LR-based fre-
quency nadir constraint in the flow of the red arrows. First,
a conventional one-year generation scheduling simulation
is performed to obtain the generation dispatch of 365 days
(8,760 hours). The network-constrained unit commitment is
run sequentially for each day of this year. The Maui grid
system and the time series of load and renewable power
output are used for the one-year simulation. Then, after
obtaining the generation dispatch of each hour, a dynamic
simulation is performed to simulate the system frequency
response following the trip of the generator with the most
significant power output at that hour. The frequency nadir of
each hour is obtained from this dynamic simulation. PSSE
software is used for dynamic simulation in this study [41]
because system operators and researchers for dynamic simu-
lations of power systems use it extensively. Therefore, a linear
regression model is proposed to obtain the relationship of
the frequency nadir to the capacity of the most signifi-
cant generation power output, the system inertia, and the
PFR capacity/headroom of the system. Finally, a compre-
hensive techno-economic analysis is proposed to evaluate
the proposed constraint by the 8760-hour simulation, assess-
ing economic, reliability, and exceptional case factors. This
analysis aims to analyze the performance and outcome of
the proposed data-driven frequency nadir constraint. We
conducted a comprehensive assessment of machine learn-
ing methods for estimating power system frequency nadir,
taking into account loading levels, contingency types, and
capacities. This work involved an extensive evaluation over a
one-year duration, incorporating a wide range of load levels
and capacity scenarios. Specifically, we focused on scenar-
ios involving the contingency type of the largest generator
tripping event, chosen strategically to represent a severe con-
tingency in the power system. This deliberate emphasis on
the largest generator tripping event allowed us to assess the

effectiveness of the frequency nadir constraint in enhancing
the system’s resilience during critical incidents, establishing
a robustness benchmark.

Our dataset, spanning one year and including diverse load
and weather information, enabled us to explore a comprehen-
sive array of capacity scenarios based on unit commitment.
Figure 2 succinctly summarizes the performance results,
demonstrating that linear regression consistently ranks third
among various machine learning methods for estimating fre-
quency nadir during the largest generator tripping event.
Notably, the maximum absolute error of the linear regression
model is a mere 0.0128 Hz, underscoring its remarkable
accuracy and reliability in the estimation process.

III. UNIT COMMITMENT MODEL WITH FREQUENCY
NADIR CONSTRAINT
This section introduces a unit commitment formulation with
the proposed frequency nadir constraint and a minimum iner-
tia constraint in addition to conventional unit commitment
constraints.

A. OBJECTIVE FUNCTION
The objective of the FNC-UC problem includes the operat-
ing cost of traditional units—represented by their generation
costs associated with their startup and shutdown costs—as
well as the shortage penalties for the energy, regulation, and
PFR services, as follows:

min
∑
t∈T

∑
i∈g

(
SU iui,t + SDiwi,t + cpi,t

)
+ LP ∗ 1Dt

+ PFP ∗ 1PFRt + RP ∗ (1Regu,t + 1Regd,t ) (5)

cpi,t = aivi,t + biGi,t + ci,tG2
i,t (6)

Note that the production cost, cpi,t , of the traditional ther-
mal unit shown in (5), can be approximated by a piecewise
linear function from its quadratic production cost curve.
In this model, we assume that the operational energy price
of PV is 0. For ancillary services, the bidding prices are zero
because the unit commitment model co-optimizes the energy
and ancillary services, so the opportunity cost of providing
ancillary services will be respected.

B. CONSTRAINTS FOR THE SINGLE UNIT
The constraints for traditional thermal units are similar to
those in [42] and are presented as follows for completeness.
We also consider the startup and shutdown trajectories of
conventional generators in (9) and (10). In addition, (11)–
(13) show the ramping rate constraint for units, and (14)–(18)
impose limitations for ancillary services.

ui,t + wi,t≤1 (7)

vi,t − vi,t−1≤ui,t − wi,t (8)
t∑

τ=t−Ti,MinUp+1

ui,t≤vi,t (9)

t∑
τ=t−Ti,MinDn+1

wi,t≤1−vi,t (10)
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Gi,t − Gi,t−1≤RUi vi,t−1 + RSUi ui,t (11)

Gi,t−1 − Gi,t≤RDi vi,t + RSDi wi,t (12)

Gi,t≤Gmaxi,t vi,t (13)

Gi,t + Regu,i,t≤Gi,t+1 (14)

Gi,t + PFRi,t≤Gi,t+1 (15)

Gi,t − Regd,i,t≥G
min
i,t+1vi,t+1 (16)

Gi,t + Regu,i,t − Gi,t−1≤RUi (17)

Gi,t−1 −
(
Gi,t − Regd,i,t

)
≤RDi (18)

vi,t , ui,t ,wi,t∈ {0, 1} (19)

C. SYSTEM-WIDE CONSTRAINTS
The system constraints include the energy balance constraint
for every time interval, the system regulation reserve, the
PFR, and the transmission constraints, as follows:∑

i∈g

(
Gi,t + Pp,t

)
−

∑
b∈B

Db,t = 0 (20)

Db,t = Db,t − 1Db,t (21)

1Dt =

∑
b

1Db,t (22)∑
i∈g

PFRi,t + 1PFRt≥PFRrt (23)

∑
i∈g

Regu,i,t + 1Regu,t≥Reg
r
u,t (24)

∑
i∈g

Regd,i,t + 1Regd,t≥Reg
r
d,t (25)

−Limit l≤
∑
i∈Lg

GSF l−i
(
Gi,t + Pp,t

)
−

∑
b∈Lb

GSF l−bDb,t≤Limit l (26)

D. FREQUENCY NADIR CONSTRAINTS
1) MINIMAL INERTIA CONSTRAINT
Keeping inertia above a certain level is an intuitive method
to maintain the frequency nadir for power systems with high
penetration of renewable generation [43]; therefore, some
power system operators in the United Kingdom deploy a
straightforward approach to maintain the stable system fre-
quency response by imposing a minimum inertia requirement
constraint in system operation [7]. Because the inertia of
conventional generation units is a static parameter, they can
provide inertia response when they are online; therefore,
the system minimum inertia requirement constraint can be
directly formulated as follows:

N∑
i=1

Hi ≥ Hmin (27)

where Hi is the inertia of the i-th generation unit, and Hmin
is the predefined minimum inertia level that the system must
maintain. Note that this study has no inertia response from
PV and batteries.

2) FREQUENCY NADIR CONSTRAINT
From the linear regression model, (4), presented in the pre-
vious section, a linear constraint representing the frequency
nadir requirement can be added to the unit commitment
model. The linear constraint of the frequency nadir is shown
in (28):

a ∗ Inertia+ b ∗ PFRheadroom + c ∗ Pmax + d ≥ fthreshold
(28)

TABLE 2. Parameter values of the linear regression frequency
nadir constraint for the island system studied .

Table 2 presents the values of the parameters a, b, c, and
d for the Maui Island system. Positive values for a and b
indicate that inertia and PFR headroom positively impact the
frequency nadir. Conversely, the largest generation output
capacity negatively affects the frequency of nadir. The param-
eter c plays a significant role in the linear regression-based
nadir constraint. The threshold for fthreshold in the island
system is set above the first level of the UFLS scheme
(assumed to be 59 Hz). Figure 3 illustrates the flowchart of
the FNC-UC framework, with the linear regression model
establishing the relationship between the frequency nadir and
the significant generation capacity, system inertia, and PFR
headroom (as in Eq. (4)). While this study focuses on an
island system, it’s important to note that the proposed frame-
work is adaptable to various power system cases, including
both island and traditional systems. Island systems often
exhibit weaker characteristics due to limited external power
support compared to traditional transmission grids. Future
research could explore and evaluate the framework’s appli-
cability to different power system types, considering their
unique characteristics, impacts, and efficiency. This adapt-
ability broadens the framework’s utility and contributes to
a more comprehensive understanding of its potential across
diverse power system scenarios. Further analysis of these
parameters is presented in Section IV-C.

IV. CASE STUDIES
To illustrate the effectiveness of the proposed FNC-UC
model, theMaui Island system is used in this study. Maui grid
operators are integrating several large hybrid PV and battery
power plants into their systems. The stability of the system
will be simulated at high penetration levels of renewable
generation, especially PV.

The Maui Island grid case with two PV-BESS plant
projects is selected as our study case. It includes 23 ther-
mal units with capacities ranging from 2.75 MW to
21.45 MW. Four wind power plants are modeled. Two exist-
ing utility-scale PV plants, with 2.87 MW each, are consid-
ered. TheMaui grid model includes 61 aggregated distributed
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FIGURE 3. Flowchart of the FNC-UC model.

PV (DPV) units with a capacity of more than 140 MW. The
DPV is not dispatchable, so the operator cannot curtail its
power output. In contrast, the utility-scale PV is dispatchable,
which means that its power output can be curtailed in real
time; thus, the operator can curtail utility-scale PV but not
DPV. The model has three large PV-BESS plants, represent-
ing the plant currently under development. The parameters
of the three PV-BESS plants are summarized in Table 3.
The PV-BESS plant model in our study represents a hybrid
power plant where PV and BESS are integrated as a single
unit within the power system. Specifically, we maintain the
state of charge (SOC) at 50% by the end of each midnight,
ensuring that it starts and ends each day at this level. This
setup allows for flexibility in charging and discharging during
the transition periods each day. Both the scheduling and
dynamic simulations (in PSSE) incorporate the consistent
PV-BESS model, reflecting realistic operational constraints
and behaviors of the PV-BESS system. This approach ensures
that SOC management is consistently represented through-
out the study, providing insights into its impact on system
dynamics and reliability. The generation mix is shown in
Fig. 4. The 80-MW capacity of the utility PV includes the
three PV-BESS plants. The yearly system load curve with
hourly granularity is shown in Fig. 5. The system peak load is
approximately 200 MW. The one-year simulation inherently
encompasses various conditions, capturing a wide range of
operational scenarios and their respective uncertainties.

The resolution of time in the FNC-UC is 1 hour, and the
time span planned for the day in the FNC-UC is 24 hours.
Regulation-down/-up requirements are assumed to be 3% of
the system load. The PFR requirement is 4.75% of the system
load. These numbers are chosen on the basis of the system’s

TABLE 3. Parameters of the PV-BESS plants.

FIGURE 4. Generation capacity mix in the island system.

FIGURE 5. Load curve in the simulated cases.

dynamic simulation to maintain reliability. A detailed model
of how to decide on the ancillary service requirements [42] is
beyond the scope of this paper.

To evaluate the performance of the proposed FNC-UC
model, three different cases are simulated to demonstrate
the impacts of the frequency nadir constraints on the system
generation scheduling and the system stability.

1) Case 1 (Baseline Case) is without a frequency nadir
constraint.

2) Case 2 (Minimum Inertia Case) is with a minimum
inertia requirement constraint (27). The operator his-
torically used 350 MVA*s as the minimum inertia
requirement in this island system. This inertia level was
obtained from operational experience to limit the rate
of change of frequency after the generation trip.

3) Case 3 (Nadir Constraint Case) is with a lin-
ear regression-based frequency nadir constraint (28)
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but without the minimum inertia requirement con-
straint (27). The frequency nadir is chosen to be greater
than 59 Hz, which is Maui grid’s first UFLS frequency
threshold.

In addition, the exceptional simulation results from those
three cases are further analyzed in Subsection IV-C.

FIGURE 6. Annual generation cost of the three cases.

A. IMPACTS OF FREQUENCY NADIR CONSTRAINTS ON
GENERATION SCHEDULING
The system daily generation costs versus the day of the
year in the three cases are depicted in Fig. 6. The sys-
tem generation cost with the minimum inertia constraint
in Case 2 is higher than in the other two cases. Fig. 7
shows that the addition of the linear nadir constraint trivially
increases the generation cost because the production cost
curves of the Baseline Case and the linear regression-based
Nadir Constraint Case are very close to each other; however,
the constraint of the minimum inertia requirement signifi-
cantly impacts the distribution of the daily generation costs.
The minimum daily generation cost for the year with the
minimum inertia requirement constraint (Case 2) is much
higher than in the other two cases. Note that there is no
comparably low cost (less than $250k) in theminimum inertia
constraint because it has the restriction ofmaintaining enough
inertia whether or not it is needed for that hour. Requiring
a large amount of inertia leads to the introduction of more
conventional generators online, resulting in a more expensive
operating strategy. The higher system generation cost can be
explained by investigating the detailed generation scheduling
results in the three cases.

FIGURE 7. The generation cost duration of the three cases.

A five-day generation dispatch example for the three cases
is shown in Fig. 8 to clarify the differences in generation

FIGURE 8. The five-day generation dispatch examples of the
three cases.

scheduling. Purple and red represent the discharging and
charging power of the BESS. Gray represents synchronous
generation; orange and light blue represent PV and wind
power, respectively. The red dashed line shows the lowest
level of synchronous generation for each case. The minimum
inertia requirement constraint maintains a higher inertia by
bringing more synchronous generators online during the PV
hours. Additionally, the green circles highlight the difference
between the Baseline Case and the Nadir Constraint Case.
The generation dispatches of most hours in these cases are
similar, except when the BESS is discharging and PV is
starting to ramp up. The BESS usually discharges during the
time without PV generation while charging during the period
with PV generation, as shown in Fig. 8. In addition, the BESS
has a better capability of providing PFR, so allocating enough
headroom for the BESS and committing more conventional
generators helps maintain the frequency nadir of the power
system. It can also be observed that this difference in the
BESS scheduling leads to different wind and solar profiles
because the charging of the BESS can impact the wind and
solar curtailment in this island system with a high penetration
level of hybrid power plants.

TABLE 4. One-year generation costs in the three cases.

The generation costs of the three cases are listed in
Table 4. The cost of one-year generation in the baseline
case is $112,997,029. Adding the frequency nadir constraint
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costs 0.77% more than the baseline, while adding the min-
imum inertia requirement constraint costs 12.23% more
than the baseline. The results in Figs. 6–8 and Table 4
demonstrate that the inclusion of the linear nadir constraint
does not significantly increase the system generation cost.
In contrast, the minimum-inertia requirement constraint sig-
nificantly increases the generation operation cost. For the
duration of this one-year simulation, a consistent fuel cost
was maintained in the cost analysis. This methodological
decision was crucial in ensuring the comparability of results.
Moreover, the costs associated with the minimum inertia case
were consistently higher than those in the other scenarios,
a trend that held true regardless of supply curve variations
while considering that fuel costs are the driver of generation
costs. By maintaining constant fuel cost assumptions, our
study provides a clear comparison of the economic impacts
associated with those three cases.

B. IMPLICATION OF FREQUENCY NADIR CONSTRAINT
ON STABILITY
This subsection demonstrates the efficacy of the pro-
posed linear regression-based nadir constraint and the
minimum-inertia requirement constraint in maintaining the
frequency nadir. A PSSE validation and an analysis
of the simulation results are shown in this subsection. Figure 9
shows the frequency nadir results of three cases over one year
from the PSSE dynamic simulation. Note that the dynamic
simulations in PSSE of the largest generator contingency
(N-1) are built for each hour’s generation schedule over one
year (total of 8,760 snapshots). For each hour, the genera-
tor with the most significant power level is identified and
tripped in the dynamic simulation. Figure 9 and Figure 10
demonstrate that adding a frequency nadir constraint, such
as the linear regression-based nadir constraint or the mini-
mum inertia constraint, can improve the system frequency
nadir. Without these frequency nadir constraints, there is a
risk that the frequency nadir is lower than the predefined
59-Hz UFLS threshold if the largest generator trips. Also,
note that the minimum inertia constraint cannot guarantee
that the frequency nadir of all hours is higher than 59 Hz.
The systemwill still have a risk of a low-frequency nadir even
with this minimum inertia requirement. On the contrary, with
the proposed linear regression-based nadir constraint, the
probability that the frequency nadir is lower than 59 Hz can
be significantly reduced, as shown in Table 5. This demon-
strates that the proposed nadir constraint performs better in
this system than the minimum inertia requirement constraint
previously considered by the operator.

The subplot of Fig. 9 shows the results for April. Both
frequency constraints (Nadir Constraint Case and Minimum
Inertia Case) help the system maintain a higher nadir than
the Baseline Case; however, there are some green points
(Minimum Inertia Case) approaching 60Hz, and some orange
points (Nadir Constraint Case) are below the corresponding
blue points (Baseline Case). A detailed analysis of those
situations appears in the following subsection.

A histogram of the simulation results reveals differences in
distribution, as shown in Fig. 10. In the critical range of less

FIGURE 9. Frequency nadir for each hour of the year for the N-1
event.

FIGURE 10. Frequency nadir distribution of the three cases.

than 59 Hz, the Baseline Case has 159 counts, the Minimum
Inertia Case has 50 points, and the Nadir Constraint Case has
18 points, respectively. In other words, the Nadir Constraint
Case performs best to improve the stability of the power
system and reduce the risk of load shedding. The Minimum
Inertia Case results in more nadirs in the range of [59.8, 60];
this will be discussed in the next section.

Table 5 shows the numbers of total hours and violation
hours (in which the frequency < 59 Hz) as well as the
percentage of hours that result in violations in the three cases.
The Baseline Case has the highest probability of a frequency
nadir lower than 59 Hz among the three cases, at 1.8%. The
minimum inertia case has a probability of 0. 57%, and the lin-
ear regression-based Nadir constraint case has a probability
of 0. 2% of frequency violation of the nadir in the most severe
dynamic simulation of N-1 contingency.

TABLE 5. Probabilities of frequency nadir lower than 59 Hz in the
three cases.

Figure 11 shows the number of times when the nadir is
less than 59 Hz for each hour of the day. Without a fre-
quency nadir constraint, most hours of the day have a risk
of a frequency nadir lower than 59 Hz, as shown in the
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FIGURE 11. Hourly counts of the frequency nadir lower than
59 Hz in the three cases.

FIGURE 12. The system scheduled one-month total inertia in the
three cases.

Baseline Case. After adding the linear regression-based nadir
constraint, there are only a few hours when the frequency
has a risk of falling lower than 59 Hz. The minimum inertia
constraint is also helpful in reducing this risk, but is not as
beneficial as the linear regression-based nadir constraint. This
figure also shows that in the Maui Island system with a high
penetration level of hybrid power plants (PV plus battery
energy storage), the risk of a low nadir occurs mostly during
non-PV hours. The main reason is that during these non-
PV hours, the BESS discharges to satisfy the load in the
system; thus, the headroom of the batteries reduces during
these hours. Consequently, the system has a smaller PFR
headroom from the batteries; therefore, these hours have a
relatively high risk of a lower nadir. In contrast, during the
day (PV hours), the BESS is charging, which leads to ample
PFR headroom from the batteries because a BESS can change
from charging to discharging to provide a large capacity
of PFR if needed. This is an exciting phenomenon in the
island system with a high penetration of hybrid power plants.
In large interconnected systems with high PV penetration
levels, the risk of a low nadir usually occurs around noon,
when the PV penetration level is high, and the system has a
low inertia level. This demonstrates that the proposed nadir
constraint will not significantly increase the system genera-
tion cost but can dramatically improve the system frequency
nadir; therefore, the proposed nadir constraint is promising in
the actual operation of this island system.

FIGURE 13. The inertia duration curves in the three cases.

TABLE 6. System inertia metrics for the three cases (MW*s).

The one-month system scheduled inertia and the one-year
inertia duration curve are shown in Fig. 12 and Fig. 13,
respectively. The minimum inertia requirement frequently
results in system inertia that is always higher than in the
Baseline Case. In contrast, the nadir constraint does not
significantly increase the system inertia. This is also shown
in Table 6. The maximum inertia levels of the three cases
are the same. The minimum inertia levels of the Baseline
Case and the Nadir Constraint Case are the same. In contrast,
the Minimum Inertia Case has a higher minimum inertia
level, as the constraint requires. The average inertia levels
of the Baseline Case and the Nadir Constraint Case are very
close. This is because the nadir constraint can schedule more
PFR headroom instead of requiring more thermal units online
for most hours, leading to a generation cost similar to the
Baseline Case.

C. EXCEPTIONAL CASE ANALYSIS
This subsection analyzes two exceptional situations men-
tioned in the simulation results of the previous subsections,
i.e., 1) the Minimum Inertia Case’s frequency nadir close to
60 Hz and 2) a lower frequency nadir that occurred after
adding the nadir constraint compared to the Baseline Case.
The main reasons for two counterintuitive situations are dis-
cussed here:

1) FREQUENCY NADIR of MINIMUM INERTIA CASE IS
NEAR 60 Hz
Three examples are selected in Table 7 where the frequency
nadir is near 60 Hz after the largest N-1 generation con-
tingency in the Minimum Inertia Case. In all these cases,
the BESS is charging, which means they consume power;
therefore, once the most significant generation (much smaller
than the total charging power) is tripped, the BESS can
immediately stop charging (consuming power) to compensate
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TABLE 7. Nadir near 60 Hz in the minimum inertia constraint
case.

for the tripped generation. Note that the BESS headroom
(HR) is the difference between its present power level and its
maximum power output, which is greater than its rating if it
is charging because the current power level is negative when
charging. Observe that the highest BESS headroom results
in the highest actual frequency nadir among those examples.
In addition, the inertia in the system in these hours (because
of the minimum inertia constraint) helps prevent a sudden
drop in frequency. The BESS’s high inertia and great charging
power result in high-frequency nadirs in the Minimum Inertia
Case.

TABLE 8. Nadir constraint case has a lower nadir than the
baseline case.

2) LINEAR REGRESSION-BASED NADIR CONSTRAINT
CASE HAS LOWER FREQUENCY NADIR THAN BASELINE
Table 8 shows the cases where the baseline has a higher
frequency nadir than those with a frequency nadir constraint.
The examples occurred on day 2, hour 19, and day 6, hour 19,
respectively. These are both non-PV periods when a BESS is
tripped as the largest generator. As shown in the first example,
the predicted frequency nadirs from the linear regression
method are 58.92 Hz and 59.25 Hz for the Baseline Case and
the Nadir Constraint Case, respectively; thus, the estimated
system frequency nadir is higher than the predetermined
level of 59 Hz in the frequency-constrained case. However,
the actual frequency nadirs simulated via PSSE are 59.01
(Baseline) and 58.47 Hz (Nadir-Constrained). In the Baseline
Case, a BESS with a generation of 31.1 MW is tripped, and
there is 35.5MWof headroom in the remainingBESS; in con-
trast, 20 MW of generation is tripped in the frequency Nadir
Constraint Case, but there is only 11.2 MW of headroom in
the remaining BESS. In these cases, the BESS is a primary
provider of PFR. If the remaining BESS has smaller PFR
headroom, it leads to a lower frequency nadir. In other words,
a considerable value of BESS headroom represents a better
ability of the BESS to respond to the frequency drop; there-
fore, when the BESS is enabled to provide a fast frequency

response, the risk that a BESS trip should be considered in
the system operation.

Additionally, in Fig. 9, an interesting observation emerges
where the minimum inertia case exhibits a lower frequency
nadir than the frequency nadir constraint case. This find-
ing suggests that while inertia is indeed a significant factor
in determining power system frequency nadir, it is not the
sole determinant. Our analysis reveals that increasing inertia
alone is not the exclusive solution. Several factors, including
reserve capacity and the influence of the largest generator,
play crucial roles in shaping the frequency nadir. A direct
comparison between the minimum inertia case and the fre-
quency nadir constraint case highlights noteworthy patterns.
Firstly, the minimum inertia case generally exhibits higher
inertia levels compared to other scenarios. This consistent
trend suggests that while inertia contributes significantly to
system stability, its impact is nuanced and influenced by
other system parameters. Secondly, there are instances where,
despite a system with large inertia, the BESS headroom is
relatively small, leading to a weaker frequency response.
Additionally, limitations imposed by the frequency nadir
constraint on the largest generator significantly contribute
to achieving a higher frequency nadir in comparison to the
minimum inertia case. Figure 12 illustrates these instances,
underscoring the complexity of power system dynamics,
where multiple factors, including reserve capacity, BESS
headroom, and generator constraints, collectively shape the
system’s frequency response rather than inertia alone.

V. CONCLUSION
Tomaintain the frequency nadir of a future grid, especially an
island grid with high penetration levels of renewable genera-
tion, this paper proposes a linear regression-based frequency
nadir constraint in the unit commitment problem. The fre-
quency nadir of the largest generation trip event is considered
endogenously in the generation scheduling stage. Simulation
results demonstrate that the frequency nadir of the system can
improve significantly with this nadir constraint in a realistic
island system. Therefore, the risk of a frequency nadir lower
than the predetermined threshold is reduced. Furthermore,
compared to the direct minimum inertia requirement con-
straint, the proposed linear regression-based nadir constraint
trivially increases the system generation cost while achiev-
ing a better nadir response; therefore, the proposed nadir
constraint can serve as a good reference for future system
operation with high penetration levels of hybrid PV and
battery resources.

Future work will include testing other data-driven mod-
els to improve the forecast accuracy of the proposed nadir
constraint. More hybrid plant operational strategies will be
investigated considering the frequency nadir risk. Another
future research direction can address the complexities intro-
duced by the virtual inertia of IBRs, specifically those with
Grid-Forming Inverters in the frequency nadir constraint.
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